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In this article, we propose a statistical method to evaluate directed

interactions of functional magnetic-resonance imaging (fMRI) data.

The multivariate autoregressive (MAR) model was combined with the

relative power contribution (RPC) in this analysis. The MAR model

was fitted to the data to specify the direction of connections, and the

RPC quantifies the strength of connections. As the RPC is computed in

the frequency domain, we can evaluate the connectivity for each

frequency component. From this, we can establish whether the

specified connections represent low- or high-frequency connectivity,

which cannot be examined solely using the estimated MAR coefficients.

We applied this analysis method to fMRI data obtained during visual

motion tasks, confirming previous reports of bottom-up connectivity

around the frequency corresponding to the block experimental design.

Furthermore, we used the MAR model with exogenous variables

(MARX) to extend our understanding of these data, and to show how

the input to V1 transfers to higher cortical areas.
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Introduction

dFunctional specializationT and dfunctional integrationT are two

fundamental principles of brain organization. Functional special-

ization suggests that a cortical area is specialized for certain aspects

of perceptual or motor processing. The cortical infrastructure

supporting a single function might then involve many specialized
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areas, the cooperation of which is mediated by the functional

integration of these areas.

In functional magnetic-resonance imaging (fMRI), statistical

parametric mapping (SPM) is a well-established procedure used

to localize the cortical areas related to a certain cognitive

process (Friston et al., 1995; Worsley et al., 2002). Much of the

experimental evidence regarding cortical specialization has been

analyzed using SPM. Nowadays, increased attention is paid to

the integration of specialized areas, and the development of

statistical methods that can be used to analyze this integration is

highly desired (Lee et al., 2003). Integration within a distributed

system can be understood in terms of deffective connectivityT.
Effective connectivity originally was defined as bthe influence

that one neural system exerts over anotherQ (Friston, 1994).

Related to this definition of effective connectivity, in this

article, we use the term directed connectivity to define any

directed relationship of the BOLD signals between specific

cortical areas and this definition could be operational or

statistically descriptive.

One of the most common methods for the evaluation of

effective connectivity is the structural equation model (SEM)

proposed by McIntosh and Gonzalez-Lima (1994). Although the

SEM works well to quantify the strength of the influence one

area exerts on another, the direction of the connections between

the regions of interest (ROIs) must be determined a priori. This

limitation exists because SEM exploits only the instantaneous

covariance structure and therefore discards detailed temporal

information. However, it is possible to overcome this limitation

by using causal analysis in the field of time-series analysis. The

comprehensive definition of causality was introduced first by

Granger (1969). His definition was based on the common belief

that bthe cause should precede the resultQ, and thus he defined dXt

causes YtT, such that the past of a time series Xt can predict the

future of another time series Yt. The primary point of this
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definition is that a directed relationship between Xt and Yt is

based on their temporal order.

In fMRI, few studies have attempted to establish causality

based on time series. Granger causality in relation to fMRI

effective connectivity has been explicitly introduced for the

first time by Goebel et al. (2003). They have proposed

Granger causality map applying the multivariate autoregressive

(MAR) model and Geweke’s measure (Geweke, 1982) in order

to investigate the directed interactions between a reference

region and the remaining brain regions. Harrison et al. (2003)

have also done some pioneering work using the Granger

causality concept of effective connectivity. In this literature,

the MAR model (including the bilinear term) is fitted to a set

of time series obtained from the ROIs, and the direction of

connections is specified by testing whether the estimated

coefficients are significantly larger than zero. In one paper

(Lahaye et al., 2003), the authors reported that the inclusion

of temporal information improved the model’s fit significantly;

this group defined their connectivity measure based on the

likelihood-ratio test for a bivariate time series. Finally, the

dynamical causal modeling (DCM) proposed by Friston et al.

(2003) is a novel approach that emphasizes the construction of

a reasonably realistic neuronal model of interacting cortical

regions.

In this article, we focus on a statistical method to evaluate

directed connectivity of BOLD signals. Initially, the MAR model

was fitted to a set of time series in the ROIs. Then, the relative

power contribution (RPC) as proposed by Akaike (1968) was

calculated using the estimates of the parameters. The RPC

quantifies the contribution of a specific time series as distinct

from the others. Hence, we obtained a directed measure for every

pair of connections between the ROIs. This work can be

considered an extension of Harrison’s method, in the sense that

it is possible to evaluate both the direction and the strength of

connectivity at the same time. In addition, this RPC is extended

to the MAR model with exogenous variables (MARX), so, for

example, the box-car function in a block design can be

established as the input to a cortical area separate from white

noise (intrinsic noise).
Methods

We used a three-step procedure to evaluate the directed

connectivity in our fMRI data: firstly, specification of the ROIs

and extraction of time series from the ROIs; secondly, identifica-

tion of the model; and thirdly, post-processing using the estimated

parameters to quantify connectivity.

