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Abstract 

The most significant progresses in the understanding of human brain functions have 

been possible due to the use of fMRI, which, when used in combination with other 

standard neuroimaging techniques (i.e. EEG), provides researchers with a potential 

tool to elucidate many biophysical principles, established previously by means of 

animal comparative studies. However, to date most of the methods proposed in the 

literature seeking fMRI signs have been limited to the use of a top-down data analysis 

approach, thus ignoring a pool of physiological facts. In spite of the important 

contributions achieved by applying these methods to actual data, there is a 

disproportionate gap between theoretical models and data-analysis strategies while 

trying to focus on several new prospects, like for example fMRI/EEG data fusion, 

causality/connectivity patterns and nonlinear BOLD signal dynamics. In this paper, 

we propose a new approach which will allow many of the above mentioned hot topics 

to be addressed in the near future with an underlying interpretability based on bottom-

up modeling. In particular, the θ-MAP presented in the paper to test brain activation 

corresponds very well with the standardized T-test of the SPM99 toolbox. 

Additionally, a new Impulse Response Function (IRF) has been formulated, directly 

related to the well-established concept of the hemodynamics response function. The 

model uses not only the information contained in the signal but also that in the 

structure of the background noise to simultaneously estimate the IRF and the 

autocorrelation function by using an autoregressive model with a filtered Poisson 

process driving the dynamics. The short-range contributions of voxels within the near-

neighborhood are also included, and the potential drift was characterized by a 

polynomial series. Since our model originated from an immediate extension of the 

hemodynamics approach (Friston et al. 2000a), a natural interpretability of the results 

is feasible. 



Introduction 
Functional Magnetic Resonance Imaging (fMRI) is a very useful technique to study 

brain functions while the subjects are involved in the performance of sensory, motor, 

or cognitive tasks. In many experimental conditions, the observed Blood Oxygenation 

Level Dependent (BOLD) signals reveal highly nonlinear dynamics (Berns et al. 1999, 

Friston et al. 1998b, Huettel and McCarthy 2000 and 2001, Birn et al. 2001). Recently, 

an ordinary differential equation system (i.e. the Balloon model) has been proposed to 

explain the hemodynamic changes on the basis of the mechanically compelling model 

of an expandable venous compartment (Buxton et al. 1998) and the standard 

Windkessel theory (Mandeville et al. 1999). The original model has been extended by 

Friston et al. (2000a) to include a linear interaction between synaptic activity (or 

electrophysiology) and the micro-vascular control system. The model, known as the 

“hemodynamics approach”, is in accordance with many recent physiological findings 

(Magistretti and Pellerin 1999; Iadecola 2002). However, to date, few reports have 

been published about the application of this approach to actual fMRI data. The most 

significant studies have focused on the use of Volterra Kernel expansion (Friston 

2002) and Local Linearization (LL) filter (Riera et al. 2004). Despite the high 

computational cost involved when using optimization strategies to estimate the 

parameters of nonlinear approaches, the imminent interpretability of these parameters 

makes it worthwhile. Unfortunately, only in particular cases could the non-linearities 

of BOLD signals be explored in selected brain regions based on bottom-up modeling; 

hence, as yet we are not even close to the point where they can be used in either 

clinical or research studies focusing on testing brain activity. 

Even thought the nonlinear numerical schemes are still at the development stage, there 

are many “linear models”, constituting a first order approximation of the BOLD 



signal dynamics, which have emerged in the last ten years. However, it is our belief 

that linear models must be introduced in a way that makes generalizations feasible in 

order to consider more complex dynamics. The authors consider it necessary to make 

a brief review of the most relevant aspects of linear models proposed to date in the 

literature in order to lead the readers to a natural understanding of the new approach. 

The pioneer paper of Friston et al. (1994) represents the foundations of this work, 

having set up the basic idea of using a linear convolution of the now popularized 

Hemodynamics Response Function (HRF) with the neuronal process, which 

corresponds to synaptic activation. There are two physiological phenomena 

underlying the BOLD response at the level of the synapses that contribute to the 

neuronal process proposed by Friston et al. (1994): the evoked transient and the 

uncorrelated intrinsic activity. This model instinctively originated from the fact that 

observed Auto-Correlations Function (ACF) have two components: one of them the 

effect of being phase-locked to the stimulus onset of the neuronal evoked transients 

and the other due to spontaneous neuronal activity. In an early work, Weisskoff et al. 

(1993) reported similar characteristics of the power spectral density of the BOLD 

signals. At that time, there was some debate as to whether the correlation in the 

BOLD signal has a physiological or instrumental source, or even if it is just the result 

of mixing both types of sources. 

The implicit merit of the suggestion made by Friston et al. (1994) is the common 

vascular etiology underlying the genesis of the predictable hemodynamics (i.e. 

deterministic response induced by the stimulus) and the characteristics of its 

fluctuations (i.e ACF). The successively proposed linear models have disregarded that 

physiological conjecture, maybe in an attempt to provide a high degree of freedom to 

the mathematical constructs, thus guaranteeing a more accurate portrayal of the 



temporal dynamics of fMRI. These unconstrained linear models assume that an 

unspecified correlated noise additively polluted a deterministic response produced by 

the convolution of the HRF with a predefined binary stimulus sequence. The use of 

fixed or jittered Inter Stimulus Interval (ISI) in the stimulus sequence has been 

proposed in the literature (see Dale 1999 for comparisons using the estimator 

efficiency as a new selection criterion of paradigm adequacy). In general, this 

sequence can be considered as a Poisson random process defined by the experimental 

design. In the last ten years, different methods have been proposed to accommodate 

fMRI data into that extended version of the original Friston et al. (1994) linear model. 

In this sense, the most recent works have been concerned with the simultaneous 

estimation of the HRF and the ACF of the additive noise (Bullmore et al. 1996, 

Locascio et al. 1997, Dale 1999, Kruggel and von Cramon 1999, Burock and Dale 

2000, Woolrich et al. 2001, Purdon et al. 2001, Worsley et al. 2002, Katanoda et al. 

2002, Friston and Penny 2003). Paradoxically, the main motivation for estimating the 

ACF has been the fact that by its a priori knowledge: a) the Maximum Likelihood 

(ML) estimator of the supposedly deterministic HRF can be corrected by the temporal 

variance-covariance scales of noise (Kruggel and von Cramon 1999, Katanoda et al. 

2002); and b) a considerable reduction of the bias in any statistical test used to 

hypothesize about the effect of the contrast will be achieved (Worsley and Friston 

1995, Worsley et al. 1997, Friston et al. 2000b, Marchini and Smith 2003). The 

consideration of both facts in the fMRI analysis using a unified formalism has been 

also presented (Burock and Dale 2000, Woolrich et al. 2001, Friston and Penny 2003). 

In a slightly different approach, the inclusion of additional information about the 

temporal characteristic of HRF in both parametric and non-parametric schemes has 

enhanced linear models. These methods range from those of pioneers who constrained 



the HRF, forcing it to belong to a certain space expandable by basic functions (Lange 

and Zeger 1997, Rajapakse et al. 1998, Friston et al. 1998a, Josephs et al. 1997) to the 

most recent methods that introduce smoothness criterion in the a priori probability 

function of the HRF (Goutte et al. 2000, Carew et al. 2003, Marrelec et al. 2003). The 

problem with this approach is that, in both the parametric and non-parametric cases, 

the use of constraints (or forced assumptions) on the HRF could lead to a severe 

mismatch between the anticipated deterministic response and the actual background 

noise, which, from the conjecture proposed by Friston et al. (1994), may share a 

similar vascular mechanism of genesis (i.e. see Riera et al. 2004 for a discussion about 

the impact on the BOLD signal produced by deterministic/noisy inputs in the 

hemodynamics approach). 

