
Article

The International Journal of

Robotics Research

2020, Vol. 39(1) 21–38

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364919868279

journals.sagepub.com/home/ijr

Learning attribute grammars for
movement primitive sequencing

Rudolf Lioutikov1 , Guilherme Maeda2, Filipe Veiga3 ,

Kristian Kersting4 and Jan Peters5,6

Abstract

Movement primitives are a well studied and widely applied concept in modern robotics. However, composing primitives

out of an existing library has shown to be a challenging problem. We propose the use of probabilistic context-free gram-

mars to sequence a series of primitives to generate complex robot policies from a given library of primitives. The rule-

based nature of formal grammars allows an intuitive encoding of hierarchically structured tasks. This hierarchical con-

cept strongly connects with the way robot policies can be learned, organized, and re-used. However, the induction of

context-free grammars has proven to be a complicated and yet unsolved challenge. We exploit the physical nature of robot

movement primitives to restrict and efficiently search the grammar space. The grammar is learned by applying a Markov

chain Monte Carlo optimization over the posteriors of the grammars given the observations. The proposal distribution is

defined as a mixture over the probabilities of the operators connecting the search space. Moreover, we present an

approach for the categorization of probabilistic movement primitives and discuss how the connectibility of two primitives

can be determined. These characteristics in combination with restrictions to the operators guarantee continuous

sequences while reducing the grammar space. In addition, a set of attributes and conditions is introduced that augments

probabilistic context-free grammars in order to solve primitive sequencing tasks with the capability to adapt single primi-

tives within the sequence. The method was validated on tasks that require the generation of complex sequences consisting

of simple movement primitives using a seven-degree-of-freedom lightweight robotic arm.

Keywords

Movement primitives, movement primitive sequencing, probabilistic context-free grammar, attribute grammar,
grammar induction, human-robot interaction

1. Introduction

Movement primitives (MPs) are a well-established concept

in robotics. MPs are used to represent atomic, simple move-

ments and are, therefore, appropriate for tasks consisting of

a single stroke-based or rhythmic movement (Paraschos

et al., 2018). They have been used in a large variety of

applications, e.g., table tennis (Muelling et al., 2013), pan-

cake flipping (Kormushev et al., 2010), and hockey

(Paraschos et al., 2018). However, for more complex tasks,

a single MP is often not sufficient. Such tasks require

sequences of MPs for feasible solutions. Considering a set

or library of MPs, such sequences can be generated in a

variety of ways, including hidden Markov models (HMMs)

(Kulic et al., 2012), mixture models (Lioutikov et al.,

2017), and other hierarchical approaches (Stulp and Schaal,

2011). These approaches can be regarded as mechanisms

that produce sequences of MPs, revealing a common,

important downside: understanding these mechanisms

requires a significant amount of expert knowledge.

However, a declared goal of robotics is the deployment of

robots into scenarios where direct or indirect interactions

with non-expert users are required. Therefore, more intui-

tive sequencing mechanisms for non-experts are necessary.

1Personal Autonomous Robotics Lab, UT Austin, Austin, TX, USA
2ATR Computational Neuroscience Labs, Kyoto, Japan
3MIT Computer Science & Artificial Intelligence Lab, Cambridge, MA,

USA
4CS Department and Centre for Cognitive Science, TU Darmstadt,

Germany
5Intelligent Autonomous Systems, TU Darmstadt, Germany
6Max Planck Institute for Intelligent Systems, Tübingen, Germany

Corresponding author:

Rudolf Lioutikov, Department of Computer Science, The University of

Texas at Austin, 2317 Speedway, Stop D9500, Austin, TX 78712-1757,

USA.

Email: lioutikov@utexas.edu

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364919868279
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364919868279&domain=pdf&date_stamp=2019-11-17

This paper introduces the use of formal grammars for

the sequencing of MPs. In particular, we focus on probabil-

istic context-free grammars (PCFGs) and propose a method

to induce PCFGs from observed sequences of primitives.

Formal grammars represent a formal description of sym-

bols and rules, encoding the structure of a corresponding

language. They have been studied extensively in both natu-

ral language processing and compiler construction, but

have also been applied in a variety of fields such as mole-

cular biology (Chiang et al., 2006), bioinformatics (Rivas

and Eddy, 2000), computer vision (Kitani et al., 2005; Zhu

and Mumford, 2007), and robotics (Dantam and Stilman,

2013; Lee et al., 2013; Sarabia et al., 2015). The choice of

learning a probabilistic representation over a single deter-

ministic plan is based on the insight that probabilistic

representations of behavior are generally more robust to

changes than deterministic representations, especially in

dynamic environments. For instance, in a collaborative

task, a fixed plan describing the behavior between a robot

and a user would require the user to always behave accord-

ing to the set plan. A distribution over plans allows for at

least some flexibility as long as the plan is still within the

distribution. Furthermore, PCFGs allow the implicit

embedding of hierarchies within the rules of the grammar

associating every produced sequence with at least one cor-

responding parse tree. Such a parse tree represents the deri-

vation of the produced sequence in an intuitive way.

Figure 1 shows a learned grammar for placing a stone in a

game of tic-tac-toe, including the parse tree for a produced

primitive sequence.

The understandability of the grammar itself is highly

dependent on the size and structure of the grammar. The

induction of concise but expressive grammars is considered

non-trivial and, in the context of natural language, even an

ill-posed problem. A common approach to grammar induc-

tion is to formulate the problem as a search problem where

each possible grammar is a node in the search space and a

set of operators generate the edges between those nodes.

This search space can then be traversed through different

search methods where a scoring function determines the

quality of each grammar. Stolcke (1994) suggested formu-

lating the problem as a maximum a posteriori estimation

where the scoring is defined as the posterior given the

observations. In order to reduce the possibility of getting

stuck in bad local optima, the search space was traversed

via beam search. In this work we formulate the search as a

Markov chain Monte Carlo (MCMC) optimization simi-

larly to Talton et al. (2012), where the scores were defined

as posteriors over the grammars given the observations.

To ease the learning of grammars, the proposed

approach exploits the structure inherently present in the

physical motions. We assume each segment of the observed

sequences to be a sample from an underlying library of

MPs (e.g., Lioutikov et al., 2017; Niekum et al., 2015).

Owing to the considerably smaller size of a primitive

library compared with the corpus of a natural language, the

observed sequences of even complex tasks show a simpler

structure than a sentence of a natural language.

Furthermore, the category of a MP, e.g., hand or arm move-

ment, can be more easily deduced than the category of a

word, e.g., verb or noun. We discuss how to determine the

category of a MP later in this paper.

An important restriction that improves the induction of

grammars for movements is that any produced sequence

has to result in a continuous trajectory inside the state

space. Therefore, any grammar that would produce a jump

in the state space is invalid and has to be removed from

consideration. In this work, we avoid such grammars

directly by restricting the operators to exclusively produce

valid grammars, by ensuring the connectibility between

two consecutive MPs.

The contributions of this work are the induction of

PCFGs for the sequencing of MPs. The posteriors are com-

puted using a novel prior distribution that avoids many dis-

advantages of existing methods based on minimum

description length and Dirichlet distributions. The search is

formulated as a MCMC optimization where the proposed

distributions are defined through restrictions placed upon

the operators connecting the grammar search space. These

restrictions include physical constraints presented in the

domain of movements. This paper extends the work pre-

sented in Lioutikov et al. (2018) with details on the cate-

gorization and the assessment of connectibility of MPs. In

addition, we enhance the induced grammars with attributes

and an evaluation scheme for MP sequencing tasks. The

presented method is evaluated on a tic-tac-toe task, where a

grammar is induced that sequences primitives in order to

pick up a stone and place it on a tic-tac-toe playing field.

In addition, we evaluate the method on a collaborative chair

assembly task, where the robot induced a grammar describ-

ing a sequence of required hand-over primitives.

2. Related work

MPs are usually used to solve tasks consisting of single,

atomic stroke-based or periodic movements (Paraschos

Fig. 1. The robot executes a turn in the tic-tac-toe game,

represented as a sequence of MPs. The sequence was generated

by a PCFG learned from previously labeled observations.

22 The International Journal of Robotics Research 39(1)

et al., 2018). For more complex tasks, however, a sequence

of primitives has to be applied. An example of such a task

is the grasping, positioning, and cutting of a vegetable

(Lioutikov et al., 2014) with dynamical movement primi-

tives (DMPs) (Ijspeert et al., 2013). However, in the

approach of Lioutikov et al. (2014) the sequences were not

learned, but predefined. An approach combining the seg-

mentation of observations and the learning of a sequencing

mechanism was presented by Kulic et al. (2012). The pri-

mitives are encoded using HMMs and a graph structure is

learned during the segmentation. This graph can be used

subsequently to sequence the primitives. Another approach

featuring a sequence graph was presented by Manschitz

et al. (2014). The graph was learned from demonstrations

through an agglomerative clustering scheme. In this work,

we propose PCFGs as a means of sequencing MPs.

Grammars bring the advantage of being a general method

capable of representing hierarchies in a principled and

intuitive manner.

Motion grammars (Dantam and Stilman, 2013) are

extensions of context-free grammars (CFGs) modeling the

discrete and continuous dynamics of hybrid systems

(Dantam and Stilman, 2012). Motion grammars aim at fast

task verification and have not yet been induced from obser-

vations. Dantam et al. (2011) and Sarabia et al. (2015)

described the benefits of applying CFGs in human–robot

interaction scenarios such as playing chess or making music

collaboratively. Lee et al. (2012, 2013) used PCFGs to

sequence discrete actions. Analogously to Stolcke (1994),

the grammar was learned by applying a beam search for the

maximal posterior inside the grammar space. The grammar

space was traversed by applying the merge and chunk
operators (Stolcke, 1994) to observed sequences. In con-

trast to the approach of Stolcke (1994), a n-gram-like fre-

quency table was used to determine reoccurring patterns in

the observations, hence, identifying candidate productions

for the chunk operator. To avoid unintuitive, compact

grammars, the prior definition, originally defined solely by

the minimal description length, was extended by a log-

Poisson term similar to the approach by Kitani et al. (2008).