To pick up time series from ROIs, the following processes in

SPM software (http://www.fil.ion.ucl.ac.uk/spm/) were used:

slice-timing correction for the adjustment of the data-acquisition

timing; realignment to correct for subject movement; and

normalization to better define cerebral areas. Statistical analysis

was conducted with a general linear model and a representative

time series from each region, which was defined as the first eigen

vector of an ensemble of time series from voxels within a 6-mm-

radius sphere, where the center voxel of each region is the local

maximum of t-MAP. Some reports have explained the possible

effects of the various ways of specifying ROIs (Gavrilescu et al.,

2004; Goncalves and Hall, 2003); however, this is beyond the

scope of the current paper.
In previous papers, the second step corresponds to the use of the

MAR model with a bilinear term (Harrison et al., 2003), a higher-

order polynomial (Lahaye et al., 2003), or the directed graph of the

SEM assumed by an analyst (McIntosh and Gonzalez-Lima, 1994).

Here, we employed the MAR model,

Zt ¼
Xp
k¼1

A kð ÞZt� k þ et ð1Þ

or the MARX model,

Zt ¼
Xp
k¼1

A kð ÞZt�k þ wSt þ et ð2Þ

where qt is a white-noise process (innovation) with mean zero and

variance Ce. The d � 1 vector Zt = (z1,t,: : :,zd,t)V comprises the

ensemble of d time series (adjusted to have a mean of zero) in the

ROIs. St is an external input of a scalar process and w is a vector of

the size d � 1 that determines the magnitude of St. The AR order is

denoted by p.

After estimating the parameters from the data (see Appendix A)

to quantify connectivity, it is necessary to manipulate these

estimates. This is because not a single coefficient, but rather p

coefficients Aij(1),: : :,Aij( p), are associated with the connectivity

from zj,t to zi,t. In the field of time-series analysis, various

measures and tests of causality have been proposed: for example,

the measures in frequency/time domain have been proposed for

(block) bivariate stationary time series purely based on the

Granger’s definition of causality (i.e., predictability) by Geweke

(1982) and Hosoya (1991), and their measures has been

extended to the multivariate stationary time series, respectively

(Geweke, 1984; Hosoya, 2001). Akaike (1968) has proposed the

RPC in frequency domain, which measures the causal relation-

ship of every pair of the variables in a MAR model of any

dimension by estimating the parameters only once. In the field

of biological engineering, some frequency-domain measures,

such as the directed coherence (DC) (Saito and Harashima,

1981), the partial directed coherence (PDC) (Baccala and

Sameshima, 2001), and the directed transfer function (DTF)

(Kaminski et al., 2001), have been proposed. As the RPC seems

to have intuitive interpretation of the innovation contributions

(see Discussion) and makes use of the whole covariance

structure of ROIs, we applied this measure (see Fig. 1 for

schematics of the RPC).

Relative power contribution

The parametric spectrum of the MAR model can be calculated

from the AR coefficient A(i), (i = 1,: : :,p) and the innovation

covariance matrix Ce as follows (see any standard textbook in

time-series analysis for more details; for example, Chapter 3 of

Shumway, 2000),

PZ fð Þ ¼ H fð ÞCeH̄ fð ÞV; ð3Þ

where H̄ and HV are the complex conjugate and transpose of a

matrix H, respectively. f denotes the frequency ranging from 0 to

0.5 (the highest frequency 0.5 corresponds to 1/(2TR) Hz). The

power-spectrum matrix is denoted by Pz( f), of which the diagonal

http://www.fil.ion.ucl.ac.uk


Fig. 1. Schematic figure of the RPC measure in the case of three variables. The power spectrum of each variable can be decomposed to the power contribution

from every variable which is represented by the shaded areas in each plot. The RPC measure can be obtained by normalizing these contributions.
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entries Pii( f) and nondiagonal entries Pij( f) represent the power

spectrum of the ith time series zi,t and the cross spectrum between

zi,t and zj,t, respectively. The matrix H( f), which describes the

transfer functions (frequency response) from a set of the innovation

process qt to a set of the time series Zt, is given by

H fð Þ ¼ I �
Xp
j¼1

A jð Þe �i2pf jf g

!�1
0
@ ð4Þ

where i ¼
ffiffiffiffiffiffiffiffiffi
� 1

p
.

