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Abstract 

In this paper we consider the dynamical inverse problem of EEG generation 

where a specific dynamics for the electrical current distribution is assumed. By 

casting this problem into a state space representation and assuming a specific class 

of parametric models for the dynamics, we can impose general spatio-temporal 

constraints onto the solution. For the purpose of estimating the parameters and 

evaluating the model, we employ the Akaike Bayesian Information Criterion 

(ABIC), which is based on the type II likelihood. As a new approach for 

estimating the current distribution we introduce a method which we call "Dynamic 

LORETA". A recursive penalized least squares (RPLS) step forms the main 

element of our implementation. Whereas LORETA exploits exclusively spatial 

information, Dynamic LORETA exploits both spatial and temporal information, 

such that it becomes possible to obtain improved inverse solutions. The 

performance of the new method is evaluated by application to simulated EEG data, 



and a considerable improvement over LORETA is found. We also show results for 

the application to clinical EEG data. 
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1.  Introduction 

 

Measurements of electromagnetic fields on the scalp surface provide valuable information about the 

underlying brain dynamics.  By measuring the electrical potential on several locations of the scalp 

surface, electroencephalograms (EEG) are obtained.  It is commonly believed that these potentials are 

generated by electrical currents in the extracellular media, resulting from the electrical and chemical 

neuronal activity of the brain. 

Currently there is considerable interest in localizing non-invasively such electrical generators of the 

EEG in the brain. Any inference on these generators, based on EEG measurements, poses an inverse 

problem.  The main difficulty of any attempt to solve this inverse problem arises from the fact that the 

EEG observations do not contain a sufficient amount of information to precisely reproduce these 

generators.  For this reason, the solution of this inverse problem (i.e. the inverse solution) will be 

non-unique, since for a given set of EEG measurements there will inevitably be an infinite number of 

possible inverse solutions which are consistent with the measurements. In order to identify a unique 

solution, we have to employ additional information in the guise of physiological or physical knowledge 

about the generators.   



In the EEG inverse problem it is a common approach to assume a distributed source model.  In this 

approach, a discretization of brain volume into a set of voxels is employed, each of which is considered to 

be the location of a current vector. In order to obtain a unique solution, various constraints have been 

suggested in previous studies:  as prominent examples we mention optimal resolution (Backus and 

Gilbert 1968; Grave de Peralta Menendez et al. 1997; Grave de Peralta Menendez and Gonzalez Andio 

1999), L2 minimum norm (Hämäläinen and Ilmoniemi 1984), L1 minimum norm (called ’selective 

minimum norm’) (Matsuura and Okabe 1995) and maximum spatial smoothness (called ’low resolution 

brain electromagnetic tomography’, LORETA) (Pascual-Marqui et al. 1994).  

In several papers (Pascual-Marqui and Michel 1994; Pascual-Marqui 1999; Grave de Peralta 

Menendez and Gonzalez Andio 2002) , relative advantages and disadvantages of these approaches have 

been discussed from a purely spatial point of view; however, these approaches exploit exclusively the 

information contained in one instantaneous measurement, i.e. the set of voltage measurements obtained 

from various electrodes at one single instant of time, whereas measurements of the EEG clearly have 

temporal structure.   

Recently, temporal constraints have been taken into consideration for various applications related to 

inverse problems. For example, in the analysis of electrocardiograms (ECG) an algorithm for solving 

large-scale least squares problems based on multiple constraints, including explicit spatial and temporal 

constraints, has been proposed (Brooks et al. 1999). For the reconstruction of current distributions in the 

EEG inverse problem, or, more generally, the EEG/MEG inverse problem, other algorithms for solving 

the same large-scale least squares problem as mentioned above have been developed (Schmidt et al. 

2001; Schmidt and Louis 2002a,b). Inverse problems arising in the analysis of data obtained by Electrical 

Impedance Tomography (EIT) and Single Photon Emission Tomography (SPET) have been formulated 

as state estimation problems (Karjalainen et al. 1997; Kaipio et al. 1999; Vauhkonen et al. 2001) , and the 

use of Kalman filtering and Kalman smoothing has been suggested for the purpose of obtaining estimates 



of the state. Phillips et al. (2002) have suggested to introduce a temporal constraint into the EEG/MEG 

inverse problem by employing a time window and Gaussian kernels. 

The temporal constraints, as used in these studies so far, refer only to the aspect of temporal 

smoothness. In this paper we would like to consider a more general variant of temporal constraints by 

regarding time-dependent EEG measurements as reflecting generators which evolve according to some 

dynamics. This problem is called the "dynamical inverse problem". We will formulate the dynamical 

inverse problem of EEG generation as a state estimation problem; then it will be possible to explicitly 

express the spatio-temporal constraints as parts of the system equation within the state space 

representation.  We shall put particular emphasis on exploring the dynamics according to the established 

procedures of statistical modelling, i.e. by assuming a class of parametric models for the dynamics and 

comparing these model using some criterion (likelihood principle). 

In principle, both state estimation and model comparison could be implemented by employing 

Kalman filtering; however, due to the high dimensionality of state (corresponding to the high number of 

voxels), in the case of the EEG inverse problem the direct application of conventional Kalman filtering is 

impracticable. Instead we will introduce a simple and computationally efficient estimation procedure, 

which is based on the "recursive penalized least squares" (RPLS) method.  Furthermore, we will 

propose to employ the "Akaike Bayesian Information Criterion" (ABIC) (Akaike 1980a,b) as a statistical 

criterion not only for estimating the regularization parameter, but also for comparing models.  As a 

result, a new algorithm for estimating inverse solutions from EEG time series will be obtained, which we 

will refer to as ’Dynamic LORETA’ (DynLORETA), since it will combine the spatial smoothness 

constraint of the LORETA method with additional dynamical constraints.   