The meaning of the operators shall become clear later in

this article.

Although we share the motivation of learning intuitive,

PCFGs for primitive sequencing, our work differs from Lee

et al. (2012) in several ways. We use a stochastic MP repre-

sentation and actively take advantage of its properties to

induce the grammar. We deviate from the common struc-

ture prior definition as an exponential distribution over the

minimal description length and define the entire prior as a

combination of several Poisson distributions. Furthermore,

we use MCMC optimization to find the grammar maximiz-

ing the posterior, similarly to Talton et al. (2012), which is

more robust to local optima than beam-search.

The grammar induction approach described in Talton

et al. (2012) uses the Metropolis–Hastings algorithm

(Andrieu et al., 2003) to learn grammars describing designs

in various domains, such as websites and geometric

models. The prior is defined using the description length

and the grammar learning is not used in any robotics con-

text. In addition, the structure of the observed sequences

differs significantly from our problem setting. In the

approach of Talton et al. (2012), the observations and,

hence, the starting points of the grammar induction are

already hierarchical structures. Therefore, it is sufficient to

traverse the grammar space using solely the merge and

split operators. These operators allow the generalization

and specialization of grammars, but are not able to intro-

duce new hierarchies like the operator (Stolcke, 1994). In

this work, we apply all three operators. To achieve the

required irreducibility of the Markov chain, we additionally

introduce the insert operator, negating the effects of the

chunk operator.

3. Background

Before presenting the induction of MP grammars, this sec-

tion briefly introduces the general concepts of formal gram-

mars and MPs.

3.1. Formal grammars

A formal grammar is a description of a formal language in

terms of symbols and production rules. The symbols,

A [Vð Þ, are commonly separated into two disjoint sets

called terminals A and non-terminals V, with the conven-

tion that terminals represent the atomic elements of the lan-

guage, while non-terminals can be substituted with

sequences of symbols. Each production rule rb 2 Ra sub-

stitutes the symbol sequence a 2 (A [V)+ with

b 2 (A [V)+. A rule is commonly denoted as a! b,

where a and b are referred to as the left- and right-hand

side, respectively. With these definitions, a grammar can be

described as a four-tuple G= A,V,R,Sh i, where R
denotes the set of all Ra and S is the set of all starting

symbols S � (A [V)+. A grammar can contain multiple

rules for the same left-hand side, i.e., Raj j.1, resulting in

a non-deterministic grammar. Weighting each Ra 2 R with

a corresponding multinomial ra 2 D Raj j�1, leads to a sto-

chastic or probabilistic grammar. Furthermore, grammars

can be recursive, i.e., a series of productions starting with a

rule in Ra results in a sequence containing a. The non-

deterministic and recursive properties allow grammars to

represent complex, hierarchical relations between symbols

in relatively simply structured production rules.

Formal grammars are commonly classified via the

Chomsky hierarchy. The most constrained and, therefore,

least-expressive grammars in this hierarchy are the so-

called regular grammars. Languages described by these

grammars are known as regular expressions, e.g., the

expression a+b+ represents all sentences that consist of

one or more a followed by one or more b. Probabilistic reg-

ular grammars are equivalent to HMMs. Similar to instan-

tiated HMMs formal grammars explain observed sequences

in so-called parse trees. Figure 2 shows a regular grammar

Lioutikov et al. 23

describing the expression a+b+ as well as a corresponding

HMM, while Figure 3 shows (a) an instantiated HMM and

(b) a parse tree for the sequence aabb of the HMM and

the regular grammar, respectively. The left-hand side of

each rule is a single non-terminal and the right-hand side

can be either a terminal or a terminal followed by a non-ter-

minal. In addition, each production of a single rule is

weighted by a probability, e.g., the non-terminal A pro-

duces the sequences aA and aB with a probability of 0.3

and 0.7, respectively. While the parse tree and the graph for

the time series look fairly similar the description of the

higher-level policy as a grammar is more intuitive to under-

stand than the graphical model and is, therefore, better sui-

ted for non-expert users. However, given that HMMs are an

extensively studied tool for the learning and analysis of

time series, they are a much more common choice for the

sequencing of discrete actions, such as MPs, than regular

grammars. Despite their simplicity regular grammars can

describe complex languages. In fact, every finite language

is regular and can, therefore, be described by a regular

grammar. Furthermore, every infinite language satisfying

the pumping lemma is also regular, as for instance the

described language a+b+.

3.1.1. PCFGs. PCFGs are able to describe infinite lan-

guages that cannot be described by regular grammars or,

therefore, by HMMs. An example for such a language is

anbn, which contains any sequence with n a that are always

followed by the same number of b. Regular grammars do

not contain any mechanism to keep track of the number of

produced a. However, such languages can be described by

CFGs such as that shown in Table 1. CFGs still have only

a single non-terminal on the left-hand side, but can now

contain an arbitrary sequence of terminals and non-

terminals of the right-hand side. Despite the more complex

language, the CFG is at least as intuitive as the previous

regular grammar. Figure 3c shows the corresponding parse

tree for the sequence aabb. The probabilistic extension of a

CFG, as in the given example, is a so-called probabilistic

or stochastic context-free grammar (PCFG). The non-

terminal on the left hand side, A, can produce the

sequences ab and aAb on the right-hand side with a prob-

ability of 0:7 and 0:3 respectively.

3.1.2. Attribute grammars. Attribute grammars are an

enhancement of CFGs, where each terminal and non-

terminal can be assigned multiple inherited or synthesized

attributes. An inherited attribute belongs to a symbol on

the right-hand side of a rule that obtains its value from

attributes of the non-terminal of the left-hand side or other

symbols on the right-hand side. A synthesized attribute is

an attribute of the non-terminal on the left-hand side of a

rule whose value is computed using attributes of the right-

hand side symbols. The above example for instance can be

transformed into an attribute grammar containing the attri-

butes depth and max depth.

The indices of A1 and A2 simply distinguish between

the same non-terminal within a single rule. The synthesized

attribute depth evaluates the number of recursions that

occurred during the production of a sentence, while the

inherited attribute max depth defines how many recursions

are at most supposed to occur. The latter is achieved by

defining the condition that the second rule is only chosen

if A1:max depth . 0, resulting in sentences with at most

Fig. 2. Left: A regular grammar describing the language a+ b+ .

The corresponding parse tree for the sequence aabb is shown in

Figure 3b. Right: A HMM that is equivalent to the regular

grammar. Squares describe hidden states and circles describe the

emissions. Figure 3a shows an instantiated HMM for the

sequence aabb.

Table 1. A CFG describing the language an bn, i.e., the language

of all sentences consisting of a number of a followed by the exact

same number of b.

G= A,V,R,Sh i
A= a, bf g,V= Af g,S= Af g
R= f
START ! A (1.0)

A ! ab (0.7)

! aAb (0.3)

g

Fig. 3. Parse trees for the sequence aabb of (a) and (b) the

HMM and the regular grammar shown in Figure 2. (c)

Corresponding parse tree for the CFG shown in Table 1.

24 The International Journal of Robotics Research 39(1)

max depth number of a and b. Such conditions extend the

expressiveness of attribute grammars beyond that of CFGs.

For instance, the language an bn cn cannot be represented

by CFGs. This language requires a context-sensitive gram-

mar that encodes pre- and post-conditions within the con-

text symbols. Alternatively, a simple counting attribute that

keeps track of how many c have been produced can be

added to a PCFG.

3.1.3. Grammar inductions. Grammar inductions refers to

the learning of formal grammars from sequences of term-

inals. Commonly the task is formulated as a search through

a grammar space G, where the connections between gram-

mars are represented as different operators, as illustrated in

Figure 4. Such operators manipulate the set of production

rulesR and the set of non-terminals V accordingly. Starting

from an initial grammar G0 these operators are used to tra-

verse the grammar space, searching for the optimal gram-

mar G�. Various search strategies have been suggested, e.g.,

beam search (Lee et al., 2013; Stolcke, 1994) and MCMC

optimization (Talton et al., 2012).

When searching for concise yet general grammars, a

common problem is the induction of overly general gram-

mars. For instance, the language a�b� is a superset of the

language anbn. Hence, a grammar representing a�b� can

explain every sequence in an observed data set produced by

the language anbn. Therefore, the corresponding grammar

is a valid entry in the grammar space. This general limita-

tion is known as Gold’s law and states that a correct gram-

mar cannot be learned from positive demonstrations alone

(Gold, 1967). However, the induction method proposed in

this work decreases the chances of inducing an overly gen-

eral grammar by defining a posterior distribution that takes

the observed data more strongly into account than other

related methods.

3.2. MP representation

A MP encapsulates a movement or action as a discrete

entity. Although simple point attractors are also sometimes

referred to as MPs, MPs usually represent the shape of the

movement in addition to a start and goal position.

Furthermore, MPs are commonly parameterized, allowing

for the modification of a MP originally learned from

demonstrations. Two examples of parameterized MPs are

the well-known DMPs (Ijspeert et al., 2013) and the more

recent probabilistic movement primitives (ProMPs)

(Paraschos et al., 2018).

