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Abstract

We present a new approach for estimating solutions of the dynamical inverse
problem of EEG generation. In contrast to previous approaches, we reinterpret this
problem as a filtering problem in a state space framework; for the purpose of its
solution we propose a new extension of Kalman filtering to the case of spatiotemporal
dynamics. The temporal evolution of the distributed generators of the EEG can be
reconstructed at each voxel of a discretisation of the gray matter of brain. By
fitting linear autoregressive models with neighbourhood interactions to EEG time
series new classes of inverse solutions with improved resolution and localisation
ability can be explored. For the purposes of model comparison and parameter
estimation from given data we employ a likelihood maximisation approach. Both
for instantaneous and dynamical inverse solutions we derive estimators of the time-
dependent estimation error at each voxel. The performance of the algorithm is
demonstrated by application to simulated and clinical EEG recordings. It is shown
that by choosing appropriate dynamical models it becomes possible to obtain inverse
solutions of considerably improved quality, as compared to the usual instantaneous
inverse solutions.

1 Introduction

Recordings of electromagnetic fields emanating from human brain are well known to
provide an important source of information about brain dynamics. Electrical potentials
on the scalp surface are very easy to measure at a set of electrodes attached to the skin;
as a result multivariate electroencephalographic (EEG) time series are obtained. With
considerably higher technical effort, magnetoencephalographic (MEG) time series can also
be recorded.

It is by now widely accepted that the sources of these electromagnetic fields are elec-
trical currents within networks of neurons in the cortex and other gray matter structures
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of brain; while part of this current remains confined within the dendritic trunks (primary
currents), another part flows through the extracellular volume (secondary currents) [1].
In order to obtain more direct access to the dynamics governing the activity of these
networks of neurons it would be desirable to have direct estimates of these sources. The
estimation of these sources from recordings of EEG or MEG has recently become a subject
of intense research [2, 3, 4, 5, 6, 7, 9, 13, 23, 41]; for a recent review see Baillet et al. [8].
In this paper we focus on the case of the EEG, but the ideas and methods to be presented
remain equally valid for the MEG.

Two main classes of source models have been developed: “equivalent current dipole”
approaches (also known as “parametric” methods), in which the sources are modeled by
a relatively small number of focal sources at locations to be estimated from the data, and
“linear distributed” approaches (also known as “imaging” or “current density reconstruc-
tion” methods), in which the sources are modeled by a dense set of dipoles distributed
at fixed locations (which, in analogy to the case of magnetic resonance imaging, we shall
call “voxels”) throughout the head volume. Examples of parametric approaches include
least-squares source estimation [9] and spatial filters, such as beamforming and multiple
signal classification (“MUSIC”) approaches [10]. This paper exclusively deals with the
linear distributed model approach.

It is a characteristic problem of distributed source models that a large number of un-
known quantities has to be estimated from a much smaller number of measurements; as
a consequence of this, we are facing a problem which does not possess a unique solution,
known as “inverse problem”. The number of measurements given at one instant of time
may be as low as 18, if the standard 10-20 system of clinical EEG recordings is employed;
by increasing the number of electrodes we may eventually obtain up to a few hundred
measurements, but they will fail to provide an equivalent amount of independent infor-
mation due to strong correlations between adjacent electrodes. On the other hand, the
number of voxels will typically be several thousand, and furthermore at each voxel site a
full three-dimensional current vector has to be modelled.

In order to identify a unique solution (i.e. an “inverse solution”) additional informa-
tion has to be employed. So far this has been done mainly by imposing constraints on
the inverse solution. Certain constraints can be obtained from neurophysiology [5]; as
an example, it is reasonable to assume that only voxels within gray matter contribute
substantially to the generation of the electromagnetic fields; other constraints refer to the
probable direction of local current vectors at specific locations. But such constraints do
not suffice to remove the ambiguity of the inverse solution.

For this purpose much more restrictive constraints are needed, such as the minimum-
norm constraint suggested by Hämäläinen and Ilmoniemi [11] or the maximum-smooth-
ness constraint suggested by Pascual-Marqui [3]. These constraints can be applied inde-
pendently for each instant of time, without accessing the data measured at other instants
of time, therefore we will say that the resulting inverse solutions represent solutions of
the “instantaneous” inverse problem.

The idea of including data from more than a single instant of time into the estima-
tion of inverse solutions is attractive, since more information becomes available for the
solution of an ill-posed problem; consequently, there has recently been growing interest in
generalising the instantaneous inverse problem to “dynamical” inverse problems and to
develop algorithms for its solution [12, 6, 13, 14].

In this paper we will contribute to these efforts by developing a new interpretation of
the dynamic inverse problem in its most general shape, and by proposing a new approach
to its solution. In contrast to most previous work, we will not approach this problem
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within a constrained least squares (or, equivalently, Bayesian) framework, but by refor-
mulating it as a spatiotemporal state space filtering problem. So far the dynamical aspect
of the available algorithms was essentially limited to imposing temporal smoothness con-
straints [15, 6]; from a time-domain modelling perspective such constraints correspond to
the very special case of a spatially non-coupled random-walk model [14]. By appropriate
generalisation our approach will permit the use of much more general predictive models
in this context, such that a consistent description of the spatiotemporal dynamics of brain
becomes possible.

It should be stressed that general predictive models can also be incorporated into
the framework of constrained least squares, and in a companion paper to this paper we
will discuss in more detail the application of this idea to the inverse problem of EEG
generation [7].

As the main tool for our task we will adapt the well-known Kalman filter [16] to spa-
tiotemporal filtering problems; it will become evident that Kalman filtering provides a
natural framework for addressing the dynamical inverse problem of EEG generation. The-
oretically, by employing a very high-dimensional state vector, standard Kalman filtering
could deal with any spatiotemporal filtering problem, but the specific nature of the spatial
dimensions (such as neighbourhood relationships between voxels) would not be properly
captured, and computational expenses would soon become prohibitively large. By assum-
ing a properly chosen structure of the dynamics and certain additional approximations
the intractable high-dimensional filtering problem can be decomposed into a coupled set
of tractable low-dimensional filtering problems. This adaptation can be regarded as a
generalisation of standard Kalman filtering to the case of partial (space-time) differential
equations.

From system theory it is known that the sufficient condition for successful application
of Kalman filtering is observability of the given state space system, as represented by its
state transition parameter matrix (or, in the nonlinear case, the corresponding Jacobian
matrix) and its observation matrix [17, 18]. Although we will not be able to rigorously
prove observability, we will discuss the application of this concept to our model and
demonstrate through an explicit numerical simulation study that Kalman filtering can
successfully be applied. From this simulation it will also become evident that a crucial
element for the estimation of dynamical inverse solutions is given by the model according
to which the dynamics of the voxel currents is assumed to evolve. If a very simple model is
chosen, we will obtain solutions which offer only small improvements over solutions result-
ing from previous non-dynamical (i.e. instantaneous) algorithms for solving the inverse
problem; if the model contains additional information about the true dynamics, much
better solutions can be obtained. Such information can at least partly be obtained by
choosing a model with a sufficient flexibility for adaptation to given data; this adaptation
can be performed by suitable fitting of dynamical parameters and noise covariances.

We will propose to employ the maximum likelihood method for this fitting task; it will
become evident that Kalman filtering is the natural tool for calculating the likelihood from
EEG data. By assuming a somewhat more general viewpoint, we will address parameter
estimation as a special case of model comparison, and employ appropriate statistical
criteria, namely the Akaike Information Criterion (AIC) and its Bayesian variant, ABIC,
for the purpose of comparing inverse solutions. Numerical examples will be shown both
for simulated data and for a clinical EEG recording.

Finally, it should be mentioned that there exists already a sizable amount of published
work dealing with applications of Kalman filtering to the analysis of EEG recordings,
which we are unable to review in any appropriate form in this paper; and furthermore
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there exist also applications of Kalman filtering, or related filtering approaches, to inverse
problems, some of which also fall into the field of biomedical data analysis, like Electrical
Impedance Tomography or evoked potential estimation (see e.g. [19, 20, 12]). Recently
Somersalo et al. [14] have applied a nonlinear alternative to Kalman filtering, known
as particle filtering, to the problem of estimating focal sources from MEG data. While
providing important results and methodology, so far none of these studies has addressed
the problem of reconstruction of distributed sources from EEG (or MEG) times series in
the context of identification of optimal dynamical (i.e. predictive) models.

In this paper we will introduce a new practicable solution for the problem of applying
Kalman filtering to very high dimensional filtering problems, as they arise in the case of
spatiotemporal brain dynamics. Moreover, we will replace the largely arbitrary choice
of dynamical models which can be seen in many applications of Kalman filtering, by a
systematic model comparison and selection approach which provides explicit justification
for the chosen model and parameters in terms of the numerical value of a statistical
criterion. By this approach a wide class of very general models becomes available for
data-driven modelling of brain dynamics.

2 The inverse problem of EEG generation

We start from a rectangular grid of Nv voxels covering the cortical gray matter parts
of human brain; in this study inverse solutions will be confined to these voxels. In the
particular discretisation which we will employ, there are Nv � 3433 cortical gray-matter
voxels. At each voxel a local three-dimensional current vector

jpv, tq � �
jxpv, tq, jypv, tq, jzpv, tq�:

is assumed, where v is a voxel label, t denotes time, and : denotes matrix transposition.
The column vector of all current vectors (i.e. for all gray-matter voxels) will be denoted
by

Jptq � �
jp1, tq:, jp2, tq:, . . . , jpNv, tq:

�:
;

it represents the dynamical state variable of the entire system.
These currents are mapped to the electroencephalographic signal (EEG), which is

recorded at the scalp surface. The EEG at an individual electrode shall be denoted by
ypi, tq, where i is an electrode label; the nc-dimensional column vector composed of all
the electric potentials at all available electrodes shall be denoted by

Yptq � �
yp1, tq, yp2, tq, . . . , ypnc, tq

�:
.

In this study we assume that the 10-20 system is employed; all potentials refer to average
reference, although other choices are possible. Due to the choice of a reference out of
the set of electrodes it is advisable to exclude one of the standard electrodes of the 10-20
system from further analysis, such that the effective dimension of Y becomes nc � 18.