However, the common and critical intuitive idea underlying those methods previously 

proposed in the literature to model the hemodynamic changes linearly does not 

correspond with the essential physiological and physical principles involved in the 

genesis of BOLD signal. Rather, it constitutes an ad-hoc tactic introduced to bypass a 

more complex general identification problem. It is well known that two connected 

stages of functioning with different temporal scales coexist at a microscopic level for 

the BOLD dynamics induced by a stimulus sequence: the quasi-linear spatial-

temporal integration accomplished at the neuron-astrocyte unit and a low-pass 

nonlinear filter acting in the hemodynamic/metabolic order at the micro-vascular 

building block. Therefore, in our opinion, it is important that from the very beginning, 

the focus of every aspect of the methodology is on the formalism of the time series 

analysis since it permits us to generalize at a later time any higher order of complexity 

in an appropriate framework. In this paper, a first order linear approach is presented 

which separates the contributions to BOLD signals coming from both the cause – the 



electro-chemical phenomena at the dendrite trees, and the effect – the vascular 

response. The model comprises both a linear filter and an AutoRegressive ( )p  

component, the former simulating several stages of the spatial-temporal integration 

process (i.e. neurotransmitters migration from synaptic cleft, transport phenomena at 

the neuron-astrocytes juncture, and electrotonic propagation of post-synaptic 

potentials, etc) that relates the evoked transient to the Poisson stimulus sequence. The 

latter accounts for the hemodynamic variations being driven by the neuronal process 

as an additive random force. This AR model, hereafter denoted as AR (x , )p q  due to 

the use of an exogenous variable, will not only permit an estimation of the 

hemodynamical response by the use of a new concept of “Impulse Response 

Function” (IRF) but will also make it possible to have a natural description of the 

ACF implicitly found in BOLD signals. In this sense, the attributes in the micro-

vascular subsystem will affect both the final deterministic response and the out-

coming noise. Because of a causal relationship, the authors consider the information 

contained in the structure of noise of the BOLD signal to estimate the IRF extremely 

valuable. The concept of “innovation” in the general “Box-Jenkins representation” is 

used, which could dramatically change the existing course of fMRI analysis. 

AR

This model, surprisingly, allowed us to detect those regions directly related to the 

stimulus with a very low spatial localization error. The IRF and the ACF were very 

well characterized in each voxel using little data, which enabled the time the 

experiment takes to be reduced considerably (lengthy experimental time is a handicap 

in fMRI study). Additionally, the model was extended to include contributions from 

the near-neighborhood of each voxel by introducing the influence of past short-range 

interactions as suggested earlier by Purdon et al. (2001) and Katanoda et al. (2002). 

The performance of the model, henceforth named Near-Neighborhood 



AutoRegressive with exogenous variable (NN-ARx), was evaluated from synthetic 

data created by applying the LL scheme (Riera et al. 2004) to discretizing the original 

hemodynamics approach. The Kolmogorov-Smirnov test was used to evaluate how 

significantly the histogram of the innovation process departed from the gaussian 

distribution, a well fitting criterion of the model. A corrected version of the Akaike 

Information Criterion (AIC) (Hurvich and Tsay 1989), the so-called AICc, was 

introduced for model selection since it endows us with a rule to estimate the order of 

NN-ARx (length in the influence of the past for the AR and the Poisson filter), the 

order for the nonlinear drift component, the delay of the signal respect to the stimulus 

and the retard in the near-neighborhood component due to physical distances. The 

AICc implicitly gauges the complexity of the data/model, avoiding overestimation. 

An inverse Laplacian pre-filtering method was applied in advance to the raw BOLD 

data to whiten any spatial correlation unfavorably introduced by the application of 

gaussian kernels in the fMRI recording systems. The whole method was applied to 

two experimental situations using block design paradigms (i.e. motor and visual 

stimuli). In order to assess the robustness of the methodology, different MRI 

recording systems and parameters were used in both experiments. The most 

significant areas obtained from the application of the proposed method (a simple 

cluster classification made by thresholding the hot-spots) were compared with those 

reported after analyzing the data with statistical parametric mapping software (SPM99 

toolbox, Welcome Department of Cognitive Neurology, London, UK). 



Methods 

Experiments design 

In order to explore the robustness of the method to experimental manipulations, the 

two sets of BOLD data used in the paper were obtained under very different 

physiological and recording conditions. 

Visual paradigm: A 3-T scanner (VP, General Electric, Milwaukee, WI) was used in 

this study. Ten normal volunteers (5 males and 5 females) aged 25-43 years were used 

in the visual paradigm consisting of 3 blocks of 30 Secs checkerboard visual stimulus 

and 30 Secs of control condition (starting from task condition) (see Fig. 5 bottom). 

During the task condition, the checkerboard was intermittently presented at a 

frequency of 8 Hz. Tight but comfortable foam padding was placed around the 

subject’s head to minimize head movement. 

fMRI parameters: Inter-scan interval TR 3=  Secs. Each volume consisted of 36 

slices from the bottom to the top of the head, with a voxel size of 3.44 x 3.44 mm in 

plane, a slice thickness of 3.5 mm and a 0.5 mm gap covering the whole brain. T2-

weighted, gradient echo, echo planar imaging (EPI) sequences. (  mSecs, 

 cm) 

TE 30=

FOV 22=

90

Parameters of scanner for anatomical reference: T2-weighted, 2D-fast spin echo 

sequence (with parameters of FA =  degree,  mSecs and  

mSecs) consisting of 112 trans-axial slices, with slice thickness 1.5 mm, and pixel 

size was 0.859 x 0.859 mm. 

TR 6000= TE 70=

Motor paradigm: A 1.5-T scanner (Vision, Siemens, Erlangen, Germany) was used 

in this study. Five right-handed, normal volunteers (3 males and 2 females) aged 24-



37 years were used in the motor paradigm consisting of 9 blocks of 60 Secs moving 

conditions and a 60 Secs resting condition (starting from resting condition) (see Fig. 7 

bottom). The subjects were asked by visual cues (at regularly spaced intervals with a 

frequency of 1.6 Hz) to perform right hand movement tasks. During the moving 

condition, a small circle at the center of the screen was used as a cue (lasting for 200 

mSecs) indicating the subject should close its hand and a cross indicating to open it. 

Each subject's head was fixed using ear fixation blocks. 

fMRI parameters: Inter-scan interval TR 1.2=  Secs. Each volume consisted of 8 

slices from top to bottom of the head, with a voxel size of 3 x 3 mm in plane, a slice 

thickness of 10 mm and with a 5 mm gap covering the whole brain. T2-weighted, 

gradient-echo, echo-planer imaging (EPI) sequences (  mSecs,  

degrees). 

TE 60= FA 90=

9.7= 4

Parameters of scanner for anatomical reference: Spoiled gradient-echo sequence 

(recovery time TR  mSecs, echo time TE =  mSecs,  degrees) 

consisting of 96 slices with a voxel size of 1.25 x 0.9 x 1.92 mm. 