In this paper, we choose ProMPs as primitive representa-

tion (Paraschos et al., 2018).
1

Each observed trajectory t is

assumed to be sampled from the conditional distribution

p t wjð Þ=
Q

t

N tt Ftw,Sobsjð Þ, ð1Þ

with Sobs being the observation noise. The feature matrix

Ft projects the trajectory t onto a lower-dimensional

weight vector w for every time step t as defined in

Paraschos et al. (2018). The features Ft are usually repre-

sented as radial basis functions for stroke-like movements

and von Mises functions for rhythmic movements. The

weight w can be learned from the observed demonstration

t by applying a maximum a posteriori optimization

w= argmax
w0

p(tjw0)p w0ð Þ, ð2Þ

with p w0ð Þ denoting a prior over the weights. Depending on

the prior choice the optimization yields different types of

regressions. For instance, choosing a standard normal prior

p w0ð Þ=N w0 0, Ijð Þ yields a common ridge regression.

The projection of the demonstrated trajectories into

lower-dimensional spaces is a common property of MPs,

e.g., in DMPs (Ijspeert et al., 2013). However, ProMPs

additionally define a Gaussian distribution over the pro-

jected trajectories

w;N w ujð Þ, u = mw,Swð Þ, ð3Þ

with mean mw and covariance matrix Sw. Every primitive is

characterized through its parameters u and the

START ! A (1.00)

A1 ! ab (0.70)

A1:depth= 1

! aA2b (0.30)

A1:depth = A2:depth+ 1

A2:max depth = A1:max depth� 1

assert : A1:max depth.0

Fig. 4. The grammar space G contains all valid grammars

G0 . . .G�. The space is traversed by applying operators

op 2 O = ½merge, split, chunk, insert� on the current grammar.

For every operator op generating G0 from G0, there exists an op
that generates G from G0, e.g., merge= split, chunk= insert.

Lioutikov et al. 25

corresponding state space distribution is obtained by inte-

grating out the weights

p t ujð Þ=
Z
w

p t wjð ÞN w ujð Þdw, ð4Þ

=
Y

t

N t Ftmw,FtSwFT
t + Sobs

��� �
ð5Þ

For simplicity, in the remainder of this article we refer to u
as the primitive itself instead of its parameters.

4. Problem statement

Given a set of demonstrations D= d1, d2, . . . , d Dj j
� �

a set

of primitives Y = u1, u2, . . . , u Yj j
� �

, each demonstration

represents a labeled sequence of primitives di 2 Y +. The

goal of this work is to learn an attribute grammar G�att that

is concise and expressive yet has an easily comprehensible

structure. For instance, given a set of demonstrations of

turns in a game of tic-tac-toe, the following grammar is a

concise representation of the possible sequences.

The learned grammar represents a generalized structure

over the observed demonstrations and allows the sampling

of new sequences while the attributes allow for the adapta-

tion of individual primitives. For instance, the attribute

stones contains the position of the stone that is supposed

to be played next and the primitives, e.g., pick near and

pick far can now be conditioned on the passed down posi-

tion. In addition, attributes are introduced that ensure a

smooth and continuous trajectory across each sampled pri-

mitive sequence despite the adaptation of individual primi-

tives. The desired grammar is learned by inducing a PCFG

G� from the demonstrations D and enhancing it afterwards

with a general attribute scheme for sequencing MPs

G�)
att
G�att. The set of terminals is defined as the set of pri-

mitives A=Y and during the learning of the grammar the

terminals, and, hence the primitives are considered immuta-

ble, implying that the search space consists of grammars

that only differ in S, V or R. Each grammar represents a

node in the grammar space G, where the directed edges

between nodes are defined by operators. Operators manipu-

late the rule set R of a grammar G and consequently create

a new grammar G0 while the grammar space itself is

explored via a MCMC optimization. In order to optimize

for grammars with concise and comprehensible structures a

novel prior based on Poisson distributions is introduced.

The grammar induction and the prior are presented in later

in the paper.

Given that the sequences produced by the grammar

directly result in the movement of a robot, it is important

that there are no state jumps at the transition between two

consecutive primitives. Throughout this paper, this require-

ment is referred to as primitive connectibility. The connect-

ibility of two primitives depends on the category of each

primitive and the transition overlap between the primitives.

The category of a primitive classifies which degrees of free-

dom are effectively controlled by the primitive. Primitives

assigned to disjoint categories are not subject to the con-

nectibility requirement. The transition overlap describes

how much the end of one primitive and the beginning of

the next primitive overlap. If the overlap is too small a

smooth transition is unlikely and the connectibility require-

ment is violated. Next, we present a method for identifying

the categories of primitive. Afterwards, we introduce an

approach to compute the transition overlap between two

subsequent ProMPs.

5. Identifying the primitive category

Given a robotic platform with independent kinematic

chains, e.g., an arm and a hand, each of these chains repre-

sents a category of movements. Such categories allow the

relaxation of the connectibility requirement to hold only

between primitives of the same category. Hence, the con-

nectibility requirement of two subsequent primitives of the

same category is independent of any primitive executed

between them that is does not belong to that category.

Given that some primitives might contain significant move-

ment across categories, we treat the identification of the

primitive category as a simple multi-label classification

problem. The classification is based on the degrees of free-

dom that are active during the movement and assigns each

primitive u to a category C.
In this work, each primitive is represented as a single

ProMP. The distribution over the trajectory t given the

parameters u is defined in Equation (4). Assuming equidi-

stant time steps, the distribution

p _tð Þ=
Q

i

N _t _Ftmw,
_FtSw

_F
T

t + So _bs

���� �
, ð6Þ

D= f
(pick_far, close, place_right, open, home),

(pick_near, close, place_right, open, home),
..
.

(pick_far, close, place_left, open, home),

(pick_near, close, place_left, open, home)

}

START ! MOVE (1.00)

MOVE.stone = START.stone

MOVE.field = START.field

MOVE ! pick_near TO ð0:40Þ j pick_far TO (0.60)

pick_near.stone = MOVE.stone pick_far.stone = MOVE.stone

TO.field = MOVE.field TO.field = MOVE.field

TO ! LEFT home ð0:47Þ j RIGHT home (0.53)

LEFT.field = TO.field RIGHT.field = TO.field

LEFT ! close place_left open (1.00)

place_left.field = LEFT.field

RIGHT ! close place_right open

place_right.field = RIGHT.field

(1.00)

26 The International Journal of Robotics Research 39(1)

describes the velocity trajectories of the corresponding

ProMP, with _Ft being the first time derivative of the basis

functions and So _bs denoting the observation noise with

respect to the velocity trajectory. In order to identify the

active degrees of freedom, we analyze the mean and stan-

dard deviation of the velocity distribution. In particular, we

are interested in the maximal absolute velocity over the

time steps and define the maximum velocity feature as

cvel uð Þ= max
t

_Ftmw

�� ��+ 2

ffi
diag _FtSw

_F
T

t + So _bsÞ
� �r

:

ð7Þ

A primitive is considered active with respect to the cate-

gory Ci if and only if any of the corresponding elements in

cvel uð Þ is above the threshold E i, i.e.,

u 2 Ci , _
d2dof Cið Þ

cvel
d uð Þ.ei, ð8Þ

with dof Cið Þ being the set of degrees of freedom associated

with category Ci and cvel
d uð Þ is the maximal velocity of the

dth degree of freedom. The threshold E i is chosen

manually.

In the tic-tac-toe task, two different categories are distin-

guished, arm movements and hand movements. If two sub-

sequent hand movements are connectible it does not matter

how many arm movements are sequenced in between them.

The connectibility requirement is still fulfilled. At the same

time, hand movements can now be executed at arm config-

urations at which the hand movement has not been

observed in the demonstrations. Figure 5 shows the velo-

city trajectories of the seven primitives used in the tic-tac-

toe task where the colors of the trajectories indicate the

identified category and the background color highlights the

degrees of freedom associated with each category. Given

the demonstrations, every primitive was assigned exactly

one category, even though the described approach allows

the association of multiple categories to a single primitive.

While the given example could also have been solved by a

simple annotation of the observed data, examples can be

thought of where the presented automated annotation is of

great benefit. For instance, a significantly larger set of

observed sequences or tasks that require multiple interact-

ing kinematic chains, e.g., a bi-manual task.

6. Determining connectibility of primitives

In this section, we discuss how to automatically determine

whether two ProMPs are connectible, that is, if two subse-

quent ProMPs would result in a jump in the state space or

not. Given that ProMPs are a probabilistic trajectory rep-

resentation it seems fitting to use probabilistic similarity

measures, such as the Kullback–Leibler divergence or the

Hellinger distance to test whether two ProMPs are con-

nectible. However, considering that avoiding jumps in the

state space is a spatial requirement probabilistic similarity

measures can be misleading. We solve the connectibility

problem in the spatial domain by treating each ProMP as

a multidimensional tube. At every time step t a ProMP ui

can be approximated by a hyper ellipsoid

Et uið Þ= ct = Ftmw, St = FtSwFT
t + Sobs

� �
with center ct and shape matrix St. Two ProMPs, ui and uj,

are now considered connectible if the transition overlap

between their corresponding tubes is larger than a prede-

fined threshold

ui!
con

uj , overlap ui, uj

� �
ø εoverlab:

The transition overlap from ui to is defined over the last

ellipsoid of the preceding ProMP ET uið Þ and the first ellip-

soid of the succeeding ProMP E1 ui + 1ð Þ

overlap ui, uj

� �
=

vol ET uið Þ\E1 ujð Þð Þ
vol ET uið Þð Þ ,

with vol denoting the volume and ET uið Þ and E1 uj

� �
being the last ellipsoid of ui and the first primitive of uj,

respectively. Hence, the transition overlap describes the

Fig. 5. (a) Velocity trajectories of the tic-tac-toe ProMPs, showing the jmeanj+ 2std std of the velocity distribution de_ned in

Equation (6) for each ProMP. (b) Maximal velocity of the tic-tac-toe ProMPs, showing the maximal velocities as computed in

Equation (7). The colors indicate the categories that were assigned to each ProMP and background colors highlight the category to

which each joint belongs.