The structure of this paper is as follows.  In section 2 we will briefly review the forward problem of 

EEG generation and introduce the dynamical inverse problem, as compared to the instantaneous inverse 

problem.  In section 3, first we will review LORETA and introduce DynLORETA. Then the RPLS 

method will be introduced as a simple approach to the estimation of generators. In section 4 

DynLORETA will be compared with (instantaneous) LORETA by a simulation study; we will also show 



the result of applying our method to clinical EEG data. Finally section 5 will contain some concluding 

discussion.   

Throughout this paper, we employ the following notation.  The transpose of a matrix A  is denoted 

by A′ , and a n n×  identity matrix is denoted by nI . For a vector x and a positive definite matrix C, we 

define xCxx C
1|||| −′= . The L2 norm of a vector x is denoted by ||x||, corresponding to the case of C 

being an identity matrix.   

 

2.  Problem 

 

 

2.1  Forward problem 

 

The relation between the EEG measurements on the scalp surface and the primary current density 

resulting from neuronal activity is described by the equation  

 KY J ε= + .   (1) 

In Eq.(1) Y denotes a vector of length d which contains the EEG measurements of scalp electric potential 

differences at d electrodes.  ),( 1 ′′′=
jNjjJ L  denotes a vector of length D=3Nj which contains the 

current density vectors ),,1(),,,( jzvyvxvv Nvjjjj L==  at Nj voxels in the brain.  The matrix K, 

linking the current density J with the measurement Y, is called the lead field matrix. It can be calculated 

by applying Maxwell’s equations to a particular head model (Nunez 1981). The vector ε  is an additive 

random element representing unmodeled effects, like observation noise.  The forward problem consists 

of calculating the measurement Y from given current density J.  

 

2.2  Inverse problem 



 

The inverse problems is defined as the task to estimate the current density J from given measurement Y. 

Obviously, it constitutes an ill-posed problem, because the number of electrodes on the scalp is much 

smaller than the number of voxels for which the current density has to be estimated.  Therefore we need 

to impose additional constraints as prior knowledge. In particular, we call the inverse problem as 

formulated by Eq.(1) the ’instantaneous inverse problem’, because only the measurement at one single 

time point is used for the estimation of J.  

An explicit discussion of the definition of ’dynamic(al) inverse problems’ first was given by Schmidt 

and Louis (2002a). According to their definition,  

• the properties J of the examined object do not change during the measuring process.  Thus, we 

have to solve  

 

 K for all iJ Y i=  

 

This is called a static inverse problem.   

• the examined object is allowed to change during the measuring process and we have to solve  

 

 K for all i iJ Y i=  

 

This is called a dynamic inverse problem.    

Since they used the term ’dynamic inverse problem’ for broadly describing any time-varying situation, 

but without reference to the particular case of variations in time which are the result of an actual 

dynamical evolution, the term ’nonstationary inverse problem’ seems to be more suitable for their 

definition.   



In this paper, the term ’dynamical inverse problem’ is used for a slightly more restricted situation, as 

defined by:   

• Solutions of a ’dynamical inverse problem’ have to be in agreement with a twofold set of 

restricting information, which is represented by  

• the observation equation for all time points considered 

K ( 1, 2, )t t tY J tε= + = L , and  

• some prespecified dynamics about L,,, 21 −− ttt JJJ .  

• Solutions of an ’instantaneous (static) inverse problem’ have to be in agreement with a twofold set 

of restricting information, which is represented by  

• the observation equation at one fixed time point KY J ε= + , and  

• prior knowledge about J.  

In our definition, an explicit assumption for the evolution of time course of Jt is imposed, which will 

simplify the mathematical formulation of the problem, as will be shown in the next section.   

In the case of the instantaneous inverse problem, the solution only reflects an instantaneous 

observation Yt, whereas in the case of the dynamical inverse problem it reflects a sequence of temporally 

successive observations L1, −tt YY  such that some dynamics of the generators is imposed.  In other 

words, as shown schematically in Fig.1, the dependence of the observation Yt on the evolution of Jt is 

explicitly considered in the dynamical inverse problem.  If the evolution of Jt does not follow any 

dynamics, the dynamical inverse problem becomes equivalent to the instantaneous problem, i.e.  the 

dynamical problem is a generalization of the instantaneous problem.  

 

3.  Method 

 

 



3.1  LORETA 

 

LORETA was first suggested by Pascual-Marqui et al. (1994) in order to overcome the incapability of 

correct localization in 3-dimensional solution spaces which had been observed for the earlier approaches.  

As prior knowledge LORETA imposes a spatial smoothness constraint onto the solution J. This spatial 

smoothness constraint is expressed by using the (3-dimensionally discretized) Laplacian matrix L as 

defined by  
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The ith row vector of L  acts as a discrete differentiating operator by forming differences between the 

nearest neighbors of the ith voxel and ith voxel itself. 