For distributed source models it is possible to approximate the mapping from J to Y
by a linear function [8] whence it can be expressed as

Yptq � KJptq � εptq . (1)

Here K denotes a nc � 3Nv transfer matrix, commonly called “lead field matrix”. This
matrix can approximately be calculated for a three-shell head model and given electrode
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locations by the “boundary element method” [21, 3, 22, 23]. It is an essential precondi-
tion for any approach to find inverse solutions, that a reliable estimate of this matrix is
available. Here we remark that typically the lead field matrix turns out to be of full rank.

It will be convenient for later use to define the individual contribution of each voxel
to the vector of observations by Kpvq jpv, tq, where Kpvq is the nc� 3 matrix which results
from extracting those three columns out of K, which are multiplied with jpv, tq in the
process of the multiplication of K and Jptq. From this definition, equation 1 can also be
written as

Yptq �
Nv̧

v�1

Kpvq jpv, tq � εptq . (2)

By εptq we denote a vector of observational noise, which we assume to be white and
Gaussian with zero mean and covariance matrix Cε � Epεε:q. We will make the assump-
tion that Cε has the simplest possible structure, namely

Cε � σ2
ε Inc , (3)

where Inc denotes the nc�nc identity matrix, i.e. we assume that the observation noise is
uncorrelated between all pairs of electrodes and of equal variance for all electrodes. These
assumptions may be relaxed in future work.

Equation 1 is part of the standard formulation of the inverse problem of EEG [24];
in this paper we propose to interprete it as an observation equation in the framework of
dynamical state-space modelling.

The inverse problem of EEG generation is given by the problem of estimating the gen-
erators Jptq from the observed EEG Yptq; this obviously constitutes an ill-posed problem
since the dimension of Jptq is much larger than the dimension of Yptq. As also in the case
of many other inverse problems, it is nevertheless possible to obtain approximate esti-
mates of Jptq. As a representative of the numerous approaches which have been proposed
for this purpose we select here the “low-resolution brain electromagnetic tomography”
(LORETA) algorithm, proposed by Pascual-Marqui et al. [3], as a starting point; a brief
introduction will be given in the next section.

3 The instantaneous case

3.1 The LORETA approach

In this approach a spatial smoothness constraint is imposed on the estimate of Jptq, which
can be expressed by employing a discrete spatial Laplacian operator defined by

L �
�

INv �
1

6
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b I3 . (4)

Here N denotes a Nv � Nv matrix having Nvv1 � 1 if v1 belongs to the set of neighbours
of voxel v (this set shall be denoted by N pvq), and 0 otherwise. By the symbol b
Kronecker multiplication of matrices is denoted. The p3iqth row vector of L acts as a
discrete differentiating operator by forming differences between the nearest neighbours of
the ith voxel and ith voxel itself (with respect to the first vector component).

In the LORETA approach the inverse solution is obtained by minimizing the objective
function

EpJq � ||pY � KJq||2 � λ2||LJ||2 , (5)
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i.e. a weighted sum of the observation fitting error and of a term measuring non-smoothness
by the norm of the spatial Laplacian of the state vector. ||.|| denotes Euclidean norm. The
hyperparameter λ expresses the balance between fitting of observations and the smooth-
ness constraint; a non-zero value for λ provides regularisation for the solution [25].

Here we would like to mention that the second term in equation 5 represents a special
example of a general constraint term; by appropriate choice of this term it is also possible
to impose other kinds of constraints instead of spatial smoothness, such as anatomical
constraints or sparseness of the inverse solution (see [8] and references cited therein).

The least squares solution of the problem of minimising equation 5 is given by

Ĵ � pK:K� λ2L:Lq�1K:Y ; (6)

here by Ĵ the estimator of the state vector J is denoted. Within the framework of Bayesian
inference, this solution can be interpreted as the Maximum A Posteriori (MAP) solution
for the case of Gaussian distributions for the likelihood and the prior, given by [26, 7]:

ppY|J; σ2
ε q � N pKJ, σ2

ε q
ppJ; τ 2q � N p0, τ 2pL:Lq�1q ,

(7)

where we have defined τ � σε{λ.

Note that Ĵ will not depend on the reference according to which the EEG data Y was
measured; this dependence is absorbed into the lead-field matrix. This effect represents
another advantage of transforming EEG data into an estimated source current density:
The notorious reference problem of EEG is completely removed by this transformation.

The matrix K:K�λ2L:L in equation 6 has the size 3Nv � 3Nv � 104�104, whence actual
numerical inversion is usually impracticable. The solution can be evaluated nevertheless
by using the singular value decomposition of the nc � 3Nv matrix KL�1,

KL�1 � USV: , (8)

where U is an orthogonal nc � nc matrix, S is a nc � 3Nv matrix whose only non-
zero elements are the singular values Sii � si, i � 1, . . . , nc , and V is an orthogonal
3Nv � 3Nv matrix; only the first nc columns of V are relevant for this decomposition,
and the corresponding 3Nv � nc matrix shall be denoted by Vp1q. The matrix composed
of the remaining 3Nv�nc columns shall be denoted by Vp2q. After some transformations,
equation 6 becomes

Ĵ � L�1Vp1q diag

�
si

s2
i � λ2



U:Y . (9)

Here diagpxiq denotes a diagonal matrix with elements x1, . . . , xnc on its diagonal. Nu-
merical evaluation of this expression can be implemented very efficiently.

3.2 Estimation of the regularisation parameter λ

Since the inverse solution given by equation 9 will depend sensitively on the value of the
hyperparameter λ, it should be chosen in an objective way. Various statistical criteria,
such as Generalised Cross-Validation (GCV) [27], and ad hoc methods, such as the L-curve
approach [28] have been employed for this purpose. Instead of these approaches, in this
paper we have chosen to use the Akaike Bayesian Information Criterion (ABIC) [29, 30],
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since we intend to directly compare inverse solutions obtained by different techniques by
comparing their likelihood.

Given a time series of EEG observations Yp1q, � � � ,YpNtq, ABIC is defined as p�2q
times the type-II log-likelihood, i.e. the log-likelihood of the hyperparameters in the con-
text of empirical Bayesian inference. In the case of the model containing unobservable
variables, the type-II likelihood can be obtained by averaging the joint distribution of
all variables, both observable and unobservable, over the unobservable variables, i.e. by
forming the marginal distribution:

ABICpσε, τq � �2 log LIIpσε, τq � �2
Nţ

t�1

log

»
ppYptq|Jptq; σ2

ε q ppJptq; τ 2q dJptq , (10)

where Yptq are the observable and Jptq the unobservable variables; σε, τ are hyperparam-
eters, and again τ � σε{λ.

Estimators for σε and λ can be obtained by maximising the likelihood given by equation
10; how this can be done in an efficient way will be presented elsewhere in more detail
[7]. Here we give only the result:

The type-II log-likelihood LIIpσε, τq itself can be shown to be

LIIpσε, λq �
Nţ

t�1

�
nç

i�1

log
s2

i � λ2

λ2
� ncp1� log 2πσ2

ε q
�

, (11)

where the estimate of the observation noise variance σ2
ε is given by

σ2
ε �

1

nc

nç

i�1

λ2

s2
i � λ2

ȳ2
i ptq ; (12)

here ȳiptq denotes the ith element of the vector U:Yptq, where U is defined in equation 8.
As a result we obtain not only estimates for the hyperparameters, but also the possibil-

ity to calculate the ABIC value for any given inverse solution (as obtained by LORETA),
i.e. an estimate for the type-II likelihood. This will enable us to compare inverse solutions
obtained by different techniques, since for given data the likelihood serves as a general
measure of the quality of hypotheses [31].

It should be mentioned here that despite using an improved statistical criterion, the
proper choice of the regularisation parameter remains a difficult problem of the LORETA
method; in practice, frequently even the order of magnitude of the appropriate value of λ
is debatable and may change drastically upon seemingly insignificant changes of the data.
Also for this reason there is a growing need for an alternative approach to estimating
inverse solutions.

3.3 Estimation of the covariance matrix of the estimated state
vector

So far the lack of an efficient method for assessing the approximate error associated with
the inverse solutions obtained by LORETA has been a serious weakness of this technique;
certainly it has contributed much to the widespread scepticism which the very idea of
estimating solutions for the inverse problem of EEG generation is still facing. Strictly
speaking, estimates of unobservable quantities without estimates of the corresponding
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error have to be regarded as meaningless. For this reason we introduce a method for

estimating the covariance matrix C
piISq
Ĵ

of the estimated currents Ĵptq of an inverse so-

lution obtained by LORETA (here the superscript piISq denotes “instantaneous inverse
solution”).

The derivation of the expression for C
piISq
Ĵ

is inspired by recent work by Pascual-Marqui

[32]; the result is given by

C
piISq
Ĵ

� τ 2L�1Vp1qdiag

�
s2

i

s2
i � λ2



Vp1q :pL:q�1 . (13)

The detailed derivation is demonstrated in the Appendix.
Through this expression it becomes possible to display error estimates for each voxel

(and each vector component) individually. Since a corresponding error estimate can also
be computed for the new dynamical technique for estimating inverse solutions which we
will introduce in this paper, another quantitative measure for the comparison of different
techniques for estimating inverse solutions becomes available.

4 The dynamical case

4.1 Dynamical models of voxel currents

After discussing various aspects of the LORETA method, we shall now proceed to the
formulation of the new approach for solving the dynamical inverse problem of EEG gener-
ation; it has already been mentioned that for this purpose an additional temporal smooth-
ness constraint could be introduced into equation 5 [15, 6]. While this approach will be
pursued and extended elsewhere [7], here the central concept of our approach will be a
new adaptation of Kalman filtering to the case of spatiotemporal dynamics.

The Kalman filter provides the optimum tool for predicting, filtering and smoothing
estimates of the state of dynamical systems which cannot be observed directly, but only
through an observation equation containing observational noise [16]. As a presupposi-
tion for its application, both the equations governing the dynamics and the observation
equation have to be known.

Since for the case of the dynamics of human brain no well substantiated models for
the spatiotemporal dynamics are known yet, we are faced with the problem of estimating
suitable models from data. Clearly this constitutes a research task of enormous complexity
which reaches far beyond the scope of this paper, therefore we will only be able to explore
the very first and simplest approximations to such models.