Lioutikov et al. 27

percentage of the end of ui that is covered at the begin-

ning of uj.

Unfortunately computing the volume of the intersection

between two hyper-ellipsoids is considered #P-complete

(Bringmann and Friedrich 2010). We circumvent this prob-

lem by computing the overlap for each degree of freedom

independently and choosing the minimal value as an

approximation of the ellipsoidal overlap. As discussed in

the previous section, the connectibility between two

ProMPs is only considered if both ProMPs share at least

one primitive category C

overlap ui, uj

� �
’ min

d2dof Cð Þ

intersec ui, uj, dð Þj j
ci,T , d6n si,T , dj j ,

intersec ui, uj, d
� �

= ci, T , d6n si, T , d \ cj, 1, d6n sj, 1, d ,

where ci, T , d and si, T , d are the dth element of the ellipsoid

center and the dth standard deviation for primitive ui at time

step T . The constant n decides how many standard devia-

tions wide the considered interval will be.

The threshold Eoverlab can be defined either manually or

derived from observations. Given that the learned grammar

should at least be capable to reproduce the initially given

observations all ProMPs that were pairwise connected in

the observations have to be considered connectible.

Therefore, the threshold

Eoverlab = a min
ui, ujð Þ2pairs Dð Þ

overlap ui, uj

� �
,

is defined as a percentage a of the minimal overlap value

of all ProMPs that were connected in the observations.

Here pairs Dð Þ is a function that returns all consecutive pri-

mitive pairs in the set of demonstrations D. We can now

define two sets for each primitive. One set contains all pri-

mitives it is connectible to Con
��!

uð Þ and the other set con-

tains all primitives it is connectible from Con
 ��

uð Þ

Con
��!

uið Þ= ujjuj 2 Y ^ ui
!conuj

� �
,

Con
 ��

uið Þ= ujjuj 2 Y ^ uj
!
conui

� �
,

Figure 6 illustrates the transition overlap between each pair

of primitives of the tic-tac-toe task arranged in an

adjacency-like matrix, where each row and column indicate

which primitives belong into Con
��!

uð Þ and Con
 ��

uð Þ,
respectively.

Deciding the connectibility of two primitives using their

overlap rather than purely basing it on the observations has

the significant advantage of allowing to connect two primi-

tives which might not have been observed connected during

the demonstrations but are nevertheless safely connectible.

7. Inducing PCFGs for MPs

In this section, we introduce a grammar induction approach

where the grammar search is defined as a maximum a pos-

teriori problem and the grammar space is traversed using a

MCMC approach. We introduce a novel prior over the

grammar structure based on three Poisson distributions

allowing to define a desired grammar structure in more

detail than common grammar priors. Furthermore, we dis-

cuss problems of common grammar priors and the advan-

tages of the presented prior. We present four operators that

allow the traversal of the grammar space and define distri-

butions over each given a grammar. The proposal distribu-

tion of the MCMC approach is defined as a mixture over

the operator distributions.

7.1. Learning grammars through posterior

optimization

The posterior p GjDð Þ describes how probable a given gram-

mar G is given the observed sequences D. By applying

Bayes theorem we can reformulate the posterior and, hence,

the maximization as

G�= argmax
G

p GjDð Þ= argmax
G

p DjGð Þp Gð Þ, ð9Þ

where p DjGð Þ is the likelihood of the labeled demonstra-

tions D given the grammar G. The likelihood is presented in

the next section. Afterwards, we discuss common choices

for the prior p Gð Þ and, finally, we introduce a novel gram-

mar prior based on Poisson distributions.

7.1.1. Likelihood p DjGð Þ. The likelihood p DjGð Þ is com-

puted for each demonstration independently, yielding

p DjGð Þ=
Q
d2D

p djGð Þ: ð10Þ

Fig. 6. The transition overlap for each arm primitives of the tic-

tac-toe task. A value above the threshold Eoverlab = 0:69 signifies

that the primitive at that row is connectible to the primitive of

that column. The ellipsoids were n = 2 standard deviations wide

and the threshold was determined from the observations with

a = 0:95.

28 The International Journal of Robotics Research 39(1)

Depending on the grammar G the sequence d could have

been produced in multiple ways. Considering every possi-

ble derivation results in the sum-product formulation

p d Gjð Þ=
P

t2T d,Gð Þ

Q
A, r, rð Þ2 t

r,

where t represents a single parse tree and T d,Gð Þ denotes

a function producing all feasible parse trees. The three-tuple

A, r, rð Þ represents an edge in the parse tree t connecting

the non-terminal A and its production r 2 RA with a prob-

ability of r 2 rA. In this work, the function T creating all

possible parse trees for a given demonstration d, is imple-

mented by the Earley parser (Earley 1983). While the

Earley parser suffers from a higher complexity compared

with other parsers, it has the advantage that the parsed

grammars do not have to be in any particular form.

7.1.2. Grammar prior p Gð Þ. The grammar prior p Gð Þ is

commonly modeled as a joint distribution over the gram-

mar probabilities rG= rAjA 2 Vf g and the grammar struc-

ture GR= A, RAð ÞjA 2 Vf g (Stolcke 1994; Kitani, Sato,

and Sugimoto 2008; Talton et al. 2012; Lee et al. 2013),

p Gð Þ= p rGjGR
� �

p GRð Þ: ð11Þ

The conditional p rGjGR
� �

itself can be modeled as an inde-

pendent joint distribution over the parameters of each non-

terminal A 2 V,

p rGjGR
� �

=
Q

rA2rG

p rAð Þ: ð12Þ

The dependency on the grammar structure is implicit,

because the probabilities rA 2 rG depend on both the set

of non-terminals V and the productions for each non-

terminal RA. The parameters for each non-terminal

rA 2 rG form a multinomial distribution, i.e.,
P

r2rA
r = 1.

Therefore, a Dirichlet distribution would be an obvious

choice for the probability distribution over the parameters

p rAð Þ for a single non-terminal A 2 V. A significant draw-

back of using a Dirichlet distribution is its factorial growth

in the dimensionality of the multinomial. In fact, using an

uninformative Dirichlet distribution, i.e., setting the con-

centration parameters to 1:0, will result in a probability

density of p rAð Þ= dim rAð Þ � 1ð Þ! for any rA 2 rG.
To compensate for this growth, the structure prior

p GRð Þ is usually modeled as an exponential distribution

over the minimal description length (MDL) of the gram-

mar structure GR. Every symbol in the production rules,

terminal and non-terminal, contributes to the MDL with

log2 Aj j+ Vj j� bits, yielding the over all description length

MDL GRð Þ=
P

A, RAð Þ2GR

P
r2RA

MDL rð Þ,

MDL rð Þ= 1 + rj jð Þlog2 Aj j+ Vj j�,

A prior p GRð Þ defined as an exponential distribution

over the MDL Gð Þ will prefer small and concise grammars.

However, such a prior can lead to grammars that are too

compact to be intuitive for non-experts. In order to prefer

grammars with a desired production length, hr, the MDL
has been extended with the log of a Poisson distribution

with mean hr (Kitani et al., 2008; Lee et al., 2013).

Because of the factorial growth of the parameter prior

p rGjGR
� �

the structure prior is often additionally amplified

with an exponential weighting term (Talton et al., 2012) to

remain of significance for the overall grammar prior p Gð Þ
and, hence, the posterior p GjDð Þ.

The likelihood p DjGð Þ is defined as a product over the

average of probabilities, which always results in

p DjGð Þł 1:0. However, the described grammar prior p Gð Þ
is the product of two probability densities, which will very

quickly result in p Gð Þ � 1:0 and, therefore, dominate the

posterior.

7.1.3. Novel prior. The novel prior presented in this paper

aims at inducing PCFGs that are easily understandable for

non-experts. The key to achieving this goal is the grammar

structure, rather than the grammar parameters. Therefore,

we suggest a grammar prior, that does not explicitly model

a Dirichlet distribution over the parameters, but instead

implicitly considers the parameters in the overall grammar

prior p Gð Þ. We model the parameter prior and the structure

prior jointly p Gð Þ= p rG,GR
� �

as

p rG,GR
� �

=
p Rj jjhRð Þ
Rj j

X
A, RA, rAð Þ2R

g A, RA, rAð Þ ð13Þ

g A, RA, rAð Þ= p RAj jjhRð Þp RAjrA,hrð Þ, ð14Þ

where the probabilities over the number of rules p Rj jjhRð Þ
and the size of each rule p Rj jjhRð Þ are modeled as Poisson

distributions with means hR and hR. The probability of

each rule is modeled as a weighted average

p RAjrA,hrð Þ =
P

r2RA, r2rA

r p rj jjhrð Þ, ð15Þ

over the probabilities of the corresponding productions.

The weighting is given by the grammar parameters r 2 rA

and the probability of each production corresponds to the

Poisson distribution over its length p rj jjhrð Þ, given a

desired production length hr. As all components are

defined as discrete probabilities, the prior is always

p Gð Þł 1, eliminating the need for hard to tune weighting

terms to cope with difficult scaling properties.

Furthermore, the prior p Gð Þ will now prefer grammars

with hR productions per non-terminal with an average

length of hr symbols per production. The hyper-

parameters hR,hr can be set to achieve a desired simpli-

city of the grammar. By weighting each production

r 2 RA with the corresponding grammar parameter

r 2 rA the prior gives more significance to production

which are more likely to occur.

Lioutikov et al. 29

7.2. Traversing the grammar space G

To find the optimal grammar G�, it is necessary to define

mechanisms that generate new grammars. A common

choice is to define operators op 2 O, where O denotes the

set of all operators. Each operator op manipulates the rule

setR and consequentially the non-terminal set V of a given

grammar G, therefore, creating a new grammar G0. For each

operator op we define a domain Oop that op can act upon.