The solution of LORETA is obtained by minimizing a linear mixture of a weighted norm ||LJ|| and the 

residuals of the fit according to the observation equation. By assuming a Gaussian distribution 

),0(~ 2
εσε CN  with known covariance structure εC  for the measurement noise in Eq.(1), the 

objective function of LORETA becomes  

 2 2 2( ) || K || || L ||CE J Y J J
ε

λ= − + ,   (2) 

where the parameter λ , called the regularization parameter, expresses the balance between fitting the 

model and the prior constraint of minimizing || L ||J . The solution of this minimization problem for a 

given λ  is obtained by  

 1 2 1 1ˆ (K K L L) KJ C C Yε ελ− − −′ ′ ′= + .  



 

3.2  Dynamical LORETA 

 

We shall now present the dynamical LORETA (DynLORETA) approach.  For this purpose we will first 

introduce the appropriate representation of dynamical constraints and then turn to the numerical 

procedure which provides the inverse solution.  Furthermore, the estimation of the regularization 

parameter and of the parameters of the dynamics will be discussed.  

 

3.2.1  Dynamical constraint 

 

Pioneering work on obtaining dynamical inverse solutions with spatial and temporal smoothness 

constraints has been presented by Schmidt et al. (2001) for the case of the EEG inverse problem.  They 

formulated the spatial smoothness constraint by using the Laplacian operator and the temporal 

smoothness constraint by using a time-domain differencing operator.  Their temporal smoothness 

constraint can be interpreted as assuming a random walk model 1t t tJ J η−= +  for the dynamics of Jt. 

For the dynamical model of DynLORETA we will employ a more general class of dynamical constraints, 

in addition to the spatial smoothness constraint.   

At first we define an objective function containing the spatial and temporal smoothness constraints in 

a similar way as introduced in Schmidt et al. (2001)  

 2 2 2 2 2
1 2 1( ) || K || || L || || L( ) || .t t t C t t tE J Y J J J J

ε
λ λ −= − + + −    (3) 

By including the Laplacian matrix L into the third term of Eq.(3) interactions between neighboring voxels 

can also be taken into account.  Furthermore this step will reduce considerably the computational 

expenses, as will be shown in the next subsection.   

By introducing a new parameter φ, which represents a balance between the second and third terms of 

Eq.(3), we can combine the two penalty terms and obtain a more compact expression:   



 
2 2 2

1( ) || K || || (1 ) L L( ) ||t t t C t t tE J Y J J J J
ε

λ φ φ −= − + − + −  

2 2 2
1|| K || || L( ) ||t t C t tY J J J

ε
λ φ −= − + −  

1
2 2 2

1 (L L)
|| K || || ||t t C t tY J J J

ε
λ φ −− ′= − + − . (4) 

Note that the objective functions Eq.(3) and (4) are not mathematically equivalent, however we can 

regard Eq.(4) as a different way of imposing these two kinds of constraints. 

Now we shall rewrite this objective function in the form of a statistical model. From Eq.(4) we obtain 

the state space representation given by  

 
2observation  :  K (0, )t t t tY J N Cεε ε σ= + ∼    (5) 

 2 1
1system  :  (0, (L L) )t t t tJ J Nφ η η τ −

− ′= + ∼    (6) 

Eqs.(5) and (6) represent the observation equation and the system equation, corresponding to the first and 

second term of Eq.(4), respectively.  As an important advantage of state space representations, we note 

that we can design more general dynamical model by changing the system equation.   

For example, we can consider a more complex dynamical model which also includes previous states 

beyond the first lag and furthermore allows for interactions between generators on different voxels :   

 
1

p

t i t i t
i

J A J η−
=

= +∑ .   (7) 

where ( 1, , )iA i p= L  are D×D matrices. Whereas Eq.(6) represents the case of very simple dynamics, 

by Eq.(7) various more interesting dynamics can be modeled, displaying features like spatial 

heterogeneity, local neighbor interaction etc.  Examples for designing parametric models for such kinds 

of dynamics will be shown in the section "Results".  

Finally the state space representation with a very general dynamics in the system equation will be 

given by  



 
2

2 1
1

K (0, )
( , , , ) (0, (L L) )

t t t t

t t t t p t t

Y J N C
J f J J S N

εε ε σ
η η τ −

− −

 = +
 ′= +

∼
L ∼    (8) 

where S denotes exogenous variables and can model some external force influencing the brain.  The 

function ( )tf ⋅  may be specified to be linear, as in the case of Eq.(7), or may be taken as non-linear or 

time-dependent. 

Here three key points should be emphasized. The first is that the covariance structure of the system 

noise tη  should be given by 1(L L)−′ . It is expected that spatial smoothness of Jt will be inherited 

from instantaneous LORETA. The second is that, as stated already, the model is written in a state space 

representation. In principle, it is possible to perform optimal inference about Jt by employing the 

Kalman filter or the extended Kalman filter (Jazwinski 1970; Aoki 1987; Kitagawa and Gersh 1996; 

Durbin and Koopman 2001). The third is that it depends on the analyst what kind of the dynamics will be 

assumed. Because there are many possible solutions corresponding to different dynamical models, the 

resulting solutions should be evaluated by some statistical criterion such as ABIC, as mentioned in the 

introduction.   