Having defined a spatial discretisation by using a finite set of voxels, it is advisable
to formulate dynamical models also with temporal discretisation; for simplicity we shall
regard the basic time unit of this discretisation as equal to the sampling rate of the EEG
recording. The corresponding time points will be labeled by t � 1, 2, 3, . . . , Nt.

In general form the dynamics of a set of Nv voxels may be described by nonlinear
multivariate autoregressions given as

Jptq � F�Jpt� 1q,Jpt� 2q, . . . ,Jpt� pq |ϑ�� ηptq , (14)

where p denotes the positive integer model order and ηptq denotes dynamical noise, which
we assume to be white and Gaussian with zero mean and covariance matrix Cη � Epηη:q.
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When fitting such models to given data, ηptq represents a time series of innovations, i.e.
components of the data which cannot be explained from the dynamics itself. It is the aim
of modelling to find dynamical models which produce a Gaussian white innovation time
series, such that the process of modelling can be regarded as “temporal whitening”.

F denotes a function describing the deterministic part of the dynamics; it may depend
on a vector of parameters ϑ. This function may contain considerable internal complexity
and a huge number of parameters (described by ϑ), since it maps an input space of
dimensionality 3Nvp to an output space of dimensionality 3Nv.

The simplest non-trivial example of the class of autoregressions described by equation
14 is a linear multivariate autoregressive model of first order

�
AR(1)

�
:

Jptq � AJpt� 1q � ηptq , (15)

and here we note that the popular random-walk model is a special case of this model, with
A � I3Nv . The parameter matrix A is of size p3Nvq � p3Nvq, which in our case is of the
order of 108. This large number of parameters is still far too high to be estimated from
real data, therefore we need additional reductions of model complexity. Also the practical
application of Kalman filtering requires a simplified model structure. It is an arguably
reasonable assumption that at short time scales the dynamics will be restricted to local
neighbourhoods, i.e. each voxel will interact only with its direct spatial neighbours; in a
rectangular grid of voxels there will 6 direct neighbours for each voxel, except for those
at the boundaries of the gray-matter parts of brain. Most elements of A become zero by
this proposition. The dynamical model for each voxel becomes

jpv, tq � A1 jpv, t� 1q � 1

6
B1

¸
v1PN pvq

jpv1, t� 1q � ηptq , (16)

where A1 and B1 now are the autoregressive parameter matrices (of size 3 � 3) for self-
interaction and nearest-neighbour interaction, respectively, and N pvq denotes the set
of labels of gray-matter voxels that are direct neighbours of voxel v. If furthermore we
assume the absence of any interactions between the three projections of local current
vectors (both within and between voxels) and total spatial homogeneity and isotropy for
all pairs of neighbouring voxels (this assumption extending to the three vector projections
as well), we can ultimately reduce the number of parameters to two. The dynamical model
for each voxel becomes

jpv, tq � a1 I3 jpv, t� 1q � b1

6
I3

¸
v1PN pvq

jpv1, t� 1q � ηptq , (17)

where I3 denotes the 3 � 3 identity matrix; now a1 and b1 are scalar autoregressive pa-
rameters. This model implements complete symmetry between voxels and also between
projections of local currents; but clearly, this symmetry is not preserved by multiplication
with the lead field matrix K. As a consequence of this, inverse solutions also will display
non-symmetric behaviour with respect to voxels and projections.

The additional assumptions which are required in order to define the simplest possible
non-trivial dynamical model, given by equation 17, are almost certainly without physio-
logical justification, but nevertheless this oversimplification is necessary in order to design
a tractable algorithm as a starting point. As the next step it becomes possible again to
consider generalisations, such as higher model order, nonlinearities or inhomogeneities;
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as a consequence it may become possible to describe more structure present in the data
by the dynamical model and to relegate less power from the data to the time series of
innovations ηptq. Here the aim is that the values in ηptq be as small as possible, contain
as little correlation as possible (i.e. being white noise) and have a distribution as close as
possible to a Gaussian.

As long as only nearest-neighbour interactions are allowed and a high degree of spatial
homogeneity and isotropy is maintained, the number of unknown parameters can be kept
small, and the problem remains accessible for spatiotemporal Kalman filtering. By in-
creasing the model order to p, it becomes possible to describe stochastic oscillations which
may be present in the data; although this case represents a generalisation of equation 15,
it can be incorporated into this equation by replacing the order-1 state vector Jptq by�
Jptq:,Jpt � 1q:, . . . ,Jpt � p � 1q:�:, such that formally the dynamics remains a linear

autoregression of first order.
Equation 17 can alternatively be written as

jpv, tq � pa1� b1q I3 jpv, t� 1q � b1I3

�� 1

6

¸
v1PN pvq

jpv1, t� 1q
	
� jpv, t� 1q

�
�ηptq . (18)

This equation shows more clearly that the dynamics at each voxel is composed of two
contributions, the first representing the autoregressive dynamics of the voxel itself and
the second representing small exogeneous disturbances which partly are described as pure
noise and partly as the difference between the average of the states of the neighbouring
voxels and the state of the voxel itself. The latter difference is the same as also used in
the Hjorth source derivation [33], but here we employ it directly in the (3-dimensional)
generator space (i.e. the voxel space) instead of the (2-dimensional) electrode space.

From equation 18 it can be seen that our model corresponds to a specific choice for
the parameter matrix A which can be expressed as

A � pa1 � b1q I3Nv � b1L , (19)

where L is the discrete spatial Laplacian operator defined in equation 4. This relation will
become useful in the next section.

Finally we would like to mention that there exist the possibility of a direct generalisa-
tion of equation 18 to partial differential equation models for the description of brain dy-
namics in continuous time and space; recently such models have been explored by various
authors [34, 35]. In the continuous case (with respect to both time and space) the second
term on the rhs of equation 18 (i.e. the term corresponding to the Laplacian) becomes a
second derivative with respect to space, while the two terms jpv, tq� pa1� b1q I3 jpv, t� 1q
can be interpreted as a first derivative with respect to time; consequently, a standard
diffusion equation results. If a model of order p � 2 is chosen, there will also be a second
derivative w.r.t. time instead of the first derivative; in this case a standard wave equation
results. These interpretations render the model orders p � 1 and p � 2 particularly
attractive.

4.2 Spatial whitening

Application of Kalman filtering to the full spatiotemporal model as given by equation 15
would be infeasible in terms of computational time and memory demands due to the huge
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size of the parameter matrix A, i.e. if interactions between all pairs of voxels have to be con-
sidered. In the preceding section we have suggested to decompose this high-dimensional
filtering problem into a collection of coupled low-dimensional local filtering problems, each
centred at one individual voxel, as described by equation 16; only by this decomposition
the spatiotemporal filtering problem becomes tractable. The low-dimensional systems re-
main coupled through neighbourhood interactions, but at each voxel these contributions
are formally regarded as exogeneous variables. This decomposition approach is a central
contribution of this paper.

In order to apply this decomposition to the dynamics it is also necessary that the
dynamical noise covariance matrix Cη be a diagonal matrix, as assumed in equation 3 for
the case of the observational noise covariance matrix Cε. But in the case of Cη experi-
ence obtained from the analysis of real EEG time series has shown that such assumption
will typically not be justified, rather the presence of non-vanishing instantaneous correla-
tions at least between neighbouring voxels – and therefore also between the corresponding
components of the dynamical noise – has to be expected.

Therefore we need an instantaneous data transformation

J̃ � TJ , (20)

such that in the corresponding dynamical model

J̃ptq � Ã J̃pt� 1q � η̃ptq . (21)

the dynamical noise covariance matrix Cη̃ becomes diagonal (here we are furthermore
assuming that all elements on the diagonal of Cη̃ are identical, a simplification which
due to the large number of voxels is necessary for practical implementation; again, this
assumption may be relaxed in future work):

Cη̃ � σ2
η̃ I3Nv . (22)

In order to find a simple but efficient transformation we propose to extend the concept
of temporal whitening to the spatial domain. A simple whitening approach in temporal
domain is given by differentiating the time series; we can perform a spatial differentiating
step (of second order) by applying the discrete Laplacian as defined by equation 4 to the
dynamical state J. Similar ideas for spatial whitening in the context of dynamical inverse
problems have also been proposed by Baroudi et al. [20].

It is reasonable to assume that very fast correlations, appearing to be instantaneous
with respect to the sampling time of the data, will be confined to short distances, i.e.
neighbouring voxels; the Laplacian represents the easiest possible choice for removing
these correlations. We note that the same transformation is employed in LORETA, but
for a different purpose; nevertheless this coincidence provides useful additional interpre-
tations, as will be shown now.

If we choose T � L, equation 21 yields

Jptq � L�1ÃLJpt� 1q � L�1η̃ptq . (23)

But due to equation 19 (which by definition also describes the structure of Ã) the matrices

Ã and L commute, such that by comparison with equation 15 we find that the choice T � L
corresponds to ηptq � L�1η̃ptq, and our assumption for the non-diagonal dynamical noise
covariance matrix becomes

Cη � L�1 Epη̃η̃:qpL�1q: � σ2
η̃ pL:Lq�1 . (24)
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By comparison with LORETA in its Bayesian interpretation (see section 3.1), it can be
seen, that ση̃ directly corresponds to the hyperparameter τ � σε{λ, such that τ 2 can be
interpreted as dynamical noise variance. This quantity is meaningful also in the case of
the instantaneous inverse problem and its LORETA solution; the optimal regularisation
parameter λ becomes a measure for the ratio between the observation noise variance and
the dynamical noise variance, as it should be.

If other dynamical models than described by equation 17 are assumed, Ã and L will
generally not commute. Other transformations than the plain Laplacian L may then be
needed for perfect spatial whitening. But even in this case L can be expected to make Cη̃

“more diagonal” (i.e. reduce the size of the non-diagonal elements, as compared to the
diagonal elements), and for this reason we will continue to employ it as spatial whitening
transformation.

We remark that the appropriate choice of Cη̃ forms an important part of the fitting of
a dynamical model; therefore refinements of our choice should be based on improvements
of a suitable statistical criterion, such as AIC (see section 4.7). The Laplacian serves
only as a first approximation, but in future research it should be explored, how Cη̃ can be
adapted further to specific data sets.

For the actual application of spatiotemporal Kalman filtering we will exclusively ex-
press the dynamics as J̃ptq, i.e. using the spatially whitened version. From now on we will
omit the tilde.