The elements in Oop depend on the operator itself and can

be, for instance, non-terminals, pairs of non-terminals, or

productions.

Each grammar represents a node in a grammar space

G. The operators op 2 O represent directed edges in G

between two grammars. The grammar space G is illu-

strated in Figure 4. After grammar G0 was created by apply-

ing an operator op on grammar G, the grammar parameters

usually have to be recomputed. In this work, the parameters

are re-estimated for every new grammar G0 via the inside–

outside algorithm (Baker 1979).

Not every possible grammar G is suitable for sequencing

MPs. Every sequence produced by G has to guarantee a

smooth, continuous trajectory within the state space of the

MPs. In general, this means that a possible next primitive

has to begin close to the end of the preceding primitive.

We restrict the grammar space G to only contain gram-

mars that fulfill this connectibility requirement. The restric-

tion is achieved by limiting the domain Oop of each

operator op 2 O, such that if grammar G fulfills the con-

nectibility requirement any grammar G0 resulting from an

application of op on G also fulfills the requirement. We

incorporate the connectibility requirement into the defini-

tion of the two common operators merge and split.

7.2.1. split. The operator split divides the non-terminal

Ai 2 Osplit into two new non-terminals Aj,Ak . The produc-

tions RAi
are separated randomly into two corresponding,

disjoint sets RAj
and RAk

, where neither of the resulting sets

is empty. Each occurrence of Ai is randomly replaced by

either Aj or Ak, where both Aj and Ak have to be selected at

least once. The domain Osplit contains all non-terminals

with at least two productions. Furthermore, every non-

terminal in Osplit has to occur at least twice across all pro-

ductions, including its own.

7.2.2. merge. The operator merge combines two non-

terminals Aj,Ak

� �
2 Omerge into a new non-terminal Ai.

Correspondingly, the productions of are defined as the

union RAi
=RAj

[RAk
. Every occurrence of Aj and Ak is

replaced by Ai. If Aj and Ak contain productions that begin

or end in very different MP state spaces a merging would

endanger the connectibility requirement. We avoid this

problem by restricting the dain Omerge to only contain com-

patible non-terminal pairs. Assuming the sets first Að Þ and

last Að Þ contain all possible primitives that could be at first

or last position of any sequence produced starting from A.

Two non-terminals Aj and Ak are now considered compati-

ble if

S
u 2 first Ajð Þ

Con
 ��

uð Þ=
S
u 2 first Akð Þ

Con
 ��

uð Þ

andS
u 2 last Ajð Þ

Con
��!

uð Þ=
S
u 2 last Akð Þ

Con
��!

uð Þ:

The split and merge operators negate each other and are

capable of generalizing exiting hierarchies in grammars,

however they lack the important ability to create new hier-

archies. Therefore, we additionally utilize the chunk opera-

tor (Stolcke, 1994) and define the new insert operator that

negates the effects of chunk.

7.2.3. chunk. The operator chunk creates a new non-

terminal A with productions RA = rf g,
r 2 (A [V)+ ^ r 2 Ochunk. Every occurrence of the

sequence r in a production in R is replaced by A. The

domain Ochunk contains all possible subsequences of all

productions in R.

7.2.4. insert. The operator insert selects a non-terminal

A 2 Oinsert and replaces each occurrence of A with its pro-

duction r 2 RA. The domain Oinsert contains all non-

terminals with exactly one production.

Given these four operators, we define the set of all pos-

sible operators as O= merge, split, chunk, insertf g.
Furthermore, the operators in O are not exchangeable, i.e.,

if a grammar G0 was created by applying the operator op
on grammar G, there exists no operator in On opf g that is

able to produce G0. from G.

7.3. Finding G�

Similarly to Talton et al. (2012), we search for the optimal

grammar G�= argmaxGp GjDð Þ using MCMC optimiza-

tion. A main advantage of MCMC over local search meth-

ods is that its stochastic exploration traverses the grammar

space better than local search methods. Given the definition

of the grammar score the corresponding landscape is highly

multimodal. Often several operators that each lead to a

lower scoring grammar are required to be executed sequen-

tially in order to arrive at a new maximum. Even with a

broad beam width, beam search often fails to surpass such

valleys whereas MCMC owing to its stochasticity manages

to reach at least better local optima and even offers theoreti-

cal guarantees to find the global optimum in the limit.

In Talton et al. (2012), the inputs are expected to already

be hierarchical, restricting the grammar search to a reorga-

nization of already existing productions by applying solely

the merge and split operators. Given that our inputs are flat

sequences, that is, pure sequences without hierarchy, of

observed primitive samples, we additionally apply the

chunk operator, that is capable of creating hierarchies

30 The International Journal of Robotics Research 39(1)

(Stolcke 1994). The insert operator ensures the irreducibil-

ity of the Markov chain. Analogously to Talton et al.

(2012), we apply the Metropolis–Hastings algorithm.

However, because Talton et al. (2012) solely uses the split
and merge operator, in this article we directly define the

proposal distributions q G0jGð Þ as the probability of a split
or a merge. In this work we define the proposal distribu-

tion as a mixture over the four operators

O= merge, split, chunk, insertf g,

q G0, op0jGð Þ=
P

op2O
p op0jG,hop0

� �
qop G0jG, op0ð Þ,

with mixture components qop G0jG, op0ð Þ. The mixture prob-

ability is defined as

p op0jG,hop0

� �
=

hop0 1�djO
op0 j

� �
P

op2O ,hop 1�djOop jð Þ
ð16Þ

where hop 2 R is a weighting for the operator op, djOopj
denotes the Kronecker delta over the size of the domain

Oop for operator op. Given that the operators in O are not

exchangeable, a mixture component qop G0jG, op0ð Þ should

not contribute any probability mass if op 6¼ op0. This

restriction is achieved by the Kronecker deltas dop0, op in

the following mixture components.

7.3.1. qsplit G0jG, op0ð Þ. Given that the split operator was

applied to produce G0 from G, there exist Ai 2 V and

Aj,Ak 2 V0. The chance of randomly selecting Ai 2 Osplit

is 1=jOsplitj. In addition, every production r 2 RAi
was ran-

domly assigned to either RAj
or RAk

, while each of those

two sets had to be selected at least once. There are exactly

2jRAi
j � 2 possibilities of assigning the productions to

either RAj
or RAk

. Finally, the NAi
occurrences of Ai across

all productions in R have been replaced by Aj or Ak in R0.
The chosen replacements have been one out of a total of

2jNAi
j � 2 possibilities, considering that Aj and Ak had to be

chosen at least once. Combining the possibilities for

assigning the productions and for assigning the occurrences

results in redundancies, because there are always two com-

binations that will result in the same R0. The overall prob-

ability of G0 being produced from G by using a split

operator is given as

qsplit G0jG, op0ð Þ= dop0 , split
jOsplitj

2

(2
jRAi

j�2)(2
jNAi

j�2)
: ð17Þ

7.3.2. qmerge G0jG, op0ð Þ. The only stochastic part in the

merge operator is the decision of which pair Ai,Aj

� �
2 Oop

is selected, therefore the probability for merge is given as

qmerge G0jG, op0ð Þ= dop0 ,merge

jOmergej : ð18Þ

7.3.3. qchunk G0jG, op0ð Þ. Given that the domain Ochunk

already contains all possible subsequences of all

productions in R, the probability for choosing one

sequence at random is

qchunk G0jG, op0ð Þ= dop0 , chunk
jOchunkj : ð19Þ

7.3.4. qinsert G0jG, op0ð Þ. The domain Oinsert is already

restricted to non-terminals with a single production, there-

fore the probability of insert is simply

qinsert G0jG, op0ð Þ= dop0 , insert
jOinsertj : ð20Þ

At every iteration of the Metropolis–Hastings algorithm

a random new grammar is sampled from the proposal dis-

tribution G0, op0;q G0, op0jGð Þ. This new grammar is then

accepted with a probability of

acc G0, op0jGð Þ=min 1,
p G0jDð Þ1=T

q G, op0 jG0ð Þ
p GjDð Þ1=T

q G0, op0jGð Þ

 �
, ð21Þ

where T denotes a decaying temperature and op0 denotes

the complementary operator to op0, i.e., split=merge,
chunk= insert. If the new grammar was accepted it is set

to the current grammar G G0 and the next iteration

begins. After a defined number of iterations, the grammar

with the highest posterior is returned. For instance, Table 2

shows a grammar induced by the presented method given

sequences of the previously described tic-tac-toe task. The

semantically meaningful names of the non-terminals were

chosen manually.

Given that the MCMC optimization finds high scoring

grammar after only a few iterations, the hyper-parameter

optimization is inexpensive. Furthermore, a good rule of

thumb for the number of productions per non-terminal and

the number of symbols per production are two and three,

respectively, leaving the number of non-terminals the only

free parameter of the presented prior.

8. Enhancing PCFGs with attributes for MP

sequencing

So far, the presented approach induces grammars that do

not violate the connectibility requirement. However, con-

nectibility as defined in this work only guarantees that the

transition area of two consecutive primitives is large enough

to produce a continuous state space trajectory. In order to

ensure smooth trajectories the start of the subsequent

Table 2. Grammar with the highest posterior after 400 iterations

of the MCMC optimization. Grammar index 171 in Figure 8.