FA 12=

Data pre-processing 

In both paradigms, the individual fMRI images were realigned to remove movement-

related artifacts, and the slice timing was adjusted to that of the middle slice. The 

anatomical and fMRI images were co-registered and spatially normalized to the 

Talairach coordinate system using both linear and nonlinear parameters. The raw 

fMRI data was spatially whitened using the inverse of the laplacian operator to 

eliminate any nuisance spatial autocorrelation introduced by the previous usage of 



volumetric gaussian kernels (see Appendix I). Henceforth, the symbol  will be used 

to identify the scan “t” of preprocessed BOLD data at the v-th voxel. 

v
ty

Theoretical Model 

The consequences of the convolution model 

The original model by Friston et al. (1994) established that a BOLD signal  at a 

particular voxel “v” and time “t” could be represented by a convolution of the 

neuronal process  (i.e. at the level of synapses) with the effective voxel-related 

HRF h

( )vy t

( )v tξ

( )v τ . 

( ) ( ) ( )
0

v v vy t h t dτ ξ τ
∞

= −∫ τ         (1) 

It was proposed that the neuronal process comprised a deterministic evoked transient 

 and uncorrelated fast intrinsic activity ( )ve t ( )v tε . The “Wold decomposition” of an 

AR Moving-Average (ARMA) model ( )v v
t

v
ty B ξ= Η , with the infinite lag polynomial 

defined by ( )
0

v
k

k

v kB h B
∞

=
∑Η =  and weights , can be interpreted as a discretized 

version of the convolution operator. The symbol 

v
kh

B  denotes the backshift (or lag) 

operator. The weights must satisfy the property ( )v
k

2

0k

∞

=

h < ∞∑  v∀  (see Appendix II for 

details). This model assumes that neural process distributes ( 2,v v
vN e )ξ σ∼ , with 

voxel-dependent standard deviation vσ . 

In general, providing certain conditions are met, the Wold decomposition can be 

approximated by the fraction of finite polynomials ( ) ( )
( )

v
v

v

BB
B

Ψ
Φ

Η = . In this paper, the 

coefficients v
kψ  of polynomial ( )v BΨ  will be set to zero, in order to collapse the 



whole hemodynamics in the p-order characteristic polynomial 
1

( ) 1
p

v v
k

k

kB Bφ
=

−∑Φ = . 

An ( )AR p  will be invertible if all the zeros of ( )v BΦ  lie outside the unit circle 

(Brockwell and Davis, 1987). This condition will ensure that the original convolution 

model (1) is equivalent to a “stationary” (comparable to a causality condition) 

( )AR p , with the neuronal process v
tξ  representing an additive random force driving 

the system, far from being a white noise. 

1

p
v v
t k

k
y yφ

=

=∑

v
k )1, ,k = ∞"

s t

vε

v
t

v v
t k te

ξ

ε− +
��

        (2) v
t+

Therefore, the ( )AR p  (2) is externally perturbed by an unknown deterministic input 

(i.e. the evoked transient e ), which we are also interested in estimating. A 

recursive relationship can be used to compute the coefficients h  

( )v t

(  from 

given values of v
kφ  (see equation II-6 in Appendix II). 

The classical linear model 

In recent years, the original formula (1) has been lightly modified; the voxel-

dependent evoked transient has been directly associated with a common stimulus 

sequence  that finitely-convolves with the HRF of each voxel. Additionally, an 

unknown noise component 

( )

v
tζ  has been included in an attempt to capture the most 

significant characteristics of the observed ACF (see equation 3 below). In this 

approach, the hemodynamic deterministic response (i.e. BOLD signal) and the ACF 

do not share a similar etiology as in the original Friston et al. (1994) model, and the 

fact that  may originate at the level of synapses and, if so, will be thus colored 

by the vascular filter has been disregarded. In several recent papers, parametric and 

( )t



non-parametric methods have been used to estimate the ACF of the noise component 

v
tζ  at the same time that the HRF is tailored to the BOLD data. 

y

ζ

P

0

T
v v
t k t k

k
y h s v

tζ−
=

=∑ +

v

         (3) 

In a vector representation, the linear model (3) can be written as: 

v vA= γ +ζ           (4) 

The vector y  summarizes the BOLD signals time series (i.e. N scans) 

observed in the v-th voxel and vector 

( 1 , ,
tv v v

Ny y= " )

( )0 , ,
tv v v

Th h= "γ  comprises the truncated HRF. 

The (  experimental design matrix A  is constructed from the pre-defined ISI. 

Each stimulus is approximated by an instantaneous delta Dirac (i.e. a Poisson 

stochastic process). The vector noise component is assumed to distribute 

, with unknown voxel-dependent variance-covariance matrix Σ . 

)T

)vΣ

N ×

(0,v N∼ v

An ill-posed inverse problem originates while trying to estimate the HRF and vΣ  

simultaneously from data vy , especially due to the very sparse and particular structure 

of the design matrix A . Dale (1999) has reported an improvement in the HRF 

estimation using a randomly distributed ISI, which guarantees a considerable increase 

of the rank of the matrix . The use of the Bayesian framework has allowed the 

introduction of a priori information about the HRF (i.e. smoothness criterion), which 

yields to Maximum A Posteriori (MAP) estimators (Goutte et al. 2000, Carew et al. 

2003, Marrelec et al. 2003) (i.e. the use of a priori probability function 

tA A

( ) ( ) ( )( )1vexp 2v v v vtvQ Q Q
−

−∼γ γ γ ). In this line of work, the HRF is forced to 

be temporally smooth using a discrete model of the second order derivative in the 

inverse of the a priori variance-covariance matrix Q , which warrants a stable v



reconstruction of solutions in case of very ill-posed identification problems. 

Parametric models of Q  are also possible, where the voxel-dependent 

hyperparameters can be estimated from data using Bayesian arguments in a second 

level hierarchical model. In the general case, the MAP estimator of vector  is given 

by: 

v

1−

ˆ vγ

(⋅

( ) ( )( ) ( )1 1
ˆ v t v v t vA A Q A

− −
= Σ + Σ

1 v−
yγ       (5) 

Also, the BOLD signal time series is assumed to be a stationary stochastic process; 

therefore, the estimation of the full variance-covariance matrix vΣ  is unsuitable since 

it has a Toeplitz structure. To overcome this, AR models have been used in the last 

few years, with pre-defined hyperparameters to be estimated. However, in our opinion, 

model (1) must be used in its original form; and particular approaches for the evoked 

transient component should be proposed on the basis of physiological interpretability. 