 

3.2.2  Approximate Estimation 

 

As already mentioned in the previous section, in principle, we could obtain the estimate of 

( 1, , )tJ t T= L  by using Kalman filtering.  In the least squares sense, the filtered estimator 

| ( 1, , )t tJ t T= L  obtained by Kalman filtering is the best possible estimator based on past and current 

observations.  However, in the case of the 3-dimensional discretized inverse problem the dimension D 

of the state Jt is 3 times the number of voxels (typically several thousand), therefore the practical 

application of Kalman filtering to such a very high-dimensional state vector will be very demanding (or 

even impossible) in terms of computational time and memory consumption due to, for example, the need 



to compute and store dense matrices of size D×D. In order to overcome this difficulty it is necessary to 

design suitable approximations of the standard Kalman filtering approach; in Galka et al. (2002) a new 

approach to spatiotemporal Kalman filtering is presented which renders this high-dimensional filtering 

problem tractable.  In this paper we would like to introduce a different estimation procedure which is 

very simple and requires only little modifications with respect to instantaneous LORETA. We choose to 

call it ’recursive penalized least squares solution’ (RPLS solution). 

For simplicity we shall assume that the function ( )tf ⋅  in Eq.(8) is linear and depends only on the 

states of the generators at the previous time step:   

 1 1( , , , )t t t p t tf J J S A J− − −=L    (9) 

where At denotes a known matrix of size D×D. But here we note that the assumption of linearity is not 

essential for the RPLS solution. 

We will now discuss the practical estimation procedure in detail.  An initial estimate (for t=1) of the 

state J1 can be obtained by any approach for solving the instantaneous inverse problem.  For t=2,3,⋅⋅⋅,T, 

we can obtain an estimate of Jt by recursively solving the penalized least squares problem  

 { }1
2 2 2

1 (L L)
ˆ ˆarg min || K || || ||

t
t t t C t t tJ

J Y J J A J
ε

λ −− ′= − + −    (10) 

where 1
ˆ

tJ −  is the estimate obtained in the previous step. The solution of (10) is given by  

 ' 1 2 ' 1 ' 1 2 '
1

ˆ ˆ(K K L L) (K L L )t t t tJ C C Y A Jε ελ λ− − −
−= + +    (11) 

However, direct computation of this expression is numerically impracticable due to the need of inverting 

a large matrix of size D×D; here D is the dimension of the state. Instead, we will now show a convenient 

way to obtain a numerically more easily accessible solution by appropriate variable transformation. In 

addition, this transformation will clearly demonstrate the relationship between the RPLS method and 

Kalman filtering (see Appendix).  



We start from the following variable transformations  

 1
ˆ

t t t tJ A Jς −= −    (12) 

 1
ˆKt t t tr Y A J −= −    (13) 

Here tς  and tr  correspond to system noise and innovation (1-step ahead prediction error), respectively.  

We can rewrite the objective function of Eq.(10) as follows:   

 2 2 2( ) || K || || L ||t t t C tE r
ε

ς ς λ ς= − +    (14) 

Then we can obtain an estimate of Jt by  

 ˆ ( )t tT rς λ=    (15) 

 1
ˆ ˆ ˆt t t tJ A J ς−= +    (16) 

where we have defined  

 ' 2 ' 1 ' 1( ) (K K L L) KT C Cε ελ λ − −= +    (17) 

       

1 1/ 2
2 2L diag i

i

s
V U C

s ελ
− − 

′=  +     (18) 

Here, ,diag( ),iU s V are ,d d d d× ×  and D d× matrices obtained from the singular value 

decomposition (SVD) of 1/ 2 1K LCε
− −  (Mardia et al. 1979). The computation of Eq.(18) is not as 

demanding as the computation of Eq.(11), because in Eq.(18) the large matrix to be inverted does not 

depend on λ, such that this inversion needs only to be carried out once, whereas in Eq.(11) the inversion 

has to be carried out repeatedly during the process of finding an optimal value of λ. A similar remark 

applies to the SVD of 1/ 2 1K LCε
− − , which also needs to be computed only once, since these three 

matrices are known.   

 



3.2.3  Estimating regularization parameter λ 

 

The regularization parameter λ should be chosen in an objective way, because the inverse solution will 

depend sensitively on this parameter.  Various methods, such as the GCV criterion (Wahba 1990) and 

the L-curve method (Hansen 1992; Hansen 1994) have been employed for this purpose. In this work we 

propose to employ ABIC (Akaike 1980a,b) for estimating this parameter, because this criterion can be 

applied not only for selecting the regularization parameter, but also for the purpose of model comparison.   

ABIC is defined as  

 ( )ABIC 2 ( , ) 2IIl Nσ τ= − + , 

where N is the number of the hyperparameters in the model and ( ) ( , )IIl σ τ  is the likelihood of the 

hyperparameters in the context of empirical Bayesian inference, called the type-II log-likelihood.  In the 

case that there are unobservable variables in the model, the type-II likelihood can be obtained by 

averaging the joint distribution of all variables, both observable and unobservable, over the unobservable 

variables:  

 ( )
1 1 1( , ) log ( , , , , , ; , )II

T T Tl p Y Y J J dJ dJσ τ σ τ= ∫ L L L    (19) 

where Yt are the observable and Jt the unobservable variables; ,σ τ  are hyperparameters. 

For the dynamical inverse problem it is very difficult to calculate this multiple integral analytically, 

therefore we will approximate Eq.(19) by the sum of type-II log-likelihoods at each time point, 

( ) ( , )II
tl σ τ . Since in the RPLS method we are basing the inference (if interpreted from the Bayesian 

viewpoint) on ( | ; )t tp r ς σ  and ( ; )tp ς τ  as likelihood and prior distribution, respectively (compare 

Eqs.(12) and (13)), the pointwise type-II log-likelihood based on rt is given by  

 ( ) ( , ) log ( | ; ) ( ; )II
t t t t tl p r p dσ τ ς σ ς τ ς= ∫ .   (20) 



Then ( ) ( , )IIl σ τ  is approximated by the summation of ( ) ( , )II
tl σ τ . This approximation is justified, if the 

innovations ( 1, , )tr t T= L  are serially independent with respect to their distributions ( )tp r . 