START ! MOVE (1.00)

MOVE ! pick_near TO (0.40) j pick_far TO (0.60)

TO ! LEFT home (0.47) j RIGHT home (0.53)

LEFT ! close place_left open (1.00)

RIGHT ! close place_right open (1.00)

Lioutikov et al. 31

primitive has to be conditioned to the end of the current pri-

mitive. This can be achieved within the grammar formula-

tion by introducing attributes. Furthermore, attributes can

be used for defining points of interest that primitives need

to reach for a successful execution. We introduce an evalua-

tion scheme for MP sequencing tasks that enhance given

PCFGs with attributes and conditions. The scheme gener-

alizes to different MP sequencing tasks and, therefore,

needs only little to no adaptation for specific tasks, with the

exception of the initialization of the task-specific attribute

values.

We define the following three attributes, common to pri-

mitive sequencing tasks.

� transition This attribute defines where the current

primitive ends and the next primitive is supposed to

start. It is solely defined for non-terminals, and ensures

that the produced primitives result in a continuous state

space trajectory.
� endpoint The endpoint of a MP. It is solely defined

for terminals and after the terminal has been evaluated,

the attribute of the left-hand side non-terminal is set to

the endpoint of the corresponding primitive.
� viapoints An ordered list of points that are sup-

posed to be traversed by the sequence of primitives.

The points are given in the state space of the primitives.

Once the first point is traversed by a primitive it is

removed from the list and the next point is considered.

In addition to the attributes we define two conditions for

necessary for the evaluation scheme. If preceded with an

assert these conditions have to be satisfied for a successful

evaluation.

� reachable Given a primitive and a point in the primi-

tive state-space, this condition is satisfied if the point is

reachable by the primitive. In this work, we use

ProMPs over the joint configuration of the robot. A

point given in the configuration of the robot is reach-

able by a particular primitive if it is within two times

the standard deviation of the trajectory mean of the

MP.
� producible Given a non-terminal this condition is sat-

isfied if at least one of the corresponding right-hand

sides is producible. A right-hand side is considered

producible if all mandatory conditions are satisfied,

given the current set of attributes.

The described attributes enhance CFGs for MP sequencing

tasks, such that the sequenced primitives can be condi-

tioned to state of the environment, e.g., the pose of an

object. The conditions ensure a continuous state-space tra-

jectory of the sequenced primitives, even in the case of pri-

mitive adaptations.

8.1. Evaluation scheme for the tic-tac-toe task

We explain the functionality of the attributes in detail using

the example of the tic-tac-toe task. We start with the PCFG

shown in Table 2. The grammar was induced from demon-

strations as described in the previous section.

The production of the sequence always begins at the

START non-terminal. We assign two points to the via-
points attribute. One for the position of a stone and one

for the field the stone is supposed to be placed on.

Furthermore, we set the transition attribute to the cur-

rent position of the robot in the primitive state space. We

use the literals stone pos, field pos, and cur pos instead

of the actual numerical values, where assert indicates that

this condition must be satisfied otherwise the entire right-

hand side is removed from consideration as a possible pro-

duction of the corresponding non-terminal given the cur-

rent attribute set. If the START non-terminal is not

producible, the task is not solvable under the given attri-

butes. Furthermore, if the viapoints list is not empty

after evaluating START not all points were traversed and

the task is not considered solved.

An important convention in the attribute notation is that

whenever a non-terminal appears as an argument of a con-

dition or on the right-hand side of an assignment it has been

evaluated before. For instance, the producibility of START

and MOVE can only be asserted once the respective non-

terminal has been fully evaluated.

The MOVE non-terminal contains multiple productions,

each consisting of multiple symbols. The productions can

be evaluated in parallel, i.e., the evaluation of each of the

productions begins with the same set of attributes, indepen-

dent of the changes that have occurred during the evalua-

tion of the other productions. In contrast, the symbols of a

single production are evaluated sequentially, i.e., every

symbol begins with the attributes set after the evaluation of

the previous symbol. As mentioned previously, terminals

represent single MPs. It is important that a sequence of pri-

mitives does not contain any jumps in the state space,

because a real robot platform will not be able to make sig-

nificant changes in its configuration instantaneously.

Therefore, we ensure that every selected primitive starts

where the previous primitive ended. In the proposed

START.transition = cur pos

START.viapoints = [stone pos,field pos]

assert: producible(START)

assert: empty(START.viapoints)

START ! MOVE (1.00)

MOVE.viapoints = START.viapoints
MOVE.transition = START.transition
assert: producible(MOVE)

START.transition = MOVE.transition
START.viapoints = MOVE.viapoints

32 The International Journal of Robotics Research 39(1)

evaluation scheme, this is achieved by ensuring that the

reachable condition holds for the primitive and the current

transition point. If the primitive can start from the

transition point, the transition attribute is set to

the endpoint of the primitive afterwards. Furthermore,

we define a function to traverse the viapoint list.

� traverse The function expects a terminal and a list of

points. If the first point in the list is reachable by the

terminal the corresponding primitive will traverse the

point, the point will be removed from the list and the

function evaluates to true.

Given that the possible adaptation of the primitive to the

point could change the endpoint, traverse has to be evalu-

ated before the transition point is adapted.

Only the evaluation for one of the two productions is

shown. The evaluation of the other production is defined

analogously, but with the terminal pick far instead of

pick near. Despite that both of the productions next evalu-

ate the TO non-terminal, the actual evaluations might differ

due to two different sets of attribute values.

Again two different possible productions are evaluated

in parallel but only one is shown. The evaluation of the

other production is defined equivalently, but with the non-

terminal RIGHT instead of the LEFT. In contrast to the eva-

luation of MOVE the productions of TO require the evalua-

tion of a non-terminal before the evaluation of a terminal.

8.2. A general evaluation scheme for sequencing

tasks

A structure for both terminal and non-terminal evaluations

is clearly evident. Every terminal a on the production of a

rule with non-terminal A on the left-hand side is evaluated

using the statements and every non-terminal B on the right-

hand side of a rule with non-terminal A on the left-hand

side is evaluated using

The presented evaluation scheme is very general and

can be applied to any MP sequencing task. Using not fur-

ther specified via points has the advantage that the evalua-

tion does not restrict which primitive traverses which point.

For instance, in the case of an obstacle it might be suffi-

cient that the obstacle is passed at some point, but it does

not necessarily matter which primitive avoids it. However,

the unspecified list of via points has a significant disadvan-

tage. A primitive might require a certain via point, for

instance pick_near and pick_far have to know where

the stone is positioned in order to pick it up successfully.

Nothing in the current scheme associates via points with a

certain primitives. We solve this problem by introducing

two additional attributes.

� keywords An unordered list of keywords. This attri-

bute is assigned only to terminals before the evaluation

and contains keywords identifying relevant points in

the targets attribute.
� targets A dictionary that maps keywords to ordered

lists of points. The points are defined in the primitive

state space. A primitive containing a matching keyword

in its keywords attribute extracts the first point in the

corresponding list.

The evaluation scheme for terminals is now defined as

We introduce the for: notation to indicate an iteration and

the in notation to indicate the existence of an element in a

list. The targets attribute can strongly influence the pro-

duction of a sequence. The given target could be outside of

the distribution of the primitive associated with the termi-

nal. For instance, both terminals pick near and pick far
have a stone keyword. If the targets attribute associates

stone with a value outside of the pick near primitive but

within the pick far primitive, the assert statement would

only hold for pick far, ensuring that every sequence

MOVE ! pick_near TO (0.40)

assert: reachable(pick_near,MOVE.transition)

traverse(pick_near, MOVE.viapoints)

MOVE.transition = pick_near.endpoint
TO.viapoints = MOVE.viapoints
TO.transition = MOVE.transition
assert: producible(TO)

MOVE.viapoints = TO.viapoints
MOVE.transition = TO.transition

TO ! LEFT home (0.47)

LEFT.viapoints = TO.viapoints
LEFT.transition = TO.transition
assert: producible(LEFT)

TO.viapoints = LEFT.viapoints
TO.transition = LEFT.transition
assert: reachable(pick_near, TO.transition)

traverse(pick_near, TO.viapoints)

TO.transition = pick_near.endpoint

assert: reachable(a, A.transition)

traverse(a, A.viapoints)

A.transition = a.endpoint
B.viapoints = A.viapoints
B.transition = A.transition
assert: producible(B)

A.viapoints = B.viapoints
A.transition = B.transition

assert: reachable(a, A.transition)

for: key in a.keywords
assert: key in A. targets
assert: traverse(a, A:target[key])

traverse(a, A.viapoints)

A.transition = a.endpoint

Lioutikov et al. 33

produced with this set of targets will contain a pick far and

never a pick near. In this way, the target attributes directly

influence the effective structure of the grammar.

The evaluation scheme for non-terminals only changes

such that the targets attribute is additionally passed

down and received afterwards, analogously to the via-
points attribute.

8.3. Evaluating parallel attribute sets

We already established that the right-hand sides of a single

non-terminal are evaluated in parallel. If more than one

right-hand side does not violate any asserts, multiple paral-

lel sets of attributes return from that non-terminal evalua-

tion. Given that within one right-hand side the attributes

are passed sequentially from symbol to symbol, the ques-

tion arises which of the multiple attribute sets should to be

considered. A naive approach would be to select a random

attribute set. However, one attribute set might result in an

unproducible right-hand side while another might not. We

address this problem by storing every attribute set corre-

sponding to a producible right-hand side in an ordered list.

The order is defined randomly, while being weighted with

the probabilities of the right-hand sides. Only the first set

of attributes is considered, unless the set results in an assert

violation, then the attribute set is discarded and the evalua-

tion continues with the next set in the list. If no sets are

left, the right-hand side is considered unproducible. It is

possible that a given set of targets results in an effective

grammar structure that is not capable of producing any

sequence of primitives. For instance, neither place left nor

place right are able to place the stone outside of the play-

ing field. Hence, if the corresponding target is set outside

the playing field neither of the to productions of the TO ter-

minal will be producible and the non-producibility will be

propagated up until the start symbol. In this case, the gram-

mar would return an empty sequence. This can easily be

used to prompt the user that the current grammar cannot

produce a sequence satisfying the given set of targets.