The NN-ARx model and the hemodynamics approach  

The original Balloon model (Buxton et al. 1998, Mandeville et al. 1999) was extended 

by Friston et al. (2000a) to include a linear interaction between the synaptic activity 

and the micro-vascular control system (i.e. the hemodynamics approach). Fig 1 (a) 

shows a simple scheme of such a dynamic system after being generalized to include a 

physiological noise (Riera et al 2004) added to a linearly filtered input and 

instrumental errors. The nonlinear block (dot-line box) consists of a dynamics 

subsystem (i.e. hemodynamics approach) and a static/nonlinear function g , which 

represents the observation equation and explicitly depends on some of the state-

variables of the hemodynamics approach (Buxton et al. 1998). The linear filter, which 

emulates the spatial-temporal integration at the level of the neuron-astrocyte unit, 

transforms a Poisson process representing the stimulus sequence into the evoked 

)



transient e  that combines with a physiological noise v
t

v
tε  to create the final neuronal 

process v
tξ . The neuronal process initiates the nonlinear hemodynamics subsystem 

through a flow-inducing variable (at the present, it is recognized the role played by 

nitric oxide and sphincters in that vascular control feed forward mechanism), the 

outputs of which are the state-variables. At the last stage, the BOLD signal y  

originates from applying the static/nonlinear function 

v
t

( )g ⋅  to the state-variables, 

finally contaminated by instrumental errors v
tη . Fig. 1 (b) shows a symbolic 

linearization of the nonlinear block (i.e. dot-line box). It is assumed that the linear 

filter relating the neuronal process to the common stimulus sequence s  has a finite 

parametric form (see equation 6). The coefficients 

t

v
kθ  can be interpreted as the 

strength or magnitude of the synaptic activity in the v-th voxel induced by the (k+d)-

th temporal lag of s  (i.e. the Poisson process). The delay d is introduced to consider 

either quasi-instantaneous or retarded synaptic responses, and it must be estimated 

from data. In general, in the original hemodynamics approach the instrumental errors 

t

v
tη  were assumed to be a pure white noise process. This, in addition to the 

linearization of the nonlinear block, justifies the collapse of the variance of v
tη  into 

the statistical moments of the physiological noise v
tε . 

θ=
0

r
v v
t k t

k
e s − −

=
∑          (6) k d

Hence, the equation (2) can be interpreted as an AR model, with exogenous variables 

 (see Appendix II). The contribution of near-neighborhood dynamics ts

{ },v v
t ty v′
−∆ −∆ ′= ∈ vΩξ  is also included, where the vector { },v v

v vvχ ′ ′= ∈ΩX  

summarizes the anisotropic properties of the local vascular correlations (Purdon et al. 



2001, Katanoda et al. 2002). The magnitude ∆  represents a delay that may occur due 

to the effect of the mean distance between the voxel of interest and those within its 

neighborhood . vΩ

µ

,v X

The nuisance effects are included in the model by using a voxel-dependent nonlinear 

potential drift 
0

v
t

k
t

δ

γ
=

=∑ , which is represented by a polynomial series. The 

parameters of the model { }, , ,v v v v
k k kφ θ γ σΞ =  must be estimated for each voxel 

from the BOLD signals (see Appendix III for details). The model selection consists of 

determining both the model orders and the delays. These magnitudes, related to the 

complexity of the dynamics, are denominated global parameters and are comprised in 

the vector ( ), , , ,p r d δΛ = ∆ . 

v k
k

v

 

Fig. 1. Schematic diagrams. (a) A system consisting of a linear filter and a nonlinear 

block (dot-line box), which is comprised of the hemodynamics approach and a 



static/nonlinear observation equation. The whole system is extended to include both 

instrumental error and physiological noise. (b) The NN-ARx linear model, which is 

comprised of a linearization of the nonlinear block (i.e. dot-line box), a parametric 

form for the linear filter, contributions from the near-neighborhood Ω  dynamics 

(with anisotropic factors 

v

vX ), the physiological noise and the potential drift term. 

The NN-ARx model (7) includes four terms: the potential drift, the hemodynamics 

linear model, the local dynamics contributions, the weighted stimulus sequence by 

synaptic effectiveness and the additional diffusion term (i.e. the white noise v
tε ). 

1 0

p r
v v v v v v v
t t k t k t k t k d

k k
y y s v

tµ φ θ− −∆ − −
= =

= + + + +∑ ∑ξΧ ε      (7) 

The HRF (associate with ( )v BΗ ), as originally defined in the literature, and the 

genuine IRF (associate with polynomial 
0

( )v
k

k

v kB g B
∞

=
∑

v
k

Γ = ) for the stimulus sequence 

will explicitly depend on the model parameters φ  and v
kθ . It is proper to clarify that 

to obtain such relationships, the contribution of local dynamics and potential drift 

terms are handled as instantaneous and deterministic inputs to the system; hence, they 

will be ignored. The coefficients of the HRF and the IRF can be obtained by recursive 

relationships (see Appendix II for the general theory of ARMA models with/without 

exogenous variables). In the particular case of model (7), these standard relationships 

must be slightly modified to include the delay d , in such a case 

( ) [1 ( ) ]dB B BΨ = Θ ; hence, the coefficients of the HRF and the IRF will satisfy the 

following relationships: 

min( , )

1
0

k p

k k k k
k

h hφ ′ ′−
′=

− ∑ =        (8) 

with  0 1h =



min( , )

1
min( , )

1

0
k p

k k k k
k

k p

k k k k k d
k

g g k

g g k

φ

φ θ

′ ′−
′=

′ ′− −
′=

− =

− =

∑

∑

d

d

<

≥
      (9) 

with 0
0

0
0 0

d
g

d
θ =

=  ≠
 

Equation (8) is equivalent to (II-6) (because 0v
kψ =  in our model). Furthermore, for 

the particular case of insignificant delay in the stimulus (i.e. d 0= ), the equations (9) 

and (II-12) are analogous. Additionally, the weights h  will be involved in computing 

the ACF of the physiological noise. The new auto-correlated noise 

v
k

( )v
tB vεΗ  will 

have an ACF ( )vR τ  defined by equation (II-7) in Appendix II. 

In the model, the magnitude 
0

q
v

k
k

vθ
=

=∑θ , henceforth referred to as “θ-MAP”, 

determines the spatial distribution of the brain synaptic sensitivity to the stimulus 

sequence. 

The subroutines used in this paper are available in MATLAB 5.3 code for any 

reproducible research: 1) the LL method to discretize hemodynamics approach, 2) the 

ML optimization algorithm for estimating the parameters of the model, and 3) the 

AICc introduced in order to carry out model selectivity. 

Results 

Synthetic data 

In this section, BOLD synthetic data was created using the original nonlinear 

hemodynamics approach (Fig. 1 (a)) to evaluate the consistency of the method. The 

hemodynamic approach can be mathematically formulated by a nonlinear and non-

autonomous Stochastic Differential Equations (SDE) system that relates a states 



vector tx  to the neuronal synaptic activity u t  (see Fig 1 and equation (1) in Riera 

et al. 2004). The LL method (Jimenez and Ozaki 2003) uses random measures to 

integrate the SDE in the vicinity of discretely and regularly distributed time instants 

assuming a local piecewise linearity (see equation 6 in Riera et al. 2004). Therefore, 

the LL formalism permits the conversion of a SDE system into a vector states 

equation with a background gaussian noise, where a stable reconstruction of the 

trajectories of the states vector is obtained by a one-step straightforward prediction 

(i.e. a nonlinear AR model). Finally, the BOLD signal relates to the states vector  

by a nonlinear observation equation (Buxton et al. 1998). 

t

( )( )

x

The method proposed in this paper was applied to the simulated data to fit model 

parameters { }, , ,k k k v
v v v vφ θ γ σΞ = . Note that in this particular case, the contribution of 

local dynamics was not included in the model (7). The IRF and ACF were estimated 

simultaneously using the recursive relationships (8) and (9) in combination with the 

explicit equation (II-7). In order to estimate model complexity, the AICc was 

minimized with respect to global parameters , , ,p q d δΛ = . { }

The hemodynamics approach generates two distinctive signaling modes: damped 

oscillations or an exponential decay behavior. The mean transit time in the post-

capillary venous compartment has been interpreted for steady-state conditions as the 

time constant of an equivalent analogical RC circuit (i.e. Windkessel theory). 