Here, the innovation processes are assumed to be mutually

uncorrelated, that is, the matrix Ce is diagonal,

Ce ¼ diag r2
1;
: : :; r2

d

� �
: ð5Þ

Then substituting Eq. (5) into Eq. (3) leads to

Pii fð Þ ¼
Xd
j¼1

j Hij fð Þ2 j r2
j ; i ¼ 1;: : :; dð Þ: ð6Þ

This equation indicates that the power spectrum of zit at

frequency f can be decomposed to d terms jHij( f)j2 rj
2, (i =

1,: : :,d), each of which can be interpreted as the power contribution
of the jth innovation ej,t transferring to zi,t via the transfer function

Hij ( f). Thus, jHij( f)j2 rj
2, (i = 1,: : :,d) can be regarded as the

power contribution of the innovation ej,t on the power spectrum of

zi,t. Finally, the RPC is defined as a ratio of each contribution to the

power spectrum Pii( f):

RjY i fð Þ ¼
j Hij fð Þ2 j r2

j

Pii fð Þ : ð7Þ

The RPC is computed for every pair of i and j, and for every

frequency f, hence the RPC gives a quantitative measurement of the

strength of every connection for each frequency component. Note

that for any i, j, or f, the ratio RjY i( f) always ranges from 0 to 1.
Extended relative power contribution

In real applications, we sometimes observe that the

specified innovations are correlated. Since the RPC assumes

that the innovations are mutually uncorrelated, this measure

cannot be applied directly. One ad hoc way might be to

neglect nondiagonal elements of the innovation correlation

matrix and apply the original RPC. The other way is to

employ the extended RPC (ERPC) proposed by Tanokura and

Kitagawa (2004), which is the extension of the RPC to the

case when the innovations are modestly correlated. The ERPC

supposes that the correlated innovation consists of inseparable

cross-correlated component and its own uncorrelated compo-

nent. Hence, the power spectrum of each time series is

decomposed to the contributions of uncorrelated portion of the

innovation as well as those of inseparable cross-correlated

portion.

For the derivation of the ERPC measure, we firstly consider

the following decomposition of the innovation correlation matrix

Re,

Re ¼
Xd
i¼2

Xi�1

j¼1

j qij j JijJVij þ diag s1;: : :; sdð Þ ð8Þ

where qij is a ij component of Re, Jij is a vector of size d � 1

defined as,

Jij ¼ 0;: : :0; 1
i

; 0: : :0; 1
j

; 0: : :0

� 	V
if qij z 0

Jij ¼ 0;: : :0; 1
i

; 0: : :0; � 1
j

; 0: : :0

� 	V
if qij b 0
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and si ¼ 2�
Pd

j¼1 j qij j i ¼ 1;: : :; dð Þ. Note that this decom-

position is uniquely determined as easily shown from the

following example,

1 0:5 0:3

0:5 1 � 0:2

0:3 � 0:2 1

2
64

3
75 ¼ 0:5

1 1 0

1 1 0

0 0 0

2
64

3
75þ 0:3

1 0 1

0 0 0

1 0 1

2
64

3
75

þ 0:2

0 0 0

0 1 � 1

0 � 1 1

2
64

3
75

þ diag 0:2; 0:3; 0:5ð Þ:

Since the covariance matrix and the correlation matrix are

related by the equation Ce = diag(r1,: : :,rd)d Red diag(r1,: : :,rd),

we obtain the decomposition of the covariance matrix (from Eq.

(8)) as follows,

Ce ¼
Xd
i¼2

Xi�1

j¼1

j qij j ĴJij ĴJ
V

ij þ diag s1r
2
1;
: : :; sdr

2
d

� �
ð9Þ

where Ĵij is a vector of size d � 1 defined as

ĴJij ¼ 0;: : :0; ri
i
; 0: : :0; rj

j
; 0: : :0

h iV
if qijz0

ĴJij ¼ 0;: : :0; ri
i
; 0: : :0; � rj

j
; 0: : :0

h iV
if qijb0:

From Eqs. (3) and (9), the power spectrum of the ith time

series in the case of the correlated innovations can be represented

as:

Pii fð Þ ¼
Xd
j¼2

Xj�1

k¼1

ArjHij fð Þ þ sign qjk

� �
rkHik fð ÞA2AqjkA

þ
Xd
j¼1

AHij fð ÞA2sjr2
j ð10Þ

By sign(qjk), the sign of the argument qjk is denoted. Thus, the

power spectrum of the ith time series can be decomposed the

contributions from the correlated part and those from the diagonal

part. Finally, the ERPC can be defined as

RjkY i fð Þ ¼
AHijA2r2

j sj
Pii fð Þ j ¼ kð Þ

ArjHij fð Þþsign qjkð ÞrkHik fð ÞA2AqjkA
Pii fð Þ j p kð Þ

9=
;:

8<
: ð11Þ

Thus, the ERPC quantifies the relative contributions from

the correlated parts (second line of Eq. (11)) as well as the

diagonal parts while the original RPC only takes the diagonal

contributions into consideration. It can be seen that when the

innovations are mutually uncorrelated (i.e., qjk = 0), the ERPC

is consistent with the original RPC because there is no

contribution from the correlated parts (i.e., Rjk Y i( f) = 0 for

j p k). Note that for each terms in Eq. (11) to be positive value

(to be power), si ¼ 2�
Pd

j¼1 AqijA i ¼ 1;: : :; dð Þ must be

positive. Therefore, this measure cannot be applied to the

highly correlated process.
Extension of relative power contribution to the MARX model

The RPC can also be extended to the MARX model (Eq. (2)).

Similar to the derivation of the parametric spectrum of the MAR

model, the parametric spectrum of the MARX model can be

written as the sum of the spectra resulting from the innovation and

an exogenous variable:

PZ fð Þ ¼ H fð ÞCeH fð ÞV þ H fð ÞwPS fð ÞwVH fð ÞV; ð12Þ

where PS( f) is the power spectrum of the input process St.

In the application below, we assume that St is the box-car

function of the block design and only V1 receives this input. In this

case, the vector w contains an unknown in the corresponding

element and zeros in the other elements [that is, w = (w1,0,0)Vif the
first element corresponds to V1]. The RPC can be computed as in

Eq. (7) by replacing r1
2 in Eqs. (6) and (7) with r1

2 + w1
2PS( f).

PS( f) can be obtained by regarding the periodic input St as a quasi-

stationary process, which shows a line spectrum (see section 2.3 of

Ljung, 1999 for theoretical details). For ease of computation, we

apply the sample spectrum defined as:

PS fð Þ ¼ 1

T

�����
XT
t¼1

Ste
�i2pf tf g

�����
2

: ð13Þ

FMRI data acquisition

Five normal subjects (three men and two women) who had no

history of neurological or psychiatric illness or developmental

disorders took part in this study. The ethics committee of the

National Institute for Physiological Sciences, Japan, approved the

protocol, and all subjects provided written informed consent. The

experiment consisted of viewing alternating a white fixation cross

(control) and moving dots (MD). Subjects were instructed to look at

a white fixation cross (size 0.38) at the center of the black screen

throughout scan sessions. Similar to Buchel and Friston (1997), two

hundred white dots (size 0.18) were presented on the screen (size 408
horizontally and 308 vertically). These dots were moving radially

from the fixation cross toward the border of the screen at a constant

speed of 4.08/s during the MD condition whereas only the fixation

point was shown in the control condition. In the experiment, subjects

viewed alternating the control condition or MD (30 s each), starting

with initial control condition, followed by alternates of MD and the

control condition for four times. During the experiment, echo-planer

imaging (EPI) images were obtained (TR 1 s, TE 30 ms, FA 628,
FOV 19.2 cm, and 64 � 64 matrices) in 10 oblique slices of 6-mm

thickness without a gap, which covered the visual to parietal areas

using a 3T scanner (Allegra; Siemens, Erlangen, Germany). In all of

the experiments, 10 extra scans were collected at the beginning to

establish the steady-state longitudinal magnetization. A three-

dimensional structural MRI also was acquired on each subject using

a T1-weighted MPRAGE sequence (TR/TE/TI/NEX 1970 ms/4.3

ms/990 ms/1, FA 88, FOV 210� 210 mm, and 256� 256 matrices),

yielding 160 sagittal slices with a slice thickness of 1.2 mm and an

in-plane resolution of 0.82 mm.
Results

In order to evaluate the strength and direction of the

connectivity between three cortical areas associated with the



Fig. 2. Time series of the BOLD signal in three ROIs and three kinds of plots of the innovations after MAR-model fitting. In the top row, time series extracted

from three ROIs (V1, V5, and PP) are shown. From the second to the bottom row, time series, histograms, and the autocorrelation functions of the innovations

(one-step prediction error) after the MAR-model fitting are shown, respectively. In the plots of the autocorrelation function, the approximate 95% confidence

limits of the autocorrelation function of a white noise process are also displayed. The sample autocorrelation lying outside the 95% confidence intervals is

marked by an asterisk.
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perception of visual motion: the primary visual cortex (V1), visual

motion-detection area (V5), and the posterior parietal cortex (PP),

the abovementioned measures are applied. All of these areas have

well-established connections involved in the perception of visual

motion (McIntosh and Gonzalez-Lima, 1994).