4.3 Spatiotemporal Kalman filtering

Given the observation equation (equation 1) and the dynamical equation (in the case of a
linear first-order autoregression equation 21) we could in principle apply Kalman filtering
according to its usual form; however, due to the very high dimensionality of the state
variable J this would be infeasible. But by appropriate design of certain modifications
of the standard filtering procedure it is possible to decompose the very high-dimensional
filtering problem into a collection of coupled low-dimensional problems; the set of these
problems is labeled by the voxel label v, i.e. it represents the spatial dimension of the
problem. These modifications of the standard Kalman filter procedure are not trivial,
and we will defer a detailed discussion to a later paper. Here we will only describe the
main points from the viewpoint of practical implementation.

Let ĵpv, t� 1 | t� 1q denote the estimate of the local current vector at voxel v at time
t � 1, i.e. the local state estimate, and ppv, t � 1 | t � 1q the corresponding estimate of

the local error covariance matrix (a 3� 3 matrix). The notation ĵpt1 | t2q (where t1 ¥ t2)
represents the estimate of j at time t1 which is based on all information having become
available until (and including) time t2. For each voxel the local state prediction is then
given by

ĵpv, t | t� 1q � A1 ĵpv, t� 1 | t� 1q � 1

6
B1

¸
v1PN pvq

ĵpv1, t� 1 | t� 1q , (25)

and the corresponding local prediction error covariance matrix can be approximated by

ppv, t | t� 1q � A1 ppv, t� 1 | t� 1qA:1 � σ2
ηI3 . (26)

Here we have assumed that the second term on the rhs of equation 25 behaves like an exo-
geneous variable, i.e. without contributing significantly to the prediction error covariance;
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alternatively we may say that the covariance contribution from the neighbours is included
in the term σ2

ηI3, which can be done easily, since σ2
η results from numerical optimisation

for given data and filter implementation (see section 4.7).
We remark that this approximation is not crucial for our approach to spatiotemporal

Kalman filtering, and a more explicit expression for the prediction error covariance could
be employed; however, for typical systems we expect that usually the second term on
the rhs of equation 25 (i.e. the neighbourhood contribution) is considerably smaller than
the first term (the local contribution), and therefore the resulting error should be only
minor, whereas the computational expenses can be reduced noticeably by refraining from
evaluating the more explicit expression at each voxel.

The local state predictions ĵpv, t | t� 1q for all voxels form the overall state prediction

Ĵpt | t� 1q, from which the observation prediction (for all electrodes) follows as

Ŷpt | t� 1q � K Ĵpt | t� 1q . (27)

The symbol K stands for the product K L�1; multiplication by the inverse of the Laplacian
is needed due to the spatial whitening approach described in section 4.2. The actual
observation at time t is Yptq, and the observation prediction error results as

∆Yptq � Yptq � Ŷpt | t� 1q . (28)

We note that this multivariate time series represents the innovations of the actual obser-
vations, as opposed to the innovations of the (unobservable) system states, which have
been denoted by ηptq in equation 14. The corresponding observation prediction error
covariance matrix can be approximated by

Rpt | t� 1q �
Nv̧

v�1

Kpvqppv, t | t� 1qKpvq: � σ2
ε Inc . (29)

Here the direct summation over voxels seems to provide the appropriate generalisation of
the standard expression to the spatiotemporal case. The matrices Kpvq have been defined
in section 2; again the bar refers to the fact that due to spatial whitening we have to
replace K by K L�1, before extracting the columns refering to voxel v. The Kalman gain
matrix for voxel v follows as

gpv, tq � ppv, t | t� 1qKpvq: Rpt | t� 1q�1 , (30)

and finally the local state estimation and the corresponding local estimation error covari-
ance matrix are given by

ĵpv, t | tq � ĵpv, t | t� 1q � gpv, tq∆Yptq (31)

and
ppv, t | tq � �

I3 � gpv, tqKpvq� ppv, t | t� 1q , (32)

respectively. For equations 29 and 32 again we make use of similar approximations as
also employed in the case of equation 26.

This set of equations constitutes the new spatiotemporal Kalman filter. It should be
stressed that equations 25, 26, 30, 31 and 32 are applied locally to each voxel, whereas
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only equation 27 requires a large-scale multiplication of the lead-field matrix K with the
full p3Nvq-dimensional state vector Ĵ.

For practical application of this filter to time series data initial values jpv, 1|1q and
ppv, 1|1q are needed. As initial state estimates jpv, 1|1q we propose to use solutions pro-
vided by the LORETA algorithm, as presented in section 3.1; the hyperparameters are
chosen by minimisation of ABIC. For this purpose we have to sacrifice the first p data
points and exclude them from the Kalman filtering process. As a further refinement step,
these initial values are improved by likelihood maximisation [36] in the same way as also
the parameters are estimated; this will be discussed in section 4.7. Since it is impractica-
ble to perform this optimisation directly in the p3Nvq-dimensional state space, we apply
the optimisation to the pnc pq-dimensional observation space of the first p observations
Yp1q, . . . ,Yppq and use the LORETA technique for mapping points in the observation
space to new prospective initial states. Concerning the choice and optimisation of ini-
tial values, our implementation differs from more conventional applications of Kalman
filtering, which usually do not employ this extended estimation approach.

According to our experience, the choice of initial values for ppv, 1|1q is not critical;
unity matrices can be used.

4.4 Estimation of the covariance matrix of the estimated state
vector

Equation 32 provides us with covariance estimates for the reconstructed states (given by
equation 31); we may use these estimates as a measure for the error of each component
of the estimated state vectors. Due to the spatial whitening transformation (see section
4.2) the covariance matrix of the actual currents is given by

C
pdISq
L�1Ĵ

� L�1Ppt | tqpL:q�1 , (33)

where the superscript pdISq denotes “dynamical inverse solution”. By Ppt | tq the complete
covariance matrix of the estimated states is denoted, i.e. a 3Nv�3Nv matrix the diagonal of
which consists of the ppv, t | tqmatrices given by equation 32 for each voxel. The remaining
elements of Ppt | tq are filled with zeros, according to our decomposition approach for this
high-dimensional filtering problem.

The diagonal elements of C
pdISq
L�1Ĵ

provide time-dependent variances for each element

of the complete estimated state vector L�1Ĵ (again the pre-multiplication with L�1 is
necessary due to spatial whitening). As also in the case of the LORETA inverse solutions

we will present variances of the modulus ĵpv, t | tq of local vectors ĵpv, t | tq (see equation
A6 in the appendix for the appropriate expression from Gaussian error propagation).

4.5 Silent and observable sources

In the (instantaneous) inverse problem of EEG generation we are facing the apparently
hopeless task to estimate a set of more than 104 unknown quantities from usually less than
102 observations. As a condition for identifying a unique solution additional constraints
have to be defined and imposed, such as the smoothness constraint of LORETA. Such
constraints may succeed to render the inverse problem well-posed, but at the cost of a
lack of justification, e.g. in terms of physiology.

The inherent predicament of inverse problems, i.e. the very unfavourable ratio between
the numbers of known and of unknown quantities, is avoided, but not solved by such
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constraints. The central question remains unsolved: How can we expect that all relevant
information about the spatially distributed primary current density could be reconstructed
from a small number of surface measurements? In this section we will try to outline an
answer to this question for the case of the dynamical inverse problem.

The problem can be expressed in quantitative form by considering the observation
equation (equation 1) and the singular value decomposition of the lead field matrix (equa-
tion 8):

Yptq � KJptq � εptq � USV: Jptq � εptq � USHptq � εptq . (34)

Here we have defined Hptq � V:Jptq, i.e. we have applied an orthogonal transform to
the state vector Jptq. As mentioned already in section 3.1, the nc � 3Nv matrix S is
composed of a nc � nc diagonal matrix containing the singular values (which are all non-
zero since the lead field matrix has full rank), while the remaining p3Nv � ncq columns
contain only zeros. Therefore only the subspace spanned by the first nc elements of
the transformed state vector Hptq is mapped to the observation vector Yptq, while the
subspace of the remaining elements is completely ignored. Components of the “true”
state Jptq which by the orthogonal transformation are mapped into the former subspace,
represent “observable sources”, whereas those components which are mapped completely
into this latter subspace cannot be observed, whence they are termed “silent sources”
(note that such “sources” are not localised in physical space). Within the framework of
the instantaneous inverse problem there exists no way to obtain information about these
state components.

Here we would like to argue that the situation is much different in the case of the
dynamical inverse problem. If the problem of estimating unobserved quantities is treated
in a state space framework, it can be easily shown that under certain circumstances infor-
mation from the subspace of silent sources will propagate into the subspace of observable
sources.

In order to demonstrate this effect, we now apply the orthogonal transformation
Hptq � V:Jptq to equation 15 and obtain

Hptq � V:AV Hpt� 1q � V:ηptq � ĂHpt� 1q � η̆ptq , (35)

where Ă and η̆ptq denote the transformed transition matrix and the transformed dynam-

ical noise vector, respectively. Let Hptq � �
Hp1qptq: Hp2qptq:�:, such that Hp1qptq denotes

the first nc elements of the vector Hptq and Hp2qptq the remaining elements. Then Hp1qptq
represents the subspace which is mapped to the observations, i.e. the subspace of observ-
able sources, while Hp2qptq represents the subspace of silent sources. The same subdivision

is also applied to the transformed transition matrix Ă:�
Hp1qptq
Hp2qptq



�
�

Ăp1,1q Ăp1,2q

Ăp2,1q Ăp2,2q


�
Hp1qpt� 1q
Hp2qpt� 1q



� η̆ptq , (36)

such that Ăp1,1q and Ăp2,2q are nc � nc and p3Nv � ncq � p3Nv � ncq matrices, respectively.

From this equation it can be seen that the “partial” transition matrix Ăp1,2q plays a crucial
role, since it maps the subspace of silent sources to the subspace of observable sources. It
is through this pathway that information from the silent sources is propagated into the
observable sources, and from there into the observations.

Obviously this propagation of information will not take place if Ăp1,2q � 0. On the
contrary, in order to have information from all elements of Hp2qptq be propagated into
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Hp1qptq each column of Ăp1,2q must contain at least one non-zero element. Now consider the
special case of A � I3Nv , i.e. a random-walk type dynamics without neighbour interactions.