Therefore, changes in this parameter will produce alterations in the modus operandi of 

the micro-vascular control system, slowing down its dynamics, and therefore avoiding 

oscillations in the IRF and ACF when the parameter is increased. Fig. 2 shows the 

results of applying our method to BOLD signals generated with a transit time of 0.1 

Secs. In Fig. 2 (a), the actual (red dots) and estimated (blue line) IRF overlap (top-



right). On the top-left, a similar plotting is done for the ACF. The actual IRF is 

obtained after applying the LL method to the nonlinear hemodynamics approach, with 

a stimulus sequence defined by a unit pulse (a gaussian of around 200 mSecs of 

duration) at time 0. The actual ACF is calculated after feeding the hemodynamic 

approach with a gaussian white noise (see Fig. 3 (b) in Riera et al. 2004). The original 

BOLD signal (black) and the free-noise realization (blue) after fitting was performed 

are plotted (middle). The red line indicates the temporal course of the potential drift. 

The innovation process (which showed a histogram with gaussian distribution) and 

the block representation of the stimulation paradigm are shown in the bottom of the 

figure. 

 

Fig. 2a. The results obtained from fitting the ARx model to synthetic data created 

from the hemodynamics approach, with a transit time of 0.1 Secs, via the LL 



discretization method. The panel on the top shows the overlap of actual (red dots) and 

estimated (blue line) functions (IRF on the right and ACF on the left). In the middle, 

the original BOLD signal (black) and the free-noise realization (blue) after fitting 

overlap with the temporal course of the potential drift. The innovation process and the 

stimulation paradigm are shown in the bottom panel. 

Fig. 2 (b) presents the values of the global parameters for which the AICc (top) 

reached a non-local minimum value. The vertical line identifies the minimum, while 

in the other two graphs the values of 4p =  and 3q =  can be read. 

 

Fig. 2b. The AICc is used for selecting a model. The global parameters for which the 

AICc (top) reached a non-local minimum value are exposed (i.e. vertical line). 

Motivated by previous results obtained by our group (see discussion in Riera et al. 

2004), the authors were interested in assessing an extreme case where the IRF and 

ACF do not oscillate. This type of dynamics is observed in BOLD signals when the 



transit time is increased considerably. In a recent paper, large transit times were 

reported using direct PET study with H(2)(15)O and (11)CO (Ito et al. 2003). Fig. 3 

shows the same plots as Fig. 2 above, but in this case the transit time was set at 6 Secs. 

Both the IRF and the ACF exhibited an exponential decay behavior, which can be 

interpreted in the same way as a low-pass RC filter with small cutoff frequency (Fig. 

3 (a)). In this example, the AICc reaches a minimum for 5p =  and . The 

histogram of the innovation process also showed a gaussian distribution in this case 

(Fig. 3 (b)). 

3q =

 

Fig. 3a. The same panels as in Fig. 2 (a) are presented, but in this case a transit time 

of 6 Secs was used in the hemodynamics approach. 



 

Fig. 3b. The AICc is used for selecting a model (same panels as in Fig. 2 (b)). 

Furthermore, the authors consider it important to illustrate that the potential drift 

appearing in BOLD signals, which has been generally associated with artifacts, could 

be physiological in nature. In Fig. 4, a significant potential drift appears by simply 

increasing the strength of the randomness of the additive physiological noise (i.e. 

vector { }ig=g , equation (1) in Riera et al. 2004), which produces strong DC 

fluctuations in the dynamics (see red curve). 

 

Fig. 4. The potential drift originated from nonlinear fluctuations of the hemodynamics 

approach due to stochastic inputs. 



This was our chief motivation for including a polynomial series of “time” in the 

model (7) to account for the effect of potential drifts in a unified theoretical formalism. 

Real data 

The method was applied to actual BOLD data obtained under the two different 

experimental paradigms as described in methods section. The fMRI images were 

previously preprocessed as detailed in that section and with the help of the SPM99 

toolbox. The θ-MAP figures will be presented only for the champion data in each 

experimental paradigm, but tables (with the hot-spots Talairach coordinates) and a 

figure (with their 3D representation on the “Statistical Centroid” of the McConnell 

Brain Imaging Centre, Montreal) will be used to summarize the results obtained in all 

subjects. Fig. 5 shows the results of the champion data for the case of the visual 

paradigm (checkerboard). In the top-left of the figure, the θ-MAP for different slices is 

presented, showing high precision in the localization of the V1 area. A damped 

oscillating IRF and ACF, respectively, are shown on the (top/middle)-right side. The 

superposition of the actual BOLD signal and the free-noise realization after model 

fitting for the hot-spot in the V1 area is plotted on the middle-left. The innovation 

process for that particular voxel (also with a histogram showing a gaussian 

distribution) and the specific experimental design paradigm are shown on the bottom-

left. Finally, the AICc illustrates the model selectivity for dynamics complexity 

(bottom-right). 

In order to establish credibility for the results reported by our method, an SPM99 

analysis was performed after applying the classical SPM99 smoothing filter to the 

data. The on-off contrast T-test using “glass images” (maximum intensity projections) 

is presented in Fig. 6. The red mark shows the hot-spot in the visual primary area. 



 

Fig. 5. The results obtained from fitting the NN-ARx model to real data obtained by 

applying the visual paradigm (champion subject). The panels show the following: 

different slices of the θ-MAP superposed on the individual MRI (top-left), the IRF and 

ACF ((top/middle)-right), the superposition of the actual BOLD signal and the free-

noise realization after model fitting for the hot-spot in V1 (middle-left), the innovation 

process for that particular voxel with the specific experimental design paradigm 

(bottom-left), and the AICc for model selection (bottom-right). 

Table-I summarizes the Talairach coordinates of hot-spots (obtained using both 

methods) for all subjects. 



 

Fig. 6. The output of the SPM99 Toolbox (i.e. T-test and design matrix for the visual 

paradigm). 

V1 Subject 
SPM θ-MAP 

#1 -2, -90, -2 12, -84, -4 
#2 -6, -86, -6 -4, -90, -8 
#3 4, -86, -4 14, -94, -2 
#4 -8, -88, -14 14, -90, -2 
#5 -2, -92, -14 10, -86, -14 
#6 -10, -86, -4 10, -84, -10 
#7 -12, -98, -4 12, -90, -8 
#8 0, -82, -12 14, -84, -4 
#9 -8, -92, -8 -4, -94, -6 
#10 Error 10, -90, 8 

Table-I. The Talairach coordinates of hot-spots for the visual paradigm (V1) obtained 

via SPM analysis and the NN-ARx method. 

The results for the motor paradigm (right hand movement) are presented in Fig. 7. 

The θ-MAP displays activation in M1, Cerebellum and Cingulate Motor Area (CMA). 

Note that in this case, the IRF and the ACF for the M1 area exhibit an exponential 



decay function-shape. Riera et al. (2004) reported the same result using the LL filter 

to estimate the parameters of the hemodynamics approach under a Kalman’s system 

identification strategy. 

 

Fig. 7. The results obtained from fitting the NN-ARx model to real data obtained by 

applying the motor paradigm (champion subject). These are the same panels as in Fig. 

5, but in this case for the hot-spot in M1. 

In that paper, the estimated transit time was consistently larger than those stated in 

other comparative studies, which could explain the non-pronounced slope of the 

increasing and decreasing phases of the BOLD signal. Fig. 8 shows the T-test glass 

images for the same champion data. The red mark shows the hot-spot in the motor 

primary area. Table-II summarizes the results for all subjects in this particular 

experimental paradigm. 