In the first analysis, the MAR model is fitted to the time series

in three ROIs in the right hemisphere, and then the RPC and

ERPC are calculated using the estimated parameters. In the

second analysis, the MARX model with the box-car input into V1

area is fitted and the ERPC is calculated. The detailed result of

these analysis will be shown only for one of the five subjects in

Figs. 2–9. The outlined result of all the subjects will be also

demonstrated in the case of the MARX model.

MAR model

The MAR model of order p = 6, determined by the

minimization of AIC, was fitted to the time series shown in the

three top panels in Fig. 2. On the remaining panels in Fig. 2, the

time series, histogram, and autocorrelation functions of the

resulting innovations are shown for the diagnosis of the model

fit. From these plots, the distribution of the innovations follows the

Gaussian distribution and their lagged correlations are considerably

small. Therefore, the model fits the data reasonably well. The

estimated correlation of the innovations is 0.3 at the highest. The
diagonal assumptions of the innovation covariance matrix was

rejected by the likelihood ratio test with P value b 0.001

(Hamilton, 1994, pp. 309–314).

Firstly, the original RPC measure is computed, although the

likelihood test shows the diagonal assumption (Eq. (5)) does not

hold. In Fig. 3, the power spectrum and the RPC are illustrated in

the three top panels and the remaining panels, respectively. Plots of

the RPC corresponding to self-contribution (i.e., V1 Y V1, etc.)

are omitted. The power spectrum of V1 has a clear peak at the

frequency f0 = 0.018 Hz around the 60-s period of the block

design, whereas the power spectra of V5 and PP have a frequency

peak at around f1 = 0.033 Hz around the half period of the block

design. These power spectra indicate that the major periodic

components captured by the MAR model consist of the frequencies

f0 and f1. Therefore, the RPC at these frequencies is especially

important. The two vertical lines (dotted and real) in the plots of

the RPC represent the frequencies f0, f1. At f0, the strength of the

bottom-up connections of V1 Y V5 and V1 Y PP yields values as

high as 0.6, whereas at the frequency f1, the connections of V1 Y
V5 and V1 Y PP vanish, although weak connections between PP

and V5 (PP X V5) are observed. We also observed that periodic

components of a frequency higher than 0.1 Hz have values close to

zero, indicating that there were no fast-component connections.

This implies that from a BOLD signal sampled with a low temporal

resolution, it is difficult to identify the fast components of



Fig. 3. Power spectra of three ROIs (V1, V5, and PP) and the RPC among those regions. From left to right in the top row, the parametric power spectra of V1,

V5, and PP are plotted, respectively. The six panels in the second, third, and fourth rows show the RPC for all of the two-region pairs. The horizontal axis in all

panels represents the frequency in hertz.
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connectivity (for example, within several seconds), which might be

of interest to physiologists.

Secondly, the ERPC is computed in order to know how the

innovation correlations affect the results. By the ERPC, each power

spectrum is represented by the sum of six terms; the contributions

from V1, V5, PP, and the cross-correlated contributions from V1/

V5, V1/PP, V5/PP. On the last three rows in Fig. 4, the power

contributions of three cross-correlated terms are shown, respec-

tively. It should be noted that in these plots, the contributions from

V1/V5 to PP, V1/PP to V5, and V5/PP to V1 are of particular

interest for discussing how the ROIs are connecting because the

remaining contributions can be considered as self-contributions as

in plots omitted in the top three rows. The first thing we notice is

that the shape of the RPC curves corresponding to the uncorrelated

portion are almost same as that in Fig. 3 (i.e., the original RPC

curves when the correlation is neglected), although the RPC values

decrease. This result is natural because even if we apply a MAR

model with the diagonal constraint onto the innovation covariance

matrix, the estimate of MAR coefficients does not change. Next,

we observe that the cross-correlated portions of the innovations

V1/V5 and V1/PP have some contributions to PP and V5 around

the frequency f0, respectively, whereas the power spectrum of any

of these three time series is not contributed by the cross-correlated

portions between the remaining two time series (for example, V5/

PP has little contribution on V1 and so on). However, it is not easy

to discuss a physiological interpretation of these cross-correlated

contributions unless we identify the cause of the correlations. In

Fig. 5, the results are schematically demonstrated.
MARX model

Physiologically, it is more natural to take into consideration a

MAR model with the input to V1 that is associated with the

experimental design. This can be done by a MARX model (Eq.