Then Ă � V:AV � V:V � I3Nv and consequently Ăp1,2q � 0. This argument may seem
elementary and straightforward, but given the number of applications of Kalman filtering
which still apply random-walk-type dynamical models without any specific justification,
it may nevertheless deserve more attention.

If, on the other hand, we choose a transition matrix with non-diagonal elements, such
as given by equation 19, V:AV will not be diagonal and Ăp1,2q �� 0. Using the partition of
V into Vp1q and Vp2q, as defined in section 3.1, it can be seen that

Ăp1,2q � �
Vp1q

:
A
�
Vp2q . (37)

Due to the orthogonality of V we have Vp1q
:
Vp2q � 0, i.e. the columns of Vp1q are orthogonal

to the columns of Vp2q; but multiplication by a non-diagonal matrix A will replace the
columns of Vp1q by a set of nc different columns which generically are no longer orthogonal
to any of the columns of Vp2q. Therefore we presume that generically all elements of Ăp1,2q
will be non-zero. Consequently we expect that there will be a flow of information from
all elements of Hp2qptq into Hp1qptq.

This argument shows that only by using a dynamical model including non-vanishing
neighbour interactions, state components belonging to the subspace of silent sources be-
come accessible for reconstruction by the spatiotemporal Kalman filter.

4.6 Observability in state space models of brain dynamics

In the previous section we have given a heuristic derivation of the mechanism by which
the spatiotemporal Kalman filtering approach is capable of accessing information about
unobservable state components; now we would like to mention that there exists a rigorous
theory addressing the question of whether for a given model of the dynamics and the
observation the unobserved quantities can be reconstructed. This theory is built around
the central concepts of observability and controllability [17, 18].

Assume that we are dealing with a dynamical system which evolves according to linear
dynamics as described by equation 15 (with a constant transition matrix A), and that
we are observing this system through an observation equation like equation 1 (with a
constant observation matrix K). If it is possible to reconstruct the true states of the
system from the observations, the pair pA, Kq is said to be “observable”.

Various tests for observability of dynamical systems have been suggested. A well-
known test states that the pair pA, Kq is observable, if and only if the observability matrix
O, being defined by

O � �
K
:

A:K
: pA:q2K: . . . pA:q3Nv�1K

:�:
, (38)

has full rank, rankpOq � 3Nv [18]. Here 3Nv denotes the dimension of the state vector,
i.e. the number of unknown quantities. In the case of the dynamical inverse problem of
EEG generation this matrix has the size 3Nvnc � 3Nv � 185382 � 10299 (when using
the corresponding values of the spatial discretisation as employed in this paper), which is
by far too large for numerical calculation of the rank. Kalman filtering and observability
theory are usually not applied to problems of this size. For this reason, we are currently
not yet able to present a rigorous proof of observability for our algorithm.
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On the other hand, observability constitutes the essential precondition for the recon-
struction of the unobserved states by Kalman filtering, i.e. for the identification of a unique
inverse solution. In the remainder of this paper we will demonstrate by application to
simulated and to real EEG data that Kalman filtering can be applied successfully to the
dynamical inverse problem of EEG generation. For this reason we presume that, effec-
tively, observability of the pair pA, Kq is given. Future research may succeed in rigorously
proving observability.

4.7 Parameter estimation

The general autoregressive model described by equation 14 depends on a parameter vector
ϑ; in the largely simplified model given by equation 17 we have ϑ � pa1, b1q, and autore-
gressive models of higher order have ϑ � pa1, . . . , ap, b1, . . . , bqq; here we are permitting
the possibility of choosing p �� q, i.e. choosing different autoregressive model orders for
self-interaction and nearest-neighbour interaction.

Usually there will be no detailed prior knowledge about appropriate values for these
parameters available. Furthermore we need estimates for the variances σ2

ε and σ2
η, as

defined by equations 3 and 24.
Estimates for these dynamical parameters and variances should be obtained preferably

from actual data. This can be accomplished within the framework of spatiotemporal
Kalman filtering by likelihood maximisation. So far, to the best of our knowledge, no
successful applications of the principle of likelihood maximisation to the field of inverse
problems have been reported; recently, Phillips et al. [5] have presented an approach
involving restricted maximum likelihood, but their approach does not involve dynamical
modelling.

Assume that an EEG time series Yptq is given, where t � 1, 2, . . . , Nt. At each

time point the Kalman filter provides an observation prediction Ŷptq, given by equation
27, and hence also observation innovations ∆Yptq; if for these a multivariate Gaussian

distribution with mean Ŷptq and covariance matrix Rpt | t� 1q is assumed, the logarithm
of the likelihood (i.e. log-likelihood) immediately results as

log Lpϑ, σ2
ε , σ

2
ηq � �

1

2

Nţ

t�1

�
log |Rpt | t�1q|�∆Yptq: Rpt | t�1q�1 ∆Yptq�nc logp2πq�. (39)

Here |.| denotes matrix determinant. The log-likelihood is known to be a biased estimator
of the expectation of Boltzmann entropy [31]; only a small further step is needed for
the calculation of an improved unbiased estimator of p�2q times Boltzmann entropy, the
well-known Akaike Information Criterion (AIC) [37]:

AICpϑ, σ2
ε , σ

2
ηq � �2 log Lpϑ, σ2

ε , σ
2
ηq � 2

�
dimpϑq � 2

�
, (40)

where dimpϑq denotes the number of parameters contained in the parameter vector ϑ; it
is further increased by 2 due to the need to fit σ2

ε and σ2
η from the data.

The AIC can also be interpreted as an estimate of the distance between the estimated
model and the unknown true model; the true model will remain unknown, but by com-
parison of the AIC values for different estimated models it still becomes possible to find
the best model. Consequently, a well justified and efficient tool for obtaining estimates
for unknown parameters consists of minimising the AIC; also the effect of changing the
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structure of the model itself can be evaluated by monitoring the resulting change of the
AIC.

As already mentioned in section 4.3, the same approach is also applied to the estima-
tion of improved initial values for the state, Ĵp1|1q, to be used by the Kalman filter.

Furthermore it is also possible to compare instantaneous inverse solutions obtained by
LORETA with dynamical inverse solutions obtained by spatiotemporal Kalman filtering
by directly comparing the corresponding values of ABIC (given by equations 10 and 11)
and AIC. Theoretical support for this direct comparison of ordinary likelihood and type-II
likelihood in modelling has been provided by Jiang [38].

5 Application to simulated EEG

5.1 Spatial discretisation

This study employs a discretisation of brain into voxels which is based on a grid of
27 � 23 � 27 voxels (sagittal � axial � coronal). Out of these 16767 grid positions
8723 represent voxels actually covering the brain (and part of the surrounding tissue),
out of which 3433 are regarded as gray-matter voxels belonging to the cortex; deeper
brain structures, like thalamus, are not considered in this study. For the underlying brain
geometry and the identification of the cortical gray-matter voxels an averaged brain model
was used, which was derived from the average Probabilistic MRI Atlas produced by the
Montreal Neurological Institute [39]. More details on this model can be found in [40] and
references cited therein.

5.2 Design of simulation

We shall now present some results of applying the spatiotemporal Kalman filter, as pre-
sented in sections 4.3 and 4.7, to time series data. It is a well-known problem of all
algorithms providing inverse solutions that it is difficult to perform meaningful evalua-
tions of the results and the performance, since for such evaluation we would need to know
the true sources.

Inverse solutions obtained from real EEG time series typically display fluctuating spa-
tiotemporal structures, but it is usually not possible to ascertain a posteriori to which
extent these structures describe the true brain dynamics which was present during the
recording. Relative comparisons between inverse solutions can be performed by comparing
the corresponding values of AIC (see equation 40), providing us with an objective crite-
rion for model selection. For the purpose of evaluation of algorithms, it is furthermore
possible to employ simulated data. If the primary currents at the gray-matter voxel sites
are simulated, the corresponding EEG observations can be computed simply by multipli-
cation with the lead field matrix, and consequently both the EEG time series and its true
sources are known. But clearly these “true” sources will not represent any realistic brain
dynamics, and also the underlying models for the brain and the observation will contain
severe simplifications and inaccuracies. Nevertheless, for the purpose of demonstrating
feasibility and potential usefulness of the proposed algorithm, and for comparing inverse
solutions obtained by different algorithms, we will now design a very simple simulated
brain dynamics; results for real EEG data will be shown in section 6.

A typical phenomenon of human brain dynamics is the presence of strong oscillations
within local neighbourhoods, e.g. alpha activity in the visual cortex. If we regard the
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“simple” dynamical model described by equation 17, where the parameters a1 and b1 are
constant, as a device to generate simulated brain dynamics, driven by Gaussian white
noise, we find that it will not produce such oscillations. In order to have oscillating
behaviour in linear autoregressive models, a model order of at least p � 2 is needed.
Alternatively the desired oscillation can be generated separately and imposed onto the
brain dynamics through modulation of the system parameters. We will make use of this
second alternative now.

By considering equations 15 and 19 it can be seen that the stability condition for the
dynamical model described by equation 17 is approximately given by

|a1 � b1|   1 . (41)

If we choose to keep b1 constant and let a1 depend explicitly on time by

a1ptq � ac

�
1� as sinp2πftq� (42)

and choose the parameters b1, ac and as such that a1�b1 will repeatedly become larger than
unity, we have defined a transiently instable system. If this modulation of the parameter
a1 is confined only to those gray-matter voxels within a limited area of brain, this area
will become a source of oscillations which spread out into neighbouring voxels. In this
simulation we do not add dynamical noise, i.e. we are employing a linear, deterministic,
explicitly time-dependent model. Alternatively the periodicity could also be generated by
introducing additional state variables.