Therefore, different targets or new demonstrations extend-

ing the grammar are required.

The presented attributes and evaluation scheme are inde-

pendent of the actual task itself and generalize over MP

sequencing tasks. The only attribute that has to be accessed

and potentially adapted by the user are the targets.

Hence, the remaining attributes and the evaluation scheme

itself can be considered constants and can be hidden from

the user, concealing necessary complexity that does not

affect the representation of the behavior. We further sim-

plify the presentation of the attribute grammar, by present-

ing the keywords of the targets attribute as grammar

attributes themselves. By applying these simplifications we

arrive at the attribute grammar as presented initially in the

problem statement.

9. Experiments

We evaluated the proposed approach on several real robot

tasks. First, we induced a grammar producing turns of the

tic-tac-toe game. Second, we learned a grammar that assists

a human with the assembly of a simple toolbox. In both

tasks the necessary primitives were encoded as ProMPs

(Paraschos et al., 2018). For each of the tasks, we compare

the posterior resulting from our proposed prior, Grammar

Poisson, with the one resulting from three common struc-

ture prior choices, MDL, Poisson + MDL, Avg. Poisson.

The MDL prior is simply defined as an exponential distribu-

tion with the MDL as its energy (Talton et al., 2012). The

Poisson + MDL prior weights the description language for

every production with the Poisson probability over the

length of the production (Kitani et al., 2008). Finally, the

Avg. Poisson prior discards the MDL completely and is

solely represented by a Poisson distribution over the average

length of all productions (Lee et al., 2013). A major differ-

ence of the Grammar Poisson prior to the other discussed

priors is that we do not model the distribution over the

grammar parameters as a Dirichlet distribution but rather

use them as a weighting for the average production length.

9.1. Learning a Grammar for Tic-Tac-Toe Turns

In this task we learned a grammar that allows the robot to

play tic-tac-toe against a human. Each produced sequence

corresponds to one turn of the game, i.e., picking a stone,

closing the hand, placing the stone on the field, opening

the hand and returning to the home position. The goal is

not to learn the logic behind the game but rather the induc-

tion of an intuitive grammar producing valid turns. The

segmentation of the demonstrations and, hence, the learn-

ing of the primitives was done beforehand via Probabilistic

Segmentation (Lioutikov et al., 2017). The five resulting

arm primitives are shown in Figure 7, where the green and

Fig. 7. The five arm primitives used in the sequences, representing turns in the tic-tac-toe game. While both pick_near and pick
far approach a stone from the home position, they differ in the stone positions they can reach. Similarly the primitives

place_left and place_right position the stone in different areas of the playing field.

34 The International Journal of Robotics Research 39(1)

blue highlighted areas mark the start and end of the end-

effector. While pick near and pick far are semantically

similar, they actually differ quite substantially in the

encoded joint trajectory of the robot and, hence, the seg-

mentation algorithm separated those movements into two

separate primitives. The same explanation holds for

place left and place right.
The grammar learning was initialized with 15 observa-

tions of 4 unique sequences, each consisting of 5 terminals.

The initial grammar is given in Table 3. We initialized our

approach with a desired number of rules hR= 5, the

desired number of average productions per rule hR = 2 and

the desired average length of each production hr = 3. The

weights for each operator were set uniformly to

hop = 1, op 2 O. The MCMC optimization was run for

400 steps and resulted in 324 accepted grammars. The cor-

responding normalized posteriors are shown in Figure 8

and the grammar with the highest posterior, grammar index

171 is given in Table 2. The induced grammar intuitively

represents, that each produced sequence will move a near

or a far stone to either the left or the right side of the play-

ing field. Furthermore, after every closing of the hand there

will be a later opening of the hand. A possible sequence

produced by the grammar, including the corresponding

parse tree is seen in Figure 9. The parse tree includes keys

and values assigned to the keywords and targets attri-

butes. The production of the sequence was started with the

attribute targets = fstone :stone pos, field : field posg
consisting of the position of the stone that should be played

next, stone pos and the field position field pos on which

the stone should be placed. For simplicity, the parse tree

presented to the user replaces the actual position of

stone pos and field pos but instead the numbering of the

corresponding playing field cell.

The naming of the non-terminals was chosen manually

after the grammar learning. An automated naming of the

non-terminals corresponding to the semantics of the pro-

ductions is outside of the scope of this paper and remains

part of future work. Figure 8b–d shows the normalized pos-

teriors corresponding to the three common priors. The x-

axis corresponds to the different grammars traversed during

the MCMC optimization, i.e., the grammar

Gi, opi;q Gi, opijGi�1
� �

was sampled from the proposal

distribution around Gi�1 by applying opi. The spiky beha-

vior of the posteriors (b–d) is due to the uninformative

Dirichlet prior for the grammar parameters and the expo-

nential distribution over the MDL. Both of these factors

can change significantly with a small change in the gram-

mar, e.g., a merge creating a rule with many productions

or a chunk reducing the length of a long production.

Table 3. Initial grammar. Grammar index 0 in Figure 8.

START ! DEMO1 (0.33) | DEMO2 (0.20)

DEMO3 (0.27) j| DEMO4 (0.20)

DEMO1 ! pick_far close place_right open home (1.00)

DEMO2 ! pick_near close place_right open home (1.00)

DEMO3 ! pick_far close place_left open home (1.00)

DEMO4 ! pick_near close place_left open home (1.00)

Fig. 8. The posteriors and the likelihood for the tic-tac-toe turn

grammar. The vertical, dashed line indicates the index of the

highest posterior (171), given the presented Poisson prior.

Fig. 9. A parse tree of a sequence produced by the learned

grammar for tic-tac-toe turns. Non-terminals are presented as

squares and terminals as circles. A dashed rectangle represents

the production chosen by the parent terminal with the probability

next to the connecting arrow. The solid line separates the final

sequence from the producing parse tree. The grammar was

enhanced with the presented attributes and evaluation scheme,

where stone and field are two keys assigned to the keywords
attributes of the pick far and pick right terminals, respectively.

Lioutikov et al. 35

Furthermore, it is noticeable that the likelihood of the

grammar p(GijD) does not play significantly into the pos-

teriors of (b–d), whereas our posterior (a) shows a much

stronger dependency on the likelihood. This behaviour is

explained by the fact that the likelihood as introduced in

Equation is a probability mass function, but the three priors

(MDL, Poisson + MDL, Avg. Poisson) are products of

probability density functions. In contrast, our prior

(Grammar Poisson) is defined as a probability mass func-

tion, averaging over multiple Poisson distributions. This

definition prohibits the prior from completely dominating

the likelihood. As a consequence, the proposed prior

(Grammar Poisson) results in a posterior (a) that takes the

given observations much more strongly into account than

the posteriors in (b–d).

9.2. Learning a grammar for a simple toolbox

assembly

This task shows the abstraction capabilities of our

approach. The demonstrations were again segmented

beforehand and resulted in the five arm primitives, shown

in Figure 10, and four hand primitives, closing and opening

the hand for both a board and a screw grasp. The set of

demonstrations contained three different sequences, con-

sisting of 40 terminals each. Every observation showed the

grasping and handing over of four boards and four screws,

either alternating between the board and the screw or start-

ing with two boards and alternating subsequently. The

approach was initialized with hR= 9, hR = 2, hr = 2. The

weights for the split and merge operators were set to one

and the remaining two were set to two. The MCMC optimi-

zation ran for 400 iterations and 303 grammars were

accepted. The posteriors for the accepted grammars are

shown alongside the likelihood in Figure 11. The posteriors

show similar behavior as in the previous task. Both the

MDL and the Poisson + MDL have a maximum at 162,

indicating that the corresponding grammar has the minimal

description length of all accepted grammars. The Avg.

Poisson prior has its maximum at 44 due to an average pro-

duction length close to hr. However, the corresponding

grammar contains 14 rules with one production each. The

grammar with the maximum posterior according to the

Grammar Poisson prior is given at index 160 and presented

in Table 4 and three produced sequences are shown in

Table 5. The grammar abstracts a full turn from taking a

board or screw until going back to the home position. This

subsequence was not marked in any way and was detected

as a consequence of the grammar learning. The sequence

occurred multiple times during each observation.

Abstracting it into a non-terminal will therefore simplify

the grammar significantly. Furthermore, the grammar

encodes that a grasping of a board or a screw through the

closing of the hand has to be eventually followed by the

corresponding opening of the hand. The alternation

between handing over a board and a screw is represented in

the two rules for SBS and BSB and the rules for

ASSEMBLE_SB. The option of starting with two boards is

encoded in ASSEMBLE_BB.

10. Conclusion

In this work, we have introduced attribute grammars as a

mechanism to sequence MPs. We have shown how to iden-

tify the categories of MPs and how to determine whether

two ProMPs are connectible. The presented categorization

approach is simple yet efficient, however, in future work we

want to investigate more sophisticated approaches for the

Fig. 10. The arm primitives of the box assembly task. The robot applies different primitives for grasping a board, take board, or

picking a screw, take screw. Similarly the handover for boards and screws is encode in different primitives.

Fig. 11. The posteriors and the likelihood for the box assembly

task. The vertical, dashed line indicates the index of the highest

posterior (160), given the presented Poisson prior.