(2)), where St is the box-car function with a value of 0.5 in the task

and �0.5 in the control conditions, and w has an unknown in the

first element (w = (w1,0,0)
t) (see Fig. 6). Based on this model, we

can expect to see how the box-car function influences the three

ROIs directly or indirectly through the estimated parameters.

The MARX model of the order p = 6, determined by the

minimization of the AIC, was fitted to the time series shown in the

three top panels in Fig. 7 (the same data as in Fig. 2). In the

remaining panels in Fig. 7, the time series, histogram, and

autocorrelation functions of the resulting innovations are shown

to diagnose the fit of the model. As was the case with the MAR

model, the fit of the model to the data is reasonable and the

estimated correlation of the innovations is 0.2 at its highest (the

likelihood ratio test still rejects the null hypothesis of uncorrelated

innovaitons). Furthermore, the fit via the MARX model improves

20 in the AIC value compared with the fit via the MAR model, and

therefore this result is statistically more likely. Note, for example,

the innovations for V1 are slightly smaller for MARX model than

for the MAR model.

In Fig. 8, the parametric spectra and the ERPC computed from

the estimated parameters are illustrated in the three top panels and

the remaining panels, respectively. Firstly, we can see that the

parametric spectra are not as smooth as those obtained by the MAR



Fig. 4. Power spectra of three ROIs (V1, V5, and PP) and the ERPC among those regions. From the left to right in the top row, the parametric power spectra of

V1, V5, and PP are plotted, respectively. The six panels in the second, third, and fourth rows show the relative contributions of the uncorrelated portions and

the remaining panels show the relative contributions of the cross-correlated portions to V1,V5, and PP, respectively, from the first to the third column. The

horizontal axis in all panels represents the frequency in hertz.
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model. This is because these spectra comprise a compound of the

smooth spectrum resulting from the innovations and the line

spectrum resulting from the deterministic periodic box-car func-

tion, respectively. The power spectrum of V1 shows a strong effect

of the box-car function compared with the spectra of the other two

regions. It should be noted that, although the stimulus is periodic, it

will have power at multiple frequencies as it is box-car rather than

sinusoidal in shape. It is also important to note that the spectra in

Figs. 4 and 8 are similar if the line spectrum does not exist.
Fig. 5. Result of the ERPC analysis with the MAR model. The specified

connections at the frequencies f0, f1 are shown by arrows. Only connections

more than 0.1 are shown and the self-contributions are neglected.

Fig. 6. Schematic figure of the MARX model and the RPC analysis. By the

MARX model, the box-car of the experimental design can be modeled as

the input into V1 as well as intrinsic white noise processes as in the MAR

model. The RPC quantifies the strength of every interregional connection

by computing how much the input in each region (that is, the innovations

and the box-car function) drives the time series of other regions. The

resulting strength of the connections is schematically represented by the

thickness of the arrows. These arrows can be obtained for all frequency

components. V1: the primary visual cortex for initial visual information

processing. V5: the area for visual motion detection. PP: the posterior

parietal cortex for the integration of visual spatial information.



Fig. 7. Time series of the BOLD signal in three ROIs and three kinds of plots of the innovations after the MARX-model fitting. In the top row, the time series

extracted from three ROIs (V1, V5, and PP) are shown. From the second to the bottom row, time series, histograms, and the autocorrelation functions of the

innovations (one-step prediction error) after the MARX-model fitting are shown, respectively. The dotted line and asterisks in the plots of the autocorrelation

function are used as in Fig. 3.
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The power contributions of the major periodic component f0V =
0.017 Hz shows the strong bottom-up connections of V1 Y V5

and V1 Y PP. The weak connection PP Y V5 is also observed

around the frequency f1 = 0.033 Hz (see Fig. 9). The

contributions of the cross-correlated portions look similar to

those in Fig. 4, although the effect of the correlations relatively

decreases around some frequencies due to the introduction of the

exogenous variable into the model. Interestingly, we observed that

the line spectrum had a strengthening effect on V1 Y V5 and V1

Y PP connectivity, whereas its effect on the remaining

connections was to weaken connectivity (see notches in lower

RPC plots).