 

Fig. 8. The output of the SPM99 Toolbox (i.e. T-test and design matrix for the motor 

paradigm). 

M1 Cerebellum CMA Subject 
SPM θ-MAP SPM θ-MAP SPM θ-MAP 

#1 -32, -24, 52 -28, -22, 54 18, -56, -28 18, -54, -26 -10, -8, 42 -6, -10, 46 
#2 -40, -22, 64 -30, -22, 62 20, -60, 52 16, -64, -32 -4, -34, 50 -16, -20, 36 
#3 -38, -20, 64 -38, -24, 52 18, -56, -26 18, -58, -26 -4, -6, 58 -6, -6, 44 
#4 -38, -26, 56 -30, -26, 52 22, -56, -32 20, -60, -32 -6, -22, 42 -6, -4, 44 
#5 -38, -14, 60 -32, -24, 54 18, -62, -24 20, -62, -24 -4, -10, 46 -4, -6, 44 

Table II. The Talairach coordinates of hot-spots for the motor paradigm (M1, CMA 

and Cerebellum) obtained via SPM analysis and the NN-ARx method. 

There is a very good correspondence between the significant active brain areas 

detected using T-test in the SPM99 toolbox and those reported using the θ-MAP, as 

proposed in our model. A 3D cluster representation of Tables I and II is shown in Fig. 

9. The Statistical Centroid can be used to illustrate how those points (spheres) are 

grouped around V1, M1, Cerebellum and CMA areas for both, SPM T-test (red) and 

θ-MAP (green) method. 



 

Fig. 9. A cluster representation on the Statistical Centroid (Visual and Motor 

paradigms). Ellipsoids with different color transparencies limit the involved brain 

areas (V1, M1, CMA and Cerebellum). The hot-spots (spheres) obtained using the 

NN-ARx method and the SPM toolsbox are shown in green and red, respectively. 

Additionally, the contributions to each voxel from the near-neighborhood dynamics 

were also evaluated. The total influence ( )2

v

v
v

v
π χ ′

′∈Ω

= ∑ v  at v-th voxel could be 

interpreted as the magnitude of short-range vascular connections with its 

neighborhood. Fig. 10 shows a 3D representation of values vπ  on a standardized 

anatomical image for the champion subject in the visual and motor task, respectively. 

It can be noted that there is no formation of particular spatial patterns, which could 

suggest a non-functional organization of the short-range connections at the level of 



the vascular network. However, local correlations exhibited very strong anisotropic 

properties (see blue arrows in Fig. 10, where factors v
vχ
′  were plotted in their 

respective directions), a fact which may be related to an inhomogeneous distribution 

of capillary beds in the cortex at a microscopic level (Harrison et al. 2002). 

 

Fig. 10. A 3D reconstruction of the spatial distribution of the total influence vπ  for 

each paradigm is presented. The blue arrows show the 2D anisotropic factors (i.e. 

slice-view) for different directions in a particular voxel. The length of the arrow is 

proportional to the magnitude of the factor v
vχ
′ . 

Discussion 
In this paper, the authors claim that θ-MAP can be used as an alternative way to 

perform fMRI analyses, with a clearer and more direct physiological interpretability 

of the results being achievable. When we do statistical modeling, there are two tactics: 

one of them is data-based with no theoretical model structure imposed, and the other 

is based on models with some degree of constraint coming from theoretical (i.e. 

physiological) assumptions. In modeling fMRI data we are interested in finding the 

IRF and also a noise structure model (i.e. ACF) in a common and unique formalism, 



since these two magnitudes cannot be separated. It is clear from a time series analysis 

point of view that the noise structural model will be affected when particular 

assumptions about the IRF/HRF are made. The statistical method suggests that all you 

can rely on is the simultaneous fitness of the data (i.e. ML and AIC). In general, the 

fitness is better if constraints on both the IRF/HRF and the background noise are 

imposed, which explains why the authors have proposed the NN-ARx approach. 

Introducing a priori information via bayesian modeling can be considered adequate 

depending on whether the constraint (a forced assumption) is good or not. Past 

experience has shown the authors that these theoretical constraints are not always 

suitable, and this is mostly because the environment where the data is generated does 

not fit the idealistic theoretical models as much as we would like. The ACF of the 

fMRI data presented in the two experimental situations are good examples of this. The 

mechanism of generating fMRI data is much more complicated than using ARMA, 

but the point is to find the most useful approximation for “describing” (fitting) and 

“interpreting” the data. This discussion is motivated by studies carried out 30 to 50 

years ago in mechanical, electrical and control engineering. Engineers at that time 

thought it was critical to carry out systems identification at the beginning. Therefore, a 

lot of experiments involving the inputting of periodic stimuli (i.e. sinusoidal waves) 

were performed during that period, with an analysis of the output data, showing that 

the best way to identify the system was to input white noise. 

EEG and fMRI fusion 

In this general formalism, it has become very clear how fMRI and EEG data fusion 

can be performed. It is the belief of the authors that, at the level of synapses, the 

electrophysiological activity coming from complementary brain areas starts affecting 



the hemodynamical nonlinear response by the same hierarchical mechanisms as those 

activated during external stimulations via afferent pathways. Figure 11 illustrates the 

theoretical diagram that prompted us to propose a basic model for fMRI and EEG data 

fusion. In this case, a system of coupled oscillators is suggested, which differentiates 

two intrinsic dynamics at the v-th voxel: a fast state equation that accounts for 

synaptic activation v
tα  and a slow state equation that describes the vascular changes 

v
tβ . 

1 1 0

vN l r
v vv v v
t k t k k t k d

v k k
A s v

tα α θ′ ′
− − −

′= = =

= +∑∑ ∑ ς+

v
t

   Fast dynamics 

( )
1 0

m s
v v v v
t k t k v k t k

k k
B fβ β ρ χ α−

= =

= +∑ ∑ ζ− +   Slow dynamics 

 

Fig. 11. The diagram of the bottom-up model for the fusion of EEG and fMRI is 

illustrated. The system includes three blocks: a linear filter generating the evoked 

transients e , which plays the role of an integrator at the electrophysiological level 

inside the neurons, a fast dynamics linear subsystem emulating the neuron-astrocyte 

interrelationship at the synaptic level; and finally a slow dynamics linear subsystem 

(the dashed-line box) that mimics hemodynamics at the level of the micro-vascular 

v
t



building block. The connection between the fast and slow subsystems is only in one 

direction (i.e. synaptic activity creates a metabolics/oxygen demand, and will, 

therefore, induce an increase of blood flow via vascular regulation mechanisms). The 

factor vρ  could be an indicator of the susceptibility of the capillary bed to the flow-

inducing signal. The magnitude v
tα  reflects changes in the synaptic activation, and 

may be associated with variations in the concentrations of specific neurotransmitters. 