If ( | ; )t tp r ς σ  and ( ; )tp ς τ  are assumed to be Gaussian, we can analytically calculate this integral 

and obtain (-2) times the pointwise type-II log-likelihood:   

 

2 2 2
( ) 2

,2 2 2 2
1 1

1
2 ( , ) log log

d d
II i

t i t
i i i

s
l d r

s
λ λ

σ λ σ
λ σ λ= =

+
− = + +

+∑ ∑ %
   (21) 

where ,i tr%  is the ith component of the vector 1/ 2
tU C rε

−′  (see Appendix for detail). Here we have 

replaced the hyperparameter τ  by λ σ τ= /  . A constant term has been ignored in Eq.(21). Then 

ABIC can be expressed by  

 
2 2 2

2
,2 2 2 2

1 1 1

1
ABIC( , ) log log 2

d T d
i

i t
i t i i

s
Td T r N

s
λ λ

σ λ σ
λ σ λ= = =

+
= + + +

+∑ ∑∑ % .   (22) 

Estimates of σ̂  and λ̂  can be obtained by minimizing this expression, and the minimum value of 

ABIC resulting from this minimization can be employed for model comparison.   

In the case of assuming a parametric model for the dynamics, the parameters θ  of which are 

unknown, it is necessary to estimate also these parameters.  This can be done again by minimizing 

ABIC, as given by Eq.(22), but now the innovations (1-step prediction errors) rt depend on these 

parameters, such that ABIC( , )σ λ  becomes ABIC( , , )σ λ θ . In our implementation, this optimization 

is carried out by the simplex method, as provided by the "fminsearch" function of MATLAB.  

 

4.  Results 

 

In this section we will present results for a simulation study and for the analysis of real EEG data.  For 

these calculations the following practical settings were chosen:   



• The lead field matrix K was calculated by using the boundary element method for a three-shell 

head model (Riera and Fuentes 1998).  

• A brain model, derived from the Average Probabilistic MRI Atlas produced by the Montreal 

Neurological Institute (Mazziotta et al. 1995), was employed.  

• The resolution of the voxel discretization was 7 mm, resulting in a total number of 8723 voxels.  

Generators are assumed to be located only within gray matter, therefore the number of voxels 

which have to be considered, reduces to 3433.  

• The number and locations of EEG electrodes follows the standard 10-20 system.  

 

4.1  Simulation Example 

 

In order to compare the inverse solutions obtained by LORETA and by DynLORETA we will now 

perform a simulation experiment.  For this purpose we generate a time series of T=300 observations 

from a AR(2) model of voxel dynamics, including nearest-neighbor interactions, as described by  

  1 1 1 2 2 2

2 2 1

K

( L) ( L)

var( ) , var( ) (L L) ,

t t t

t D t D t t

t d t

Y J

J a I b J a I b J

I

ε
η

ε σ η τ
− −

−

= +
= + + + +

′= =

 

where the parameters are chosen as 1 2 1 2( , , , , , )a a b b σ τ =(1.82, -1.00, 0.05, 0.00, 0.03, 0.01), and the 

vectors of initial current densities 0 1,J J−  are chosen in a way such that two extended sources of activity 

are created, one in the occipital region and one in the cingulate gyrus.  A spatial representation of 0J  is 

shown in the top-left panel of Fig.3. The EEG observations 1, , TY YL  corresponding to the simulated 

1, , TJ JL  with respect to right-ear mastoid reference, are shown in Fig.2. In the figure a stationary 

oscillation can be seen at most electrodes, except those located within the frontal region. 



From these observations, estimates of sources were calculated using the following three methods and 

conditions;  

• DynLORETA with unknown dynamical parameters and known true initial current vectors 

(denoted by [D]);  

• DynLORETA with unknown dynamical parameter and initial current vectors based on LORETA 

inverse solutions (denoted by [DL]);  

• instantaneous LORETA (denoted by [L]).  

For each method the regularization parameter λ was estimated both by ABIC and GCV, and the 

dynamical parameters of the methods [D] and [DL] were estimated by minimizing Eq.(22). The resulting 

estimates and the corresponding values of ABIC and GCV are shown in Table 1. The results displayed in 

the table show that estimating λ using the ABIC criterion is as good as using the computationally more 

intensive GCV approach. 

In Fig.3 we show for time points t=19 and t=120 the spatial distributions of absolute values of local 

current vectors for the simulation ("truth") and for the inverse solutions obtained by [D], [DL], and [L]. It 

can be seen in the figure that [D], [DL] and [L] succeed in reproducing the occipital source of activity, 

although [L] considerably underestimates the amplitude at the center of this source.  On the other hand, 

[L] completely fails to reproduce the independent source in the cingulate gyrus, which is well 

reconstructed by [D]; instead, [L] produces spurious activity in the temporal region.  For t=120, [DL] 

also fails to reproduce the source in the cingulate gyrus, which reflects the fact that the estimated 

dynamics is decaying rapidly (compare the corresponding subfigure in Fig.4).  