Figs. 10 and 11 summarize the results of the ERPC at f0Vand f1
from the five subjects. The RPC values (denoted by *) and their 95%

confidence intervals obtained computationally by the bootstrap

method (see Appendix A) are shown as to the contributions of the

uncorrelated portions of the innovation. In Fig. 10, which shows

the 60 s/cycle frequency component, only the RPC of V1 Y V5

and V1 Y PP attain significantly high values, and this tendency is

consistent across the subjects. In Fig. 11, which shows the 30 s/

cycle frequency component, the RPCs of V1 Y V5 and V5 Y PP

are not as strong as in the 60 s/cycle component, but the weak top-

down connections PP Y V5 can be found for four of the five

subjects and the modestly strong connections PP Y V1 is found

for the remaining subject. The 30 s/cycle component may have

some relation with the timing of the change from the task to the
control condition or vice versa because two experimental

conditions alter in every 30 s.
Discussion

In this article, we used the RPC measure developed by Akaike

and its extended version in order to quantify the strength of directed

interregional cortical connections. This method can be considered as

an extension of Harrison’s method in the sense that the post-

processing after the identification with the MAR model is more

complex, but it provides much more detailed information about the

directed and frequency-wise connectivity contained in the model.

Using this approach, we can determine whether the specified

connections represent low-frequency or high-frequency connectiv-

ity, which cannot be examined by the estimated MAR coefficients

themselves. Furthermore, by extending the RPC to the MARX

model, we can construct models that are more physiologically

feasible and see the influence of exogenous input variables. It

should be noted that for this model, unlike the structural

equation model, no assumption about the direction of con-

nections is necessary, because the directed interregional relation-

ship can be determined from the temporal order of a set of time

series (that is, Granger causality). We shall discuss the

methodological issues, the results of the analysis, and the

problems in the future.



Fig. 8. Power spectra of three ROIs (V1, V5, and PP) and the RPC between those regions. From left to right in the top row, the parametric power spectra of V1,

V5, and PP are plotted, respectively. The six panels in the second, third, and the fourth row show the RPC for all of the two-region pairs. The horizontal axis of

all the panels represents the frequency in hertz.
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Methodological issues

The MAR model is broadly employed as a model of the linear

feedback system in real applications. In the MAR model, the

white noise processes (innovations) driving the observed time

series are essential because if without innovations, the MAR

model only can represent simple behaviors. Thus, the innovations

can be considered as the source of the information producing the

time series. It is a main idea of the RPC that the power spectrum

of each observed time series is consisting of the power
Fig. 9. Result of the ERPC analysis with the MARX model. The specified

connections at the frequencies f0, f1 are shown by arrows. Only connections

more than 0.1 are shown and the self-contributions are neglected.
contributions of each innovation and that the directed interactions

are measured by the ratios of these innovation contributions (note

that every time series has its own innovation). Following this idea,

the RPC is naturally extended to the case of the MARX model by

considering the exogenous variables as another inputs as well as

the case of the correlated innovations by decomposing the

correlated innovations into their own uncorrelated portions and

the inseparable correlated portions (i.e., extended RPC). Further-

more, the time-domain RPC can be defined, which is equivalent

to the integration of the frequency-domain RPC over all the

frequencies (Yamashita, 2004).

There are some directed measures based on the MAR model

closely related to the RPC. The (generalized) directed coherence

(DC) is consistent with square root of the RPC in order to develop

the directed version of the coherence (see Baccala and Sameshima,

2001 for the review). The directed transfer function (DTF)

(Kaminski et al., 2001) can be obtained as a special case of the

RPC when the variance of all innovations is normalized to 1. The

measure proposed by Geweke has been also widely employed in the

literature on the connectivity analysis to biological data such as local

field potentials, EEG, MEG, and fMRI (Bernasconi and Konig,

1999; Bernasconi et al., 2000; Brovelli et al., 2004; etc.). His

measure in the frequency domain has the form similar to the RPC.

Actually, in the case of the bivariate MAR process with uncorrelated

innovations, these two measures are linked by the exponential

transformation. However, the RPC and Geweke’s measure in

frequency domain is generally different because the latter overcomes



Fig. 10. Summarized results of the RPC analysis for the 60 s/period component for all the five subjects. On each panel, the RPC values and their 95%

confidence intervals for the five subjects are represented by asterisks and error bars. The error bars are computed using 250 bootstrap samples.
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difficulty in the correlated innovations by applying the orthogonal

transformation to the innovation covariance matrix which changes

the coordinate of the innovations.

One of advantages of the RPC (and DC, DTF) is low

computational cost. The RPC only requires the parameter

estimation of the MAR model consisting of all the variables to

quantify the strength of the interactions among every pair of the

time series with the parameters whereas the number of the

parameter estimation needed to compute Geweke’s measure is

rapidly increasing as the number of time series increases. In

addition, the RPC can be extended to the MARX model. This

extension could be attractive because it is natural in some

experiments to consider that lower brain regions have some direct

inputs corresponding to the experimental stimulus. On the other

hand, the RPC has some limitations: even the ERPC cannot be

applied when the innovations are highly correlated; the RPC

measures the total effects of all the paths between two regions, in

other words, the influence of the indirect interactions is included

(this issue is discussed in the Appendix of Kaminski et al., 2001

and in Baccala and Sameshima, 2001). The partial directed

coherence (PDC) or Geweke’s measure in time domain could be

a good candidate to evaluate the direct effect between two regions.