The magnitude v
tβ  will capture fluctuations in the blood volume v  at the post-

capillary venous compartment due to unbalanced inner inf  and outer ( )outf v  blood 

flows, which could also include the dependency of the BOLD signal with the 

concentration of de-oxy hemoglobin. 
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Note that, a new evoked transient e Av vv v
t k k

k v v
sα θ′ ′

− − −
′= ≠

= +∑∑  is defined at the 

neuronal-astrocyte scale, to which there are contributions not only from activations 

induced by the stimulus sequence but also from those emerging from 

interrelationships with other brain areas. The coefficients  and v
kB , associated with 

the fast and slow dynamical AR models, will determine the IRFs for two dissimilar 

dynamic modes. The random processes ( )0,v vN ας κ∼  and (0,v Nζ ∼  define the 

system white noise introduced at the level of the synaptic cleft and the vasculature, 

respectively. The magnitudes  and v
tβ  are hidden state-variables; hence, ML 

estimators cannot be explicitly determined from data/parameters, instead they can be 

calculated via recursive Kalman filter strategies (see Yamashita et al. 2004 and Riera 

et al. 2004 for the respective application to EEG and fMRI data). In the 

hemodynamics approach the function ( )f ⋅  has been considered linear (Friston et al. 

2000a). However, the authors believe that it is still enigmatic, so its definition could 

t



be of great motivation for future cooperative works between physiologists and 

theoreticians. Valdes et al. (1999) have patented a very preliminary idea, but it uses 

the Bayesian formalism and lacks a model for the temporal dynamics of physiological 

processes. 

The EEG observation equation is given by the solution of the forward problem for the 

particular volume conductor model (i.e. lead field vector kev

G
), with ( )0,e

t eNη σ∼  

representing the instrumental error (i.e. white noise) and mvG  being the orientation of 

brain electrical sources. That electrical source is a vector field that results from the 

spatial-temporal integration of thousands of small post-synaptic electric potentials in 

the micro-column range. By intuition, the magnitude v
tα  must be linearly proportional 

to the amplitude of such superimposed electric potentials. The time series of voltage 

differences between the electrode “e” and a common reference is symbolized by 

. e
tV

1

vN
e v v

t ev t
v

V k m e
tα η

=

= ⋅ +∑
G G   1, , ee N= "  (Number of electrodes) 

The observation equation for the fMRI was deduced by Buxton et al. (1998), having 

established a direct nonlinear relationship between the BOLD signals and two 

intrinsic physiological variables: the blood volume and de-oxy hemoglobin 

concentration. However, a linear approach can be introduced to simplify that static 

non-linearity. The time series of BOLD signal is symbolized by  in our proposal, 

with 

v
ty

(0,v
t N )vη σ∼  representing instrumental error (i.e. white noise) and v

tµ  the 

above-mentioned potential drift. The effects produced by scaling factors in the BOLD 

signals are removed by using the voxel dependent parameter vυ . 

v v v
t t v ty v

tµ υ β η= + +  



The fact that temporal scales of EEG (mSecs) and fMRI (Secs) differ considerably, 

suggests the use of a linear operator kχ  to low-pass filter the fast synaptic activation 

would be appropriate. Note that equation (7) can be deduced from this more general 

model for data fusion. The model parameters 

{ }, , , , , , , , ,v vv v v v v
k k v v e v kA B α β ,v

k m vρ υ κ κ σ σ γ′Ξ = θ G  must be estimated for each voxel from 

EEG/fMRI data fusion. Some of these parameters can be inferred from other 

neuroimaging techniques (i.e. { }vv
k kAA ′=  matrices can be a priori designed from 

diffusion tensor imagines and structural MRI has been used to set m  in the EEG 

inverse problem). The global parameters 

vG

( ), , , , ,l m d r s δΛ =  can also be estimated via 

AICc to determine model complexity. 

Causality/Connectivity Patterns 

As a whole, the methodology allowed us to estimate long-term connectivity by a 

simple examination of the unexplainable variances and covariances of the innovation 

process (however, this is just an exploratory method and a more exact formulation to 

include connectivity/causality interrelationships is now in the process of being 

revised). Fortunately, several works on this subject have recently appeared in the 

literature. Harrison et al. (2003), for example, have proposed a novel method which 

allows the estimation of nonlinear interactions between brain areas by using a 

multivariate AR with some extended bilinear variables. The model introduced a 

spatial variance-covariance matrix, and, by definition, the AR coefficients absorbed 

most of the correlation structure of the noise for the temporal varying BOLD signal. 

An alternative proposal to study nonlinear and non-synchronous interactions by 

testing linear and synchronous models against more general models was presented by 



Lahaye et al. (2003). In that paper, it was proved that instantaneous interactions are 

less significant than interactions that consider the history of the BOLD data. They 

used time embedding and Volterra expansions to explore the interaction between two 

brain regions “a” and “b” (linear and nonlinear for both  and ). a → a b a→

Non-linearities 

Finally, the authors would like to discuss the recent tendency to incorporate nonlinear 

behaviors in the general linear models formalism. Friston et al. (1998b) have 

generalized the methodology that uses basis functions set to include nonlinear kernel 

contributions in the Volterra expansion. Josephs and Henson (1998) presented an 

excellent review that proposes linear approaches in the context of more general 

nonlinear dynamic models. In our opinion, a feasible generalization of the model 

proposed in this paper to include nonlinear BOLD dynamics can be carried out using 

state dependent AR coefficients in formula (7), such as in the case of the exponential 

AR model (Haggan and Ozaki 1981). 
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Appendix I. Laplacian pre-filtering 

The most commonly used filtering technique applied to raw fMRI data is the gaussian 

kernels. Volumetric smoothing kernels with a full-width half-max in the range of 10 

mm have been suggested as optimal for event-related fMRI experiments (Hopfinger et 

al. 2000). The use of such filters introduces an undesirable spatial correlation. In our 

model, we should be able to suitably distinguish between the two main sources of 

correlation, both physiological and nuisance contributions. 

At first, it is assumed that ( )1, , v
tN

t t tx x= "

( ) = Σxx

x  is a random field with a variance-

covariance matrix Cov . Therefore, a spatial whiteness is obtained by 

applying the inverse filter on the original data y . After some exploratory 

searching, we found evidence of the local nature of that instantaneous correlation, 

which suggested the use of the Laplace inverse operator filter 

,t tx x

1/ 2
t

−= Σxx xt

1L−Σ =xx  to eliminate it 

and to guarantee instantaneous noise orthogonality. It can be mathematically 

formulated as . The symbol 6
v

v v
t t

v
y x

′∈Ω

= − ∑ v
tx ′

vΩ  represents the neighborhood of the 

v-th voxel. 



Appendix II. ARMAx model: generalized impulse response and autocorrelation 

functions 

In this appendix, for mathematical simplicity, superscript to label voxels has not been 

included. The AutoRegressive Moving-Average (ARMA) model is defined by: 

1 1 1 1t t p t p t t qy y y t qφ φ ε ψ ε ψ− − −= + + + + + +" ε −"     (II-1) 

where tε  is a temporally independent random element (called “innovation”) with zero 

mean and finite variance 2σ . Equation (II-1) can be rewritten using the backshift (or 

lag) operator B 1t( t )Bx x −=  as follows: 

1 1(1 ) (1 )p q
p t qB B y B B tφ φ ψ ψ− − − = + + +" " ε

t

 

or using algebraic polynomial notation: 

( ) ( )tB y B εΦ = Ψ         (II-2) 

An  model is “stationary” if all the zeros of ( ,ARMA p q) ( )BΦ  lie outside the unit 

circle (some authors refer to this fact as the “causality” condition (Brockwell and 

Davis 1987). Under this condition, an ( ),ARMA p q  model has “Wold representation” 

2
1 2(1 ) ( )t ty h B h B H B tε ε= + + =" ,      (II-3) 

that is, the process y  is represented by the infinite sum of the past innovations t