We define two areas in brain as centres for the generation of alpha-style oscillations,
one in frontal brain and one in occipital brain. Each area is spherical and contains about
100 voxels; despite using equal radii the number is slightly different in both areas due
to different content of non-gray-matter voxels. We choose the parameters ac, as, b1 and
f differently for both areas: The occipital oscillation has f � 10.65 Hz, and the frontal
oscillation has f � 8.05 Hz (assuming a sampling rate of 256 Hz). Careful choice of these
parameters is necessary in order to obtain at least approximate global stability of the
simulated dynamics. We choose for the occipital oscillation ac � 0.7, as � 0.75 and
b1 � 0.3, and for the frontal oscillation ac � 0.9, as � 0.5 and b1 � 0.1. In this simulation
the orientation of all vectors is the y-direction (which is the vertical direction according to
the usual biometrical coordinate system for the human head); although the length of the
vectors changes with time, their direction remains constant, and furthermore inversions
of direction never occur. When simulating the system, an initial transient is discarded,
and a multivariate time series of Nt � 512 points length is recorded. It represents the
spatiotemporal dynamics of this simulation, i.e. for each of the Nv � 3433 voxels a 3-
variate time series for the local current vector is recorded.

By multiplication by the lead field matrix according to equation 1 we create artificial
EEG recordings from this simulated dynamics; we assume a standard recording according
to the 10-20 system, average reference and a sampling rate of 256 Hz, i.e. with a length
of the simulated time series of Nt � 512 two seconds of EEG can be represented. A
small amount of Gaussian white observation noise is added to the pure EEG data (signal-
to-noise ratio 100:1 in terms of standard deviations). The resulting EEG time series
are shown in figure 1. As can be seen, they clearly display the two oscillations with
their different frequencies, but in a quite blurred fashion. Note that due to the uniform
vertical orientation of all current vectors in both hemispheres also the EEG displays
complete symmetry with respect to the left (corresponding electrodes have labels with
odd numbers) and the right hemisphere (even numbers). Out of the three electrodes on
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the border between hemispheres, FZ, CZ and PZ, the latter has been omitted due to
usage of average reference (see section 2).

The design of this simulation still contains many unrealistic elements and simplifica-
tions even beyond the intrinsic limitations of our dynamical model class, e.g. by omitting
dynamical noise and assuming a uniform direction of all local vectors; also the assump-
tion of Gaussian white observation noise may be questionable. In future work we intend
to design more realistic simulations of brain dynamics and to present detailed results on
the performance of different estimators of inverse solutions with respect to various design
parameters.

5.3 Calculation of inverse solutions

For the EEG data shown in figure 1 we compute three inverse solutions: A “timeframe-by-
timeframe” instantaneous inverse solution (using regularised LORETA), which shall be
abbreviated as “iIS”; a dynamical inverse solution by using the spatiotemporal Kalman
filter, as described in sections 4.3 and 4.7, employing the simplest possible dynamical
model, as given by equation 17, which shall be abbreviated as “dISs”; and a dynami-
cal inverse solution using the spatiotemporal Kalman filter, but employing the correct
dynamical model, i.e. a “perfect” model, which shall be abbreviated as “dISp”.

For the application of the Kalman filter in the case of the simplest model, four param-
eters (a1, b1, σ

2
ε , σ

2
η) have to be chosen according to the principle of maximum likelihood,

i.e. by minimising equation 39. This optimisation poses no particular problems, apart
from the usual problems related to nonlinear optimisation, such as local minima and high
computational time consumption; it even turns out that the likelihood as a function of
these parameters behaves quite smoothly. During the first part of the parameter opti-
misation it is advisable to allow for a transient of the Kalman filter itself to die out,
before the likelihood is evaluated; only after optimising the estimate of the initial state
the possibility of transients can be neglected. In our numerical simulation study max-
imum likelihood estimation of the unknown parameters (a1, b1, σ

2
ε , σ

2
η) yields the values

p0.7875, 0.2182, 4.8255, 1.4879� 10�6q. These values are to be compared with the correct
values for ac, as and b1 given in the previous subsection. Since in this simulation the model
was deterministic, the dynamical noise covariance σ2

η should be expected to be zero; but
in this case the Kalman filter was given a wrong model for the dynamics, consequently
deviations of the actual observations from the predictions are interpreted as the result
partly of observation noise and partly of stochastic elements in the dynamics.

In this simulation the dynamical model is ignoring two important aspects of the true
dynamics, namely the fact that the autoregressive parameter a1 is behaving differently for
different groups of voxels, and that it shows explicit dependence on time for two groups
of voxels. The dynamical model given by equation 17 is very primitive, and therefore
it provides almost no additional information which could be used for the purpose of
estimating an improved inverse solution.

As a contrast to this, we are also providing the same spatiotemporal Kalman filter
with perfect knowledge about the true dynamics, i.e. not only does the filter know the
correct values of the parameters as used in generating the simulated data, but also the
information about the explicit time-dependence of a1ptq for the two oscillating areas and
the correct assignment of the voxels to these areas are given to the filter. Nevertheless,
also in this case a maximum likelihood optimisation step is employed in order to obtain
estimates for pσ2

ε , σ
2
ηq. The results are p0.156 , 10�7q; now the estimate for the observation

noise covariance is considerably smaller, compared to the case of the simplest model, while
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the dynamical noise covariance almost vanishes.

5.4 Comparison of inverse solutions

The three different inverse solutions which we have obtained are given as functions of
space and time, ĵpv, tq. We can compare them with the true solution (i.e. the simulated
dynamics) jpv, tq by forming a RMS error according to

E �
d

1

NvNt v̧ ţ

�̂
jpv, tq � jpv, tq�2

. (43)

This comparison yields (for observation noise with SNR=100:1) E � 1.4391 for iIS ,
E � 1.3932 for dISs and E � 0.4813 for dISp. These results indicate that, compared
to iIS , dISs achieves only a small improvement, if any, but using dISp, i.e. knowing the
perfect model, a much better estimation of the currents becomes possible.

We remark that these figures deteriorate only slowly, if the amount of observation
noise is increased: for SNR=100:5 we find E � 1.4487 (iIS ), E � 1.4030 (dISs) and
E � 0.5459 (dISp); for SNR=100:10 we find E � 1.4782 (iIS ), E � 1.4332 (dISs) and
E � 0.7151 (dISp). A more detailed study of the influence of observation noise on inverse
solutions will be the subject of future work.

Obviously, this type of evaluation is possible only in the case of numerical simulations.
A direct comparison of the three inverse solution without knowledge of the true solution
can be performed by comparing the corresponding values of AIC, as given by equation 40,
or ABIC, as given by equations 10 and 11. For iIS we obtain ABIC=110042.1, for dISs
AIC=75549.0 and for dISp AIC=61936.7 . The absolute values depend on the length of
the data set (Nt � 512 in this case), therefore they are less relevant; but by comparison
we see again that both dynamical inverse solutions, as provided by Kalman filtering,
represent better explanations of the observations than the instantaneous inverse solution,
and that dISp is superior to dISs, as should be expected.

In figures 2 and 3 we present some graphical illustrations of the inverse solutions
obtained in this simulation. Figure 2 shows the spatial distribution of true currents
and inverse solutions at a fixed moment in time by displaying the maximum-intensity
projection of the absolute values of the local current vectors by a gray-scale coding.
Directions of vectors are not shown, since they were not allowed to vary in the simulation;
but a closer analysis confirms that for all three inverse solutions the directions of most
current vectors are correct and constant with respect to time.

For each case coronal, axial and sagittal projections of the spatial distribution of
currents are shown. In subfigures A1, A2 and A3 the true currents from the simulated
dynamics are shown. The two centres of simulated alpha activity can be seen clearly; most
other areas of the brain remain inactive. The frontal centre shows a certain tendency to
produce two neighbouring maxima of activity.

Subfigures B1, B2, B3 show the estimated currents according to iIS . It can be seen that
the locations of the two main centres of activity are correctly reconstructed, but these two
centres are much less focussed than in subfigures A1, A2, A3, rather does the active area
spread out over most parts of the brain; in particular we see spurious structure extending
into the temporal lobes. This lack of spatial resolution is a characteristic artifact of the
underdetermined situation given in this inverse problem; we remark that there exists a
suggestion for generating more focal inverse solutions from an instantaneous method by
iterative reweighting [41].
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Subfigures C1, C2, C3 show the estimated currents according to dISs. These results
resemble to some extent those obtained by iIS (subfigures B1, B2, B3). This similarity,
which is also found in the temporal domain (as shown in figure 3), is remarkable, since
these two inverse solutions were obtained by completely different approaches, penalised
Least Square (which is the essence of the LORETA approach) in the case of iIS and
spatiotemporal Kalman filtering in the case of dISs. But only the estimate of the initial
state for the Kalman filter was generated from iIS . The same phenomenon is also found
for inverse solutions obtained from real EEG data sets.

Subfigures D1, D2, D3 show the estimated currents according to dISp. These results
are much more similar to the true currents (subfigures A1, A2, A3) than to dISs or iIS :
the two centres of activity are well focussed, and even a detail such as the presence of two
maxima in the frontal centre is reproduced. By this result it is illustrated again that this
technique has achieved a very good estimation of the sources. This success was obtained
on the basis of knowing only the (simulated) EEG recording from nc � 18 electrodes (as
shown in figure 1) and the correct dynamical model, including the information about the
time-dependency of the autoregressive parameter a1 for certain groups of voxels. Results
like this make us presume that in this particular state space filtering problem the condition
of observabiblity is fulfilled.

Figure 3 shows the time series of the vertical components of true currents and inverse
solutions for two selected voxels, namely a voxel in the right medial frontal gyrus, situated
in the middle of the frontal centre of alpha activity (left column of subfigures), and a voxel
in the left superior frontal gyrus (right column of subfigures); only half of the data points is
shown, i.e. the first 256 data points. In this figure we also show error estimates according
to equations 13 and 33 (plus/minus two standard deviations). Again, the letters A, B, C
and D refer to true currents, iIS , dISs and dISp, respectively.

We have chosen to display the vertical component, since in this simulation the true
current vectors were confined to the vertical direction. It should be noted that for the
time domain the absolute value of local current vectors is not an appropriate quantity for
representation of inverse solutions, since it does not contain information about changes
of direction of the vectors; this has the effect that oscillations seem to have a doubled
frequency, as compared to the vector components.

In subfigure A1 we see the strong simulated alpha oscillation of this voxel. It is
reproduced by iIS and dISs (subfigures B1 and C1), but its amplitude is significantly
underestimated; error intervals are larger for iIS than for dISs. In contrast to this, dISp
(subfigure D1) reproduces the correct amplitude of this oscillation very well. During the
first 0.5 seconds the transient of the Kalman filter can be clearly seen; in the remaining
part of the data the oscillation of the estimated currents does not change its amplitude
any more, but stays very close to the true solution.