In Fig.4 the same results are presented for the time domain.  Here we show for two specific voxels, 

chosen from the occipital area and the cingulate gyrus, the corresponding time series of absolute values of 

current vectors for the simulation ("truth") and for the inverse solutions obtained by [D], [DL], and [L]. It 

can be seen that the solution by [D] coincides very well with the simulated time series for both voxels; 

this success is due to using accurate estimates of dynamical parameters (see Table 1). With respect to the 



main oscillation, also [DL] could reproduce qualitatively the behavior of the simulated time series for 

both voxels.  The deviations from the simulated time series, however, increases with time; this reflects 

the use of inaccurate estimates of dynamical parameters.  Although [L] to some extent also reproduces 

oscillations for both voxels, this solution completely fails to reproduce their amplitudes correctly.  

Furthermore, we note that [L] lacks temporal smoothness, which is a consequence of the incapability of 

LORETA to discriminate between dynamical noise and observation noise; this weakness of instantaneous 

inverse solutions has already been noticed by Schmidt et al. (2001). 

Now we shall discuss the goodness of the solutions as obtained by the three methods.  As can be 

seen in Table 1, there is a succession of [D], [DL] and [L] with respect to increasing values of ABIC. 

From the viewpoint of model comparison, this result explicitly shows that the solution of [D] is superior 

to the solution of [DL], which again is superior to the solution of [L]. Here we want to remark that the 

value of ABIC can only be employed as a relative measure; the difference of the values between two 

models has the interpretation of a ratio of probabilities, but the value itself has no meaningful 

interpretation.   

Finally we mention that [DL] provides considerably better inverse solutions as compared to [L], even 

though there was still an underestimation of amplitudes of true sources, resulting from inaccuracy of the 

initial state estimates and consequently of the estimated dynamics.  This is an important result, since 

[DL] is applicable to the analysis of real data, in contrast to [D]. But the superior results obtained by [D] 

indicate that further improvements can be achieved by improving the estimation procedure for the initial 

state.  This will be the subject of future work.  

 

4.2  Real Data Analysis 

 

In Fig.5 a clinical EEG recording is shown, recorded from a healthy child in awake state with closed eyes.  

At the occipital electrodes O1 and O2 an oscillation is visible which represents the characteristic alpha 

rhythm. For the analysis of this data set a regional homogeneous AR(2) model is employed, given by  
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Here the dynamics within a certain region G is assumed to differ from the dynamics within the remaining 

part of brain. We have chosen the region G as a sphere of radius 30mm centered within the occipital 

lobes; the center was chosen according to the result of a LORETA solution of the same data. 

In Fig.6, the time series and periodograms of the x,y,z components of the current vector from a 

particular voxel inside G are shown.  In each figure, the time series and periodograms both estimated by 

LORETA and DynLORETA are plotted.  Each component of the time series provided by DynLORETA 

shows clearer alpha oscillations, as compared to the time series provided by LORETA. In the 

periodograms, we can also see this difference in the range of the alpha rhythm (around 9Hz).  In 

addition, the time series provided by DynLORETA have higher amplitude, as compared to the time series 

provided by LORETA; this effect had also been shown in the previous simulation experiment.   

Estimation of the dynamical parameters 1 2 1 2( , , , )a a b b  by numerical optimization provides the 

estimates (1.95,-0.99,1.54,-0.56).  The parametric power spectrum (p.251 of Shumway (2000)), as 

obtained from the estimated AR parameters inside G displays a peak around 8.3Hz, whereas the power 

spectrum outside G does not display any peak, but just a drop of power towards higher frequencies. The 

peak at 8.3 Hz falls well within the known range for alpha activity. These results illustrate that by 

DynLORETA it is possible to make detailed inference about the dynamics of the generators of EEG time 

series.   

In Fig.7, we illustrate for 6 consecutive points of time (with a time shift of 0.0234 seconds) the 

evolution of the spatial distribution of a component of the current vectors, as estimated by DynLORETA 

and LORETA. We choose to display the component of the current vectors which corresponds to the 

radial direction of spherical coordinates, with the origin being located at the center of the head. Both 

DynLORETA and LORETA solutions provide two main sources which are negatively correlated in the 



left and right occipital region.  These two sources can be considered to be generators of alpha rhythm 

(Valdés-Sosa et al. 1992; Rodin and Rodin 1995). However, the solution as obtained by DynLORETA 

shows much more focused sources in the occipital region, whereas the solution as obtained by LORETA 

shows spurious activities in other regions, such as the temporal lobes and around the vertex (electrode 

Cz). Furthermore, the quality of the inverse solutions provided by LORETA and DynLORETA can be 

assessed by comparing their corresponding values of ABIC, which are 51.76 10×  and 51.24 10× , 

respectively. Comparison of these values of ABIC proves that the solution provided by DynLORETA is 

superior to the solution provided by LORETA.  

 

5.  Discussion 

 

In this paper we have addressed the inverse problem of estimating generators of EEG recordings, with 

particular emphasis on the use of dynamical constraints.  The following issues were discussed:   

• We have studied the "dynamical inverse problem" of EEG generation. By formulating the 

dynamical inverse problem in a state space representation, we can introduce general dynamical 

constraints into the system equation.   

• In principle, the optimum solution of this state estimation problem is given by Kalman filtering 

and Kalman smoothing; however, due to the high dimensionality of state in the EEG inverse 

problem, direct application of Kalman filtering is very demanding (or even impossible) in terms of 

computational time and memory consumption. As an alternative, we have proposed to employ 

the ’Recursive Penalized Least Squares’ (RPLS) method. A detailed discussion of the relation 

between the RPLS method and Kalman filtering is given in Appendix A.  