1, ,t tε ε − " . The series of the coefficients h  is called the impulse response function 

since the function h k  can be regarded as the response at times k  to a unit pulse 

input at time 0 (Fig. II (a)). 

k

( )

Substituting equation (II-3) into equation (II-2), the following equation holds: 



( ) ( ) ( )t tB H B Bε εΦ = Ψ        (II-4) 

Because both sides of (II-4) must be identical as a polynomial of B , equating the 

coefficients of every degree kB  leads to the system of equation: 

1 1 1

2 1 1 2 2

3 2 1 1 2 3 3

h
h h
h h h

φ ψ
φ φ ψ
φ φ φ ψ

− + =
− − + =
− − − + =

#

       (II-5) 

The impulse response function  can be obtained from the coefficients kh kφ  and kψ  by 

solving system (II-5) recursively from the topmost equation. In practical applications, 

it is usually sufficient to obtain h  up to some large value . The system of equations 

(II-5) can be summarized by: 

k k

min( , )

1

k p

k k k k
k

h h kφ ψ′ ′−
′=

− ∑ =        (II-6) 

with  and 0 1h = 0kψ =  for . It should be noted that once the Wold 

representation is obtained, the autocorrelation function 

k q>

( )R τ  of output  could be 

easily computed from the auto-covariance function 

ty

( )C τ . 

( ) ( ) 2

0
t t k k

k
C E y y h hτ ττ σ

∞

+ +
=

= = ∑  

( ) ( ) ( )0R C Cτ τ=  

( )
0 0

k k k k
k k

R h h h hττ
∞ ∞

+
= =

= ∑ ∑        (II-7) 

where  denotes expected value. The Fig. II (b) illustrates how the white noise ( )E ⋅ tε  

is colored at the output of the ARMA model. A symbolic function R ( )τ  is also 

plotted. 



Henceforth, the extension to an ARMA model with an exogenous variable (ARMAx) 

is immediate. An  model is defined by: ( , ,ARMAx p q r )

r

1 1 1 1

0 1 1

t t p t p t t q t q

t t r t

y y y

s s s

φ φ ε ψ ε ψ ε

θ θ θ
− − − −

− −

= + + + + + + +

+ + + +

" "
"

   (II-8) 

where  is an (deterministic) exogenous variable independent from the innovation 

process 

ts

tε . Using the backshift operator, equation (II-8) is rewritten as: 

( ) ( ) ( )t t tB y B B sεΦ = Ψ +Θ        (II-9) 

Note that 
0

( )
r

k
k

k
B Bθ

=
∑Θ = . Then, the equation (II-9) can be finally rewritten as: 

( ) ( )t tB y B εΦ = Ψ         (II-10) 

The extended variable ( , t
t t tsε ε= )  is a vector that comprises both the innovation 

process and the exogenous variable. The extended polynomial ( )( ) ( ) ( )B B BΨ = Ψ Θ  

is a vector which summarizes two equivalent moving-average polynomials for process 

tε  and variables . In the same way as for a pure ARMA model, if all the zeros of ts

( )BΦ  lie outside the unit circle, the process  has a Wold representation. Then, the 

equation (II-9) can be finally rewritten as: 

ty

( )ty H B tε=          (II-11) 

where ( ) [ ( ) ( ) ]H B H B B= Γ

kg

 represents the generalized impulse response function, 

which includes the original impulse response function  (i.e. obtained also from II-6) 

involved in the calculation of autocorrelation function and a new impulse response 

function  for the exogenous variable. It is not difficult to show that the coefficients 

 related to the polynomial 

kh

kg ( )BΓ  can be obtained by recursively calculating: 



min( , )

1

k p

k k k k
k

g g kφ θ′ ′−
′=

− =∑ , with 0g 0θ=      (II-12) 

Fig. II (c) exemplifies the function ( )g k , and is interpreted as the response at times  

to an exogenous unit pulse input at time 0. 

k

 

Fig. II. The IRFs for an ARMA model: (a) without ( h ) and (c) with ( ) exogenous 

variables are illustrated. Panel (b) shows a symbolic picture, where a white noise 

input is colored by the linear system, producing a random process with an ACF 

k kg

( )R τ  

at the output. 



Appendix III. ML estimators and AICc for model selection 

The system identification contains two sequential steps: a) the estimation of model 

parameters  for the NN-ARx in each voxel, and b) a model selection (i.e. determine 

the global parameters Λ ) by using the AIC. The likelihood function for the time 

series  of BOLD signal in the voxel v is given by: 

vΞ

, ,v
1 Ny " vy

)v
−

)v

1 1 1 1
1

( , , , , , ; ) ( , , ) ( | , , ;
N

v v v v v v v v v v
p p N p t t t p

t p

p y y y y p y y p y y y+ −
= +

Ξ = Ξ∏" " " "  

Where 1( , ,v
pp y y"  is the distribution for the initial value  and 1 , ,v

py " vy

2

1 22
1 0

1 1( | , , ; ) exp
22

p r
v v v v v v v v v v v
t t t p t t k t k t k t k d

k kvv

p y y y y y sµ φ θ
σπσ

− − − −∆ − −
= =

   Ξ = − − − −  
   

∑ ∑" − ξX  

The time series on the nearest neighbor voxels are approximately handled as the 

exogenous variables (i.e. not random variables). Under the assumption of the gaussian 

innovation, the log-likelihood function can be represented as: 

( )
2

2
2

1 1 0

1

1 1log 2
2 2

log ( , , )

pN r
v v v v v v v

v t t k t k t k t k d
t p k kv

v v
p

y y s

p y y

πσ µ φ θ
σ − −∆ − −

= + = =

 
Ξ = − − − − − 

 
+

∑ ∑ ∑A

"

− ξX v

 (III-1) 

The third term in the formula (III-1) can be neglected since the first and second terms 

are dominant when the number of data N  increases. Therefore, the ML estimators of 

 can be obtained by maximization of the sum of the first and the second terms in 

(III-1), which actually corresponds to the simple least squares estimators. 

ˆ vΞ

The global parameters Λ  should be determined in an objective way using any of the 

information criteria (i.e. such as AIC, BIC, SIC). In this paper, we would like to 

employ the corrected version of AIC, (i.e. AICc), which has been reported to improve 

the correctness of the AR order selection in small sample simulations (Hurvich and 

Tsay 1989). The AICc for our model is given by: 



( ) ( )
2

2 ( 1)ˆ2
2

2 ( 1)
ˆlog

2

pv

v p

p
v v

v p

N N
AICc

N N

N N
N N

N N
σ

 +
Λ = − Ξ + 

− −
+

= +
− −

∑

∑

A
     (III-2) 

Where  is the number of parameters pN vΞ  in the model and N  is the number of 

voxels. We determine Λ  by minimization of AICc (III-2). It was implicitly assumed 

that voxels were statistically independent. 

v


	1Riera J., 2Bosch J., 3Yamashita O., 1Kawashima R., 4Sadato N., 5Okada T., 3Ozaki T.
	Abstract
	Introduction
	Methods
	
	Experiments design
	Data pre-processing
	Theoretical Model
	The consequences of the convolution model
	The classical linear model
	The NN-ARx model and the hemodynamics approach




	Results
	
	Synthetic data
	Real data


	Discussion
	
	EEG and fMRI fusion
	Causality/Connectivity Patterns
	Non-linearities


	Acknowledgements
	References
	
	
	
	Appendix I. Laplacian pre-filtering