In subfigure A2 we see the true current of a voxel which does not take part in any
pronounced oscillation. The slight decrease of the current with time still is a transient
behaviour resulting from the deterministic stable autoregressive dynamics, as employed
in this simulation. Subfigures B2 and C2 show, that iIS and dISs incorrectly assign a
spurious oscillation to this voxel, whereas dISp succeeds in approximately retrieving the
correct dynamics: There is no trace of spurious oscillations, and the correct solution is
within the error interval. This result again illustrates the much sharper localisation which
can be achieved by dISp.
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6 Application to clinical EEG

6.1 Calculation of inverse solutions

We will now estimate inverse solutions for a time series chosen from a clinical EEG
recording. The data was recorded from a healthy child of 8.5 years, in awake resting
state with eyes closed. Electrodes according to the standard 10-20-system were used, the
sampling rate was 256 Hz, and the resolution of the AD conversion was 12bit. A time series
of 2 seconds length chosen from the recording is shown in figure 4; this representation uses
average reference. As can be seen from the figure, this data set displays characteristic
alpha oscillations in the parietal and occipital electrodes. This particular data set was
chosen merely as an example of typical clinical EEG data; in later studies it will be
possible to investigate a wide range of neurological and psychiatrical diseases by this new
technique for obtaining inverse solutions.

Again we compute a “timeframe-by-timeframe” instantaneous inverse solution for this
data set by using LORETA and two dynamical inverse solutions by using spatiotemporal
Kalman filtering. Since in this case no additional information concerning the true dy-
namics is available, we will use linear autoregressive models with constant coefficients,
as discussed in sections 4.1 and 4.7. A first-order (p � 1, q � 1) model will be used,
according to equation 17; the resulting inverse solutions shall be abbreviated as “dISs1”.
Furthermore a second-order model will be used, but only voxel self-interaction will be
second order, while neighbour interaction will remain first order (p � 2, q � 1); this
model results from adding an additional term a2I3jpv, t� 2q in equation 17. The resulting
inverse solutions shall be abbreviated as “dISs2”.

In the case p � 1, q � 1 maximum likelihood estimation of the unknown parameters
(a1, b1, σ2

ε , σ2
η) yields the values p0.7875, 0.2182, 4.8255, 1.4879 � 10�6q, and for p � 2,

q � 1 we find (a1, a2, b1, σ2
ε , σ2

η) = p0.9923, �0.7101, 0.7993, 3.3412, 1.0507). These
solutions may not yet represent global maxima, but we believe that they correspond to
inverse solutions whose properties are qualitatively similar to those of the global solution.

6.2 Comparison of inverse solutions

Unlike with the simulation study of section 5, we are in this case unable to compare
the inverse solutions directly with the true solution; consequently they have to be evalu-
ated and compared by statistical criteria. For the instantaneous solution (iIS ) we obtain
ABIC=112328.4, while for the dynamical inverse solution with p � 1, q � 1 (dISs1 ) we
obtain AIC=88990.1 and for p � 2, q � 1 (dISs2 ) AIC=87131.3. These values confirm
again that the dynamical inverse solutions represent better explanations of the obser-
vations than the instantaneous inverse solution. We also see that increasing the model
order helps to further decrease the AIC, but at the expense of a more time-consuming
parameter estimation, due to the increased dimensionality of the parameter space.

The results of this state estimation problem can be further illustrated by showing
in figure 5 the residuals of the data prediction, i.e. the whitened time series (compare
section 4.1). The figure demonstrates the success of explaining most of the structure
in the observations through the dynamical model; however, it can also be seen that
some structure is remaining, especially some components obviously belonging to the alpha
oscillation. Improved dynamical models will be required in order to capture also these
components.

In figures 6 and 7 we again present graphical illustrations of spatial and temporal
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properties of the inverse solutions. Figure 6 shows the spatial distribution of inverse
solutions obtained by iIS (subfigures B1, B2 and B3), dISs1 (subfigures C1, C2 and C3)
and dISs2 (subfigures D1, D2 and D3) at a fixed moment in time, again by displaying the
coronal, axial and sagittal maximum-intensity projections of the absolute values of the
local current vectors.

From the figure it can be seen that all three inverse solutions locate a centre of activity
in the occipital region, as should be expected for EEG data displaying pronounced alpha
activity in parietal and occipital electrodes; in the dynamical inverse solutions this centre
has larger amplitude and appears to be better localised, compared with neighbouring brain
areas. Together with the superior values of AIC this result seems to provide evidence for
improved resolution and localisation abilities of the dynamical inverse solutions.

Figure 7 shows the time series of the sagittal component of the inverse solutions for two
selected voxels, namely a voxel in the right cuneus (i.e. in the occipital area; left column
of subfigures) and, as before, a voxel in the right medial frontal gyrus (right column of
subfigures). Error estimates are also shown. The letters B, C and D refer to iIS , dISs1
and dISs2, respectively. Among the three projections of the current vectors, for this data
set the projection onto the sagittal direction showed the largest amplitudes correlated to
alpha activity, therefore we have chosen to present it.

In subfigures B1, C1, D1 we see for the occipital voxel a pronounced oscillation rep-
resenting the alpha activity in the first half of this data set. All three inverse solutions
reconstruct this oscillation at this voxel, but again we notice that dISs1 and dISs2 find
much higher amplitude than iIS . More importantly, the error intervals of dISs1 and dISs2
are much smaller than those of iIS ; in fact, it turns out that the error estimates for the
instantaneous inverse solutions are so large that any deviation of the vector component
from zero has to be regarded as non-significant. Similar remarks apply to subfigures
B2, C2, D2, where dISs1 and dISs2 indicate the presence of a weak low-frequency wave,
whereas iIS fails to find any structure.

It is not the aim of this paper to discuss these results from a physiological point of view,
but primarily to present these new tools for obtaining improved inverse solutions and to
compare them with a well-known representative of the currently available algorithms, the
LORETA method. In future work it has to be investigated in detail, in which respect
dynamical inverse solutions are capable of providing additional relevant information for
the analysis of brain dynamics and for the diagnosis of diseases affecting the brain. In
this paper our claim of superiority of dynamical inverse solutions over LORETA inverse
solutions is based on the relative comparison of values of the ABIC and AIC criteria,
regarded as a measure of distance between the estimated model and the unknown true
model.

7 Conclusion

In this paper we have addressed the dynamical inverse problem of EEG generation, being
a generalisation of the more traditional instantaneous problem of EEG generation, and we
have presented a new approach for estimating solutions of this problem from actual EEG
data. This approach is applicable also to MEG data and to a wide class of other inverse
problems arising in the analysis of biomedical or other data. We have demonstrated how
the standard Kalman filter can be adapted to the case of spatiotemporal dynamics; an
essential precondition for this adaptation was the concept of spatial whitening which ren-
ders it possible to decompose an intractable high-dimensional filtering problem into a set
of coupled low-dimensional problems which can be solved with moderate computational
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effort. The application of Kalman filtering has the additional benefit of providing esti-
mates of the likelihood and consequently of the Akaike Information Criterion (AIC), which
serves as a well-justified tool for estimating parameters and comparing dynamical models
through the maximum likelihood method. Furthermore, the Kalman filter provides error
estimates for the inverse solutions almost without the need for additional computations.

We have demonstrated through numerical simulations that the quality of the inverse
solutions obtained by this new dynamical approach crucially depends on the availability
of appropriate models for the spatiotemporal brain dynamics. If only a very simple model
is employed, the resulting inverse solution may not offer much improvement over the
results provided by instantaneous techniques (e.g. LORETA). But even this is remarkable,
since, as compared to the LORETA algorithm, our algorithm applies completely different
numerical procedures to the data. We have explicitly shown, why non-coupled random-
walk models, which are increasingly employed as “dynamical priors” in constrained least
squares approaches to inverse problems, are inherently insufficient as dynamical models
within a high-dimensional state space approach. Instead, we have suggested to incorporate
the identification of improved predictive models as a central element into the dynamical
inverse problem. The more elaborate a model is applied, the more the resulting inverse
solutions will differ from the LORETA solution, and the better (in a statistical sense)
it will be able to explain the observed EEG data, as measured by the improvement of
the AIC value. In a numerical simulation we were able to employ a perfect model of
the underlying dynamics, and we have shown that the resulting inverse solution was very
similar to the true distribution of currents.

Perfect models are not available in the analysis of real EEG data, but it can be
expected that by using the maximum likelihood method (or, more precisely, the method
of minimising the AIC) it will be possible to gradually adapt initially simple models to
given data, such that considerably improved models and consequently improved inverse
solutions can be obtained. These models themselves will be highly useful for purposes of
investigating brain dynamics and improving clinical diagnosis.

In this study we have chosen to employ the class of multivariate linear autoregressive
models with constant parameters. The choice of this particular class anticipates station-
arity of the underlying dynamical processes. This assumption is almost never fulfilled
for the case of EEG time series, but may be permitted for short time intervals of one or
two seconds, as used in this study. Future work will have to address this problem more
thoroughly by developing dynamical model classes which are sufficiently flexible to cope
with nonstationary data.

As a further advantage of the dynamical approach to estimating inverse solutions we
would like to mention the possibility to calculate spatial innovation maps by forming
the differences between predicted states (given by expressions such as equation 25) and
estimated states (given by equation 31) for each voxel and each vector projection. These
innovations describe those components of the spatiotemporal dynamics which could not be
predicted by the given dynamical model, therefore they contain information either about
weaknesses of the employed dynamical model, or about external forces and processes
driving the dynamics. Such information cannot be obtained by instantaneous techniques.
These maps may be particularly useful for localising points or areas within brain which
display atypical behaviour, such as epileptic foci; they may also serve as a source of
information for the analysis of the long-range connectivity structure of brain.

It has to be admitted that, despite the decomposition approach for rendering high-
dimensional spatiotemporal filtering problems tractable, this technique still is much more
demanding in terms of computational time consumption than most instantaneous tech-
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niques. Especially the step of parameter estimation through likelihood maximisation
may, depending on the model and the quality of the initial estimates for the parameters,
consume considerable amounts of CPU time, since it constitutes a nonlinear optimisa-
tion task. Future work will have to design efficient ways to perform this optimisation.
Furthermore, as also with many other nonlinear optimisation problems, it may not be
necessary to always find the global minimum of the objective function (i.e. in our case the
AIC as a function of parameters). Seemingly very different sets of parameters may belong
to dynamical models with very similar behaviour. This can be seen from the parameter
sets given in section 6.1.