36 The International Journal of Robotics Research 39(1)

clustering of parameterized time series such as the applied

MPs. Furthermore, we have presented an approach that

induces PCFGs from flat sequences of MP samples, i.e., no

hierarchy in the observations, while taking advantage of a

stochastic primitive representation. The novel grammar

prior is defined over several coupled Poisson distributions,

and eliminates the many complications that arise from both

Dirichlet parameter priors and minimal description length-

based structure priors. In our method, the hyper-parameters

of the prior have a clear semantic interpretation, namely the

number of productions for each non-terminal and the aver-

age length of each production. The posterior is learned

using a MCMC optimization where the proposal distribu-

tion is formulated as a mixture model over four operators.

We defined attributes and conditions of a general evaluation

scheme for sequencing tasks. We enhanced an initially

induced PCFG for making a move in a game of tic-tac-toe

with the defined attributes and the evaluation scheme.

While the MCMC optimization is less likely to get stuck in

local optima than other suggested search strategies, such as

beam search, it is not without fault. Depending on the com-

plexity of the task with respect to the length of the observed

sequences and the number of terminals, a significant num-

ber of samples are required to reach a promising area of the

search space. Given that, the actual interest of grammar

induction is not the exploration of the posterior, but rather

the finding of the optimal grammar inside the search space,

future work, will investigate the advantages of Monte Carlo

tree search over MCMC for this particular challenge.

Another future line of research is the goal to learn more

general grammars while avoiding an over generalization,

effectively defying Gold’s law. A possible approach is to

take advantage of the grammar as a generative model and

introduce reinforcement learning techniques to improve the

grammar after it has been induced from a given set of

demonstrations.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: The

research leading to these results has received funding from the

European Community’s Seventh Framework Programme (FP7-

ICT-2013-10; grant agreement number 610878; 3rdHand).

Furthermore, this project has received funding from the European

Union’s Horizon 2020 research and innovation programme (grant

agreement number 640554; SKILLS4ROBOTS). This article is

also based on results obtained from a project commissioned by

the New Energy and Industrial Technology Development

Organization (NEDO).

ORCID iDs

Rudolf Lioutikov https://orcid.org/0000-0002-8924-7514

Filipe Veiga https://orcid.org/0000-0002-0889-0242

Note

1. Note that the presented method is equally applicable when

using other popular representations such as DMPs (Ijspeert

et al., 2013), Gaussian mixture models (Calinon et al., 2007),

and Gaussian processes (Schneider and Ertel, 2010).

References

Andrieu C, de Freitas N, Doucet A and Jordan MI (2003) An

introduction to MCMC for machine learning. Machine Learn-

ing 50(1–2): 5–43.

Baker JK (1979) Trainable grammars for speech recognition. The

Journal of the Acoustical Society of America 65(S1):

S132–S132.

Bringmann K and Friedrich T (2010) Approximating the volume of

unions and intersections of high-dimensional geometric objects.

Computational Geometry 43(6): 601–610.

Calinon S, Guenter F and Billard A (2007) On learning, represent-

ing, and generalizing a task in a humanoid robot. Systems,

Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-

tions on 37(2): 286–298.

Chiang D, Joshi AK and Searls DB (2006) Grammatical represen-

tations of macromolecular structure. Journal of Computational

Biology 13(5): 1077–1100.

Dantam N, Kolhe P and Stilman M (2011) The motion grammar

for physical human–robot games. In: International Conference

on Robotics and Automation. IEEE.

Dantam N and Stilman M (2012) The motion grammar calculus

for context-free hybrid systems. In: American Control Confer-

ence, pp. 5294–5301.

Dantam N and Stilman M (2013) The motion grammar: Analysis

of a linguistic method for robot control. IEEE Transactions on

Robotics 29(3): 704–718.

E Rivas and SR Eddy (2000) The language of RNA: A formal

grammar that includes pseudoknots. Bioinformatics 16(4):

334–340.

Earley J (1983) An efficient context-free parsing algorithm (rep-

rint). Communications of the ACM 26(1): 57–61.

Table 4. The grammar with the highest posterior for the box

assembly task after 400 iterations of the MCMC optimization.

START ! ASSEMBLE_SB (0.5)

! ASSEMBLE_BB (0.5)

BOARD ! take_board GIVE_B home (1.0)

SCREW ! take_screw GIVE_S home (1.0)

BSB ! BOARD SCREW BOARD (1.0)

SBS ! SCREW BOARD SCREW (1.0)

GIVE_S ! close_screw give_screw open_screw (1.0)

ASSEMBLE_BB ! BOARD BOARD SBS .
BOARD SCREW SCREW (1.0)

GIVE_B ! close_board give_board open_board (1.0)

ASSEMBLE_SB ! SBS BOARD SCREW BSB (0.5)

! BOARD SBS BOARD SBS (0.5)

Table 5. Three sample sequences produced by the induced

assembly grammar. For the sake of brevity the non-terminals

BOARD and SCREW have not been resolved further.

SCREW BOARD SCREW BOARD SCREW BOARD SCREW BOARD

BOARD BOARD SCREW BOARD SCREW BOARD SCREW SCREW

BOARD SCREW BOARD SCREW BOARD SCREW BOARD SCREW

Lioutikov et al. 37

https://orcid.org/0000-0002-8924-7514
https://orcid.org/0000-0002-0889-0242

Gold EM (1967) Language identification in the limit. Information

and Control 10(5): 447–474.

Ijspeert AJ, Nakanishi J, Hoffmann H, Pastor P and Schaal S

(2013) Dynamical movement primitives: Learning attractor

models for motor behaviors. Neural computation 25(2):

328–373.

Kitani KM, Sato Y and Sugimoto A (2005) Deleted interpolation

using a hierarchical Bayesian grammar network for recogniz-

ing human activity. In: 2005 IEEE International Workshop on

Visual Surveillance and Performance Evaluation of Tracking

and Surveillance, pp. 239–246.

Kitani KM, Sato Y and Sugimoto A (2008) Recovering the basic

structure of human activities from noisy video-based symbol

strings. IJPRAI 22(8): 1621–1646.

Kormushev P, Calinon S and Caldwell DG (2010) Robot motor

skill coordination with EM-based reinforcement learning. In:

2010 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 18–22 October 2010, Taipei, Taiwan. IEEE, pp.

3232–3237.

Kulic D, Ott C, Lee D, Ishikawa J and Nakamura Y (2012) Incre-

mental learning of full body motion primitives and their

sequencing through human motion observation. The Interna-

tional Journal of Robotics Research 31(3): 330–345.

Lee K, Kim T and Demiris Y (2012) Learning action symbols for

hierarchical grammar induction. In: Proceedings of the 21st

International Conference on Pattern Recognition (ICPR 2012),

Tsukuba, Japan, 11–15 November 2012. IEEE Computer Soci-

ety, pp. 3778–3782.

Lee K, Su Y, Kim T and Demiris Y (2013) A syntactic approach

to robot imitation learning using probabilistic activity gram-

mars. Robotics and Autonomous Systems 61(12): 1323–1334.

Lioutikov R, Kroemer O, Maeda G and Peters J (2014) Learning

manipulation by sequencing motor primitives with a two-

armed robot. In: Intelligent Autonomous Systems 13 -Proceed-

ings of the 13th International Conference (IAS-13), Padova,

Italy, 15–18 July 2014 (Advances in Intelligent Systems and

Computing, Vol. 302). New York: Springer, pp. 1601–1611.

Lioutikov R, Maeda G, Veiga F, Kersting K and Peters J (2018)

Inducing probabilistic context-free grammars for the sequen-

cing of robot movement primitives. In: Proceedings of the

International Conference on Robotics and Automation (ICRA).

Lioutikov R, Neumann G, Maeda G and Peters J (2017) Learning

movement primitive libraries through probabilistic segmenta-

tion. The International Journal of Robotics Research 36(8):

879–894.

Manschitz S, Kober J, Gienger M and Peters J (2014) Learning to

sequence movement primitives from demonstrations. In: 2014

IEEE/RSJ International Conference on Intelligent Robots and

Systems, Chicago, IL, USA, 14–18 September 2014. IEEE, pp.

4414–4421.

Muelling K, Kober J, Kroemer O and Peters J (2013) Learning to

select and generalize striking movements in robot table tennis.

The International Journal of Robotics Research 32(3):

263–279.

Niekum S, Osentoski S, Konidaris G, Chitta S, Marthi B and

Barto AG (2015) Learning grounded finite-state representa-

tions from unstructured demonstrations. The International

Journal of Robotics Research 34(2): 131–157.

Paraschos A, Daniel C, Peters J and Neumann G (2018) Using

probabilistic movement primitives in robotics. Autonomous

Robots (AURO) 42(3): 529–551.

Sarabia M, Lee K and Demiris Y (2015) Towards a synchronised

grammars framework for adaptive musical human–robot colla-

boration. In: 2015 24th IEEE International Symposium on

Robot and Human Interactive Communication (RO-MAN), pp.

715–721.

Schneider M and Ertel W (2010) Robot learning by demonstra-

tion with local gaussian process regression. In: 2010 IEEE/

RSJ International Conference on Intelligent Robots and Sys-

tems (IROS). IEEE, pp. 255–260.

Stolcke A (1994) Bayesian Learning of Probabilistic Language

Models. PhD Thesis, Berkeley, CA, USA.

Stulp F and Schaal S (2011) Hierarchical reinforcement learning

with movement primitives. In: 2011 11th IEEE-RAS Interna-

tional Conference on Humanoid Robots, pp. 231–238.

Talton JO, Yang L, Kumar R, Lim M, Goodman ND and Mech R

(2012) Learning design patterns with bayesian grammar induc-

tion. In: The 25th Annual ACM Symposium on User Interface

Software and Technology (UIST ’12), Cambridge, MA, USA,

7–10 October 2012. New York: ACM Press, pp. 63–74.

Zhu SC and Mumford D (2007) A stochastic grammar of images.

Foundations and Trends in Computer Graphics and Vision

2(4): 259–362.

38 The International Journal of Robotics Research 39(1)