• As a practicable approach for finding solutions of the dynamical inverse problem for given data 

without excessive computational expense we have introduced a suitable method which we have 

called ’Dynamical LORETA’ (DynLORETA), since it is derived from the LORETA method for 



solving the instantaneous problem.  It is a crucial advantage of DynLORETA that by suitable 

choice of the system noise covariance structure it inherits from LORETA the desirable feature of 

maximum spatial smoothness.  

• On a PC with a clock rate of 2GHz the computation of DynLORETA for an EEG data set of length 

T=500 takes a few hours, including optimization of several hyperparameters.  In contrast, for the 

same data set the computation of LORETA takes only a few seconds, including optimization of the 

regularization parameter.  This difference results from the higher number of hyperparameters to 

be optimized in DynLORETA, as well as the need to perform for each time point t several 

additional multiplications and summations of high-dimensional matrices within the state space 

framework.  In order to obtain inverse solutions of improved quality, such price in terms of high 

computational expense has to be paid.  

• For the purpose of estimating the hyperparameters, especially the regularization parameter, we 

have proposed to employ the Akaike Bayesian Information Criterion (ABIC). In a simulation study 

it was found that ABIC and the Generalized Cross-Validation (GCV) criterion provide similar 

estimates. Furthermore the value of ABIC can be employed for the purpose of model comparison, 

because it can be interpreted as the goodness of the fit of the model to the data.  We would like to 

remark that ABIC is a relative measure; while the value of ABIC itself has no meaning, the 

difference of ABIC between models can be used to evaluate the models.   

• As a parametric model for the spatio-temporal brain dynamics to be used in the simulation study, 

we have employed a AR(2) model including nearest-neighbor interaction.  This particular class of 

parametric models is expected to be useful for two reasons:  firstly, these models can be 

interpreted as discretizations of partial differential equations describing spatio-temporal dynamical 

phenomena (Smith 1985); secondly, they can be formulated by using highly sparse matrices which 

renders them appropriate for application to high-dimensional problems.  

• In the simulation study we were able to demonstrate superior performance of DynLORETA as 

compared to LORETA when applied to data generated by dynamically evolving sources. However, 



this success depends essentially on the availability of basic information about the underlying 

dynamics, namely about the form and parameters of the dynamical model.  In addition, an 

important point for achieving substantial improvements of the inverse solutions is given by better 

estimates of initial states of the RPLS method.   

• In an analysis of clinical EEG data we have employed a regional AR(2) model, characterized by 

the presence of different dynamics inside and outside the occipital area.  As a result of 

DynLORETA we have observed two occipital sources which are negatively correlated.  Both 

from the parameter estimates and from the estimated time series at occipital voxels we could 

identify oscillations corresponding to alpha rhythm.  

• The main advantage of the solutions provided by DynLORETA is given by the fact that their 

temporal structure results explicitly from a dynamical model.  While the spatial features of the 

LORETA solutions are inherited, additional improvements of the solution become possible 

through incorporation of temporal information. On the other hand, if the dynamical model has not 

been well-chosen, the solutions of DynLORETA tend to be very similar to the corresponding 

LORETA solutions, because inappropriate dynamical constraints result in very weak 

regularization.   

The ideas and methods presented in this paper should be developed further, starting from the following 

suggestions:   

• Information from other brain-imaging modalities (such as fMRI, NIRS) should be incorporated 

into the estimation task.  This will render it possible to explore physiologically more meaningful 

dynamics and ultimately also result in better inverse solutions.  

• Suitable approaches for dimension reduction should be applied to the dynamical states.  If this 

can be accomplished, direct application of Kalman filtering will become feasible.  

• More accurate estimation procedures should be developed.  The RPLS method can be interpreted 

as an approximation of Kalman filtering, but it still represents a rough approximation.  Therefore 



it would be desirable to construct computationally efficient estimation procedures which approach 

Kalman filtering more closely even in the case of high dimensional states.   

 

Appendix A:  The relation between RPLS method and Kalman filtering 

 

The estimation procedure of the RPLS method has the same structure as known from Kalman filtering:  

first the innovation is calculated (Eq.(13)) using the previous estimate (i.e.  forming a prediction) and 

the current observation, then tς  is calculated (Eq.(15), corresponding to filtering) from the innovation. 

Let Jt-1|t-1  and Vt-1|t-1  denote the filtered state estimate and the filtered state error variance, 

respectively, as provided by Kalman filtering at time t-1. At time t a new observation Yt becomes 

available, and the state estimate is updated according to  

 | 1| 1t t t t t tJ A J rκκ− −= +    (23) 

 { } 1' 2 2 ' 1 1 ' 1
1 1K K ( (L L) ) Kt t t tC c A P A Cε εσ λκ −− − − −

− − ′+ +=    (24) 

where κ denotes the Kalman gain, and the innovation tr
κ  is defined by 1| 1Kt t t t tr Y A Jκ

− −= − . Here we 

denote the filtered error variance by Vt-1|t-1=ct-1Pt-1. In the RPLS method, the equation corresponding 

to Eq.(23) is Eq.(16). Obviously, in Kalman filtering tr
κκ  is the estimator of system noise; the 

corresponding estimator is given by Eq.(15). By comparison with Eq.(17) it can readily be seen that the 

RPLS method becomes consistent with Kalman filtering if ct-1→0. While, according to Eq.(24), the 

Kalman gain essentially depends on three components, representing system noise variance, observation 

noise variance and the uncertainty of the previous estimate, the RPLS method explicitly depends on only 

two of these components, namely system noise variance and observation noise variance.  In this sense 

Kalman filtering can be regarded as a more general algorithm than the RPLS method.  