Altogether we expect that by reinterpreting the dynamical inverse problem of EEG
generation as a spatiotemporal filtering problem it will become possible to extract con-
siderably more relevant and useful information from EEG recordings than it has been
possible previously. Also for the combination of EEG data with data obtained by other
techniques for recording temporally and spatially resolved information related to brain
dynamics, such as MEG, fMRI and NIRS, this work holds the promise of opening up new
perspectives.
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Appendix: Estimation of the covariance matrix of the
estimated state vector Ĵ (obtained from LORETA)

The covariance matrices of the (assumed) “true” state vector J and of the corresponding
EEG observation vector Y shall be denoted by CJ and CY, respectively. From equation
1 we have

CY � KCJK
: � Cε . (A1)

In this paper we are employing the assumptions (see equations 24 and 3)

CJ � τ 2pL:Lq�1 (A2)

and

Cε � σ2
ε Inc . (A3)

The estimated state vector is given by equation 6:

Ĵ � pK:K� λ2L:Lq�1K:Y �: T pλqY .

Then the covariance matrix of the estimated state vector Ĵ is given as

C
piISq
Ĵ

� T pλqCY T :pλq . (A4)
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The product KCJK
: in equation A1 yields, using equations A2 and 8

τ 2KpL:Lq�1K � τ 2pKL�1qpKL�1q: � τ 2US2U: .

Using τ � σ{λ and equation A3, equation A1 becomes

CY � τ 2pUS2U: � λ2Incq . (A5)

By inserting equation 9 for T pλq and equation A5 for CY we finally can evaluate equation
A4; by rearraging terms we obtain (using orthogonality of U)

C
piISq
Ĵ

� τ 2L�1Vp1qdiag

�
s2

i

s2
i � λ2



Vp1q :pL:q�1 ,

which is the desired result.
The diagonal elements of C

piISq
Ĵ

provide variances for each element of the state vector
J; since in our implementation the estimates for τ and λ result from an optimisation step
applied to the complete time series, these variances themselves will not depend on time,
unlike the state estimates Ĵ � Ĵptq; if, however, variances of the modulus jpv, tq of local
vectors jpv, tq are computed, these will become time-dependent through Gaussian error
propagation:

σ2
j pv, tq � 1

j2pv, tq
��

jxpv, tqσjxpvq
�2 � �

jypv, tqσjypvq
�2 � �

jzpv, tqσjzpvq
�2
	

. (A6)

Alternatively, explicitly time-dependent local variances could be obtained by repeating
the optimisation on a moving window, but in this paper we have not used this option.
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and J. Pesch. Inverse localization of electric dipole current sources in finite element
models of the human head. Electroenc. Clin. Neurophysiol., 102:267–278, 1997.

[23] J. J. Riera, M. E. Fuentes, P. A. Valdés, and Y. Ohárriz. EEG-distributed inverse
solutions for a spherical head model. Inverse Problems, 14:1009–1019, 1998.

[24] R. D. Pascual-Marqui. Review of methods for solving the EEG inverse problem. Int.
J. Bioelectromagn., 1:75–86, 1999.

[25] B. Hofmann. Regularization for Applied Inverse and Ill-Posed Problems. Teubner,
Leipzig, 1986.

[26] A. Tarantola. Inverse problem theory: methods for data fitting and model parameter
estimation. Elsevier, Amsterdam, New York, 1987.

[27] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

[28] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs, 1974.

[29] H. Akaike. Seasonal adjustment by a Bayesian modeling. J. Time Series Anal.,
1:1–13, 1980.

[30] H. Akaike. Likelihood and the Bayes procedure. In J. M. Bernardo, M. H. De Groot,
D. U. Lindley, and A. F. M. Smith, editors, Bayesian Statistics, pages 141–166.
University Press, Valencia (Spain), 1980.

[31] H. Akaike. Prediction and entropy. In A. C. Atkinson and S. E. Fienberg, editors, A
celebration of statistics, pages 1–24. Springer, Berlin, Heidelberg, New York, 1985.

[32] R. D. Pascual-Marqui. Standardized low resolution brain electromagnetic tomogra-
phy (sLORETA): technical details. Methods & Findings in Exp. & Clin. Pharmacol.,
24D:5–12, 2002.

[33] B. Hjorth. Source derivation simplifies topographical EEG interpretation. Americ.
J. EEG Techn., 20:121–132, 1980.

[34] P. A. Robinson, C. J. Rennie, and J.J. Wright. Propagation and stability of waves
of electrical activity in the cerebral cortex. Phys. Rev. E, 56:826–840, 1997.

[35] V. K. Jirsa, K. J. Jantzen, A. Fuchs, and J. A. S. Kelso. Spatiotemporal forward
solution of the MEG using network modeling. IEEE Trans. Med. Imag., 21:493–504,
2002.

[36] T. Ozaki, J. C. Jimenez, and V. Haggan-Ozaki. The role of the likelihood function
in the estimation of chaos models. J. Time Series Analysis, 21:363–387, 2000.

[37] H. Akaike. A new look at the statistical model identification. IEEE Trans. Autom.
Contr., 19:716–723, 1974.

29



[38] Xing-Qi Jiang. Bayesian methods for modeling, identification and estimation of
stochastic systems. Ph.D. thesis, Department of Statistical Science, Graduate Uni-
versity for Advanced Studies, Tokyo, 1992.

[39] J. C. Mazziotta, A. Toga, A. C. Evans, P. Fox, and J. Lancaster. A probabilistic
atlas of the human brain: theory and rationale for its development. NeuroImage,
2:89–101, 1995.

[40] J. Bosch-Bayard, P. A. Valdés-Sosa, T. Virues-Alba, E. Aubert-Vázquez, E. Roy
John, T. Harmony, J. Riera-Dı́az, and N. Trujillo-Barreto. 3D statistical parametric
mapping of EEG source spectra by means of variable resolution electromagnetic
tomography (VARETA). Clin. Electroenc., 32:47–61, 2001.

[41] I. F. Gorodnitsky, J. S. Georg, and B. D. Rao. Neuromagnetic source imaging with
FOCUSS: A recursive weighted minimum norm algorithm. Electroenc. Clin. Neuro-
physiol., 95:231–251, 1995.

30



Figure captions

Fig. 1: Simulated EEG recording for 18 standard electrodes according to the 10-20 system
(PZ has been omitted); electrode abbreviations are given on the vertical axis. The EEG
potential is measured in arbitrary units versus average reference of 19 electrodes (including
PZ), time is measured in seconds, assuming a sampling rate of the simulated dynamics of
256 Hz.

Fig. 2: Gray-scale coded representation of maximum-intensity projection of the three-
dimensional field of absolute values of local current vectors for the gray-matter voxels
of a model brain at a fixed point in time, using coronal projection (left column), axial
projection (middle column) and sagittal projection (right column). Subfigures A1, A2,
A3 show the original current vectors used in the simulation; subfigures B1, B2, B3 show
the estimated current vectors according to the instantaneous inverse solution (LORETA),
subfigures C1, C2, C3 show the estimated current vectors according to the dynamical
inverse solution using the simplest dynamical model, and subfigures D1, D2, D3 show the
estimated current vectors according to the dynamical inverse solution using the perfect
dynamical model.

Fig. 3: Vertical (axial) component of local current vectors for a voxel in right medial frontal
gyrus (left column of subfigures) and for a voxel in left superior frontal gyrus (right column
of subfigures) versus time, based on inverse solutions obtained from the simulated EEG
recording shown in figure 1. Subfigures A1, A2 show values from the original current
vectors used in the simulation, subfigures B1, B2 show results from estimated current
vectors according to the instantaneous inverse solution (LORETA), subfigures C1, C2
show results from estimated current vectors according to the dynamical inverse solution
using the simplest dynamical model, and subfigures D1, D2 show results from estimated
current vectors according to the dynamical inverse solution using the perfect dynamical
model. Thick lines represent the estimates, while thin lines represent error intervals (95%
confidence profiles). Note the different scale on the vertical axis for subfigures of left and
right columns.

Fig. 4: Clinical EEG recording from a healthy child (8.5 years, awake, eyes closed) for
18 standard electrodes according to the 10-20 system (PZ has been omitted); electrode
abbreviations are given on the vertical axis. The EEG potential is measured in arbitrary
units versus average reference of 19 electrodes (including PZ), time is measured in seconds,
the sampling rate is 256 Hz.

Fig. 5: Observation prediction errors for the EEG recording shown in figure 4, generated
by a dynamical inverse solution based on a second-order autoregressive model. The scale
on the vertical axis has been enlarged by a factor of 2.7, as compared to figure 4.

Fig. 6: Gray-scale coded representation of maximum-intensity projection of the three-
dimensional field of absolute values of local current vectors for the gray-matter voxels
of a model brain at a fixed point in time, using coronal projection (left column), axial
projection (middle column) and sagittal projection (right column), based on inverse so-
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lutions obtained from the EEG recording shown in figure 4. Subfigures B1, B2, B3 show
the estimated current vectors according to the instantaneous inverse solution (LORETA),
subfigures C1, C2, C3 show the estimated current vectors according to the dynamical
inverse solution using a first-order autoregressive model, and subfigures D1, D2, D3 show
the estimated current vectors according to the dynamical inverse solution using a second-
order autoregressive model.

Fig. 7: Vertical (axial) component of local current vectors for a voxel in right cuneus
(left column of subfigures) and for a voxel in right medial frontal gyrus (right column
of subfigures) versus time, based on inverse solutions obtained from the EEG recording
shown in figure 4. Subfigures B1, B2 show results from estimated current vectors according
to the instantaneous inverse solution (LORETA), subfigures C1, C2 show results from
estimated current vectors according to the dynamical inverse solution using a first-order
autoregressive model, and subfigures D1, D2 show results from the estimated current
vectors according to the dynamical inverse solution using a second-order autoregressive
model. Thick lines represent the estimates, while thin lines represent error intervals (95%
confidence profiles).
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