 



Appendix B:  The calculation of type II log-likelihood for LORETA 

 

The detailed calculation of type II log-likelihood for LORETA is shown here.  We can obtain the 

approximated type II log-likelihood for DynLORETA, as shown in section "Method", in the same way, 

by replacing Yt by rt in Eq.(13). 

 

From the view of Bayesian inference, the LORETA solution can be interpreted as Maximum A Posteriori 

(MAP) solution with respect to likelihood and prior distribution, respectively:   

 2( | ; ) (K , )t t tp Y J N J Cεσ σ∼    (25) 

 
2 1( ; ) (0, (L L) )tp J Nτ τ −′∼    (26) 

Then the type II log-likelihood of one fixed point of time, defined by  
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2 2 2

' 2 ' 1 ' 1

' 2 '

( ; ) || K || || L ||

ˆ (K K L L) K

( ) K K L L

t t t C t

t t

E J Y J J

J C C Y

U C

ε

ε ε

ε

λ λ

λ

λ λ

− −

≡ − +

≡ +

≡ +

  



and 
σ

λ
τ

≡ . 

Since only the second exponential in Eq.(28) contains the integrand Jt, the integral can be evaluated 

in closed form as  
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Then we obtain (-2) times type II log-likelihood as follows:   
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Here we have replaced the parameter τ  by λ σ τ= /  and constant terms have been ignored.  The 

second and third terms of Eq.(29) can be further simplified by means of the singular value decomposition 

of 1/ 2 1K K LC USVε
− − ′≡ = . The second term can be arranged as  
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where 1/ 2
t tY U C Yε

−′=% , and si is the ith singular value in the matrix S. The third term can be simplified 

as  
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Substituting Eqs.(30) and (31) into (29), we can finally obtain (-2) times type II log-likelikhood as 
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where ,i ty%  is ith component of the vector tY . The hyperparameters ,σ λ  can be obtained in such way 

that the function ( )2 II
tl−  will be minimized.  Differentiating ( )2 II

tl−  with respect to 2σ , the estimate 

of 2σ  is provided by  
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The regularization parameter λ  can be obtained by minimizing  
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Since in the case of LORETA the probability densities ( , ; , ), 1, ,t tp Y J t Tσ τ = L are serially 

independent, the (-2) type II log-likelihood based on T data points can be obtained as follows:   
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6.  Tables  

 

 

 DynLORETA [D] DynLORETA [DL] LORETA [L] 

λGCV 0.256 0.095 0.0076 

λABIC 0.259 0.100 0.0065 

GCV  62.58 10−×  62.69 10−×  63.71 10−×  

ABIC 44.18 10− ×  43.95 10− ×  43.56 10− ×  

1 2 1 2
ˆ ˆˆ ˆ( , , , )a a b b  (1.82, -1.00, 0.06, 0.008) (1.87,-1.05,-0.57,0.58) • 

  

Table 1:  Estimates of regularization parameter λ and dynamical parameters, and corresponding values 

of ABIC and GCV for the simulation data.  These values are obtained by DynLORETA with known 

initial states [D], DynLORETA with estimated initial states [DL], and LORETA [L] 



 

7.  Figures Captions 

 

Figure 1:   Schematic comparison between the instantaneous inverse problem (top) and the dynamical 

inverse problem (bottom). Sources within brain and EEG observations are represented by rectangles and 

circles, respectively.  Arrows represent the flow of information, as assumed by the underlying model; 

see section "Problem" for a detailed discussion. 

 

Figure 2:   Simulated EEG observations at 19 standard electrode positions of the 10/20-system versus 

simulation time, according to the model given by Eq.(23). 

 

Figure 3:   Spatial distributions of absolute values of local current vectors for the simulation (TRUE) 

and for the inverse solutions obtained by DynLORETA with known initial state [D], by DynLORETA 

with unknown initial state [DL] and by LORETA [L]. In the top left panel the initial state of the 

simulation is shown.  Middle and right columns show the inverse solutions at time points t=19 and 

t=120, respectively.  Note that color scale of [L] is different from the color scale of the other three rows. 

 

Figure 4:   Time series of absolute values of local current vectors at 2 individual voxels, one chosen 

from the occipital area (left column) and one from cingulate gyrus (right column), versus simulation time.  

From top row to bottom row, simulated time series and results for the inverse solutions obtained by 

DynLORETA with known initial state [D], by DynLORETA with unknown initial state [DL] and by 

LORETA [L] are shown. 

 

Figure 5:   Clinical EEG recording at 19 standard positions of the 10/20-system versus time, obtained 

from a healthy 8-years old male child, awake with closed eyes.  The vertical axis represents observed 

voltages relative to the average reference. 



 

Figure 6:   Time series of the x,y,z components of the estimated local current vector at one voxel, 

chosen from G (occipital area) (top row of panels) and corresponding periodograms (bottom row of 

panels) for inverse solutions obtained from the EEG data set shown in Fig.5. Thin lines refer to 

DynLORETA, and thick lines refer to LORETA. 

 

Figure 7:   Spatial distributions of the component of the current vectors corresponding to the radial 

direction of spherical coordinates for inverse solutions obtained from the EEG data set shown in Fig.5. 

Upper 6 figures show the solutions as estimated by DynLORETA, and lower 6 figures show the solutions 

as estimated by LORETA, both at 6 consecutive points in time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

 



 

 



 



 

 

 

 

 

 

 

 

 

 



 

 



 