Although due to the second limitations the RPC may not be

appropriate to evaluate the amount of direct interactions between

two regions, the RPC still can provide some clues on connectivity

among some distributed brain regions as shown in this analysis.
It would be helpful to clarify the role of a time-series model in

connectivity analysis. In a parametric time-series model, generally,

the information related to temporal order is captured by the

coefficients of lagged variables (ddynamical partT), and the

information related to the instantaneous effect, which might be

an intrinsic correlation or caused by the lack of temporal resolution,

is captured by the innovation–correlation structure. The former is

essential to specify the directed relationship based on the idea of

Granger causality, whereas the latter provides no clue as to the

direction of the relationship. Thus, the time-series model works

most effectively only when the data can be explained primarily by

their dynamical part.

Results of the analysis

In this article, we specified frequency-wise directed connectivity

by employing RPC and its extension ERPC. As a result of applying

the MARmodel to the data from the random dot experiment, we can

see the strong connectivity of V1 Y V5 and V5 Y PP for the

periodic 60 s/cycle component, and the weak connectivity of PP X
V5 for the 30 s/cycle component. This weak connectivity might be

related to the change of the sensory input from the control condition

to MD, or vice versa because 30 s corresponds to the alternation of

the experimental conditions. Some contributions of the correlations

are quantified by the ERPC measure, but it is not easy to provide

interpretation as long as we do not know what is cause of these



Fig. 11. Summarized results of the RPC analysis for the 30 s/period component for all the five subjects. On each panel, the RPC values and their 95%

confidence intervals for the five subjects are represented by asterisks and error bars. The error bars are computed using 250 bootstrap samples.
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correlations. The result from the analysis employing the ERPC with

the MARX model, which is statistically more reliable, emphasizes

the effect of the 60 s/cycle periodic component by introducing the

box-car function as the input to V1. Furthermore, the effects of

correlations are decreasing compared with those of the MARmodel.

Interestingly, the results obtained from the ERPC with the MARX

model are similar across the five subjects. With regard to fast

components of more than 0.1 Hz, we cannot find the information

crucial to the establishment of connectivity. This might be a intrinsic

limitation of the connectivity analysis of BOLD signals using the

MAR(X) model because of the smoothing effect of hemodynamics

response, or the low temporal resolution of fMRI data, or the

averaging effect in choosing the representative time series of the

ROIs as the first principle component (the effect of hemodynamics

response and down-sampling to the causal inference of rapid

neuronal signals is discussed in the simulation study of Goebel et

al., 2003).

In conclusion, there exists some directed connectivity of the

BOLD signal around the frequencies related to the block

experimental design but difficult to find out the connectivity

of fast components (higher than 0.1 Hz), which could be more

closely related to neuronal connections. Since the components

of connectivity specified in this analysis correspond to the

period of the experimental design, this connectivity may be

referred to as dfunctionally directed connectivityT. Without any

assumptions on the mechanics between neural signals and
BOLD signals, it seems to be impossible to retrieve the

connectivity directly related to neuronal phenomena from BOLD

signals. One possible approach is to impose some assumptions

on the structure of connectivity and the mechanics between

neural signals and BOLD signals as the DCM does. The

alternative could be to operationally find out some directed

connectivity as in this paper, although the specified connectivity

may not be directly related to effective connections of neuronal

signals. The second kind of the analysis could be still of

importance as it takes a step beyond localization to integration.

For example, it might be interesting to compare the distributed

(functional) network between two different groups.

In the multivariate time-series approach, the direction of

connectivity is entirely determined by the idea of Granger

causality; therefore, it is possible to misspecify connectivity that

does not exist in the underlying anatomy. If we have anatomical

knowledge of connectivity, this prior knowledge preferably would

be incorporated into the analysis. The multivariate time-series

approach combined with Bayesian estimation (introduced by

Harrison et al., 2003) is more promising, although we used the

maximum-likelihood estimate method in this paper.

In this analysis, we specified low-frequency connectivity of

BOLD signals, fully taking advantage of the block experimental

design. It could be one of future works to confirm validity of the

frequency measures by applying them to the data of more

complicated experimental designs such as event-related design
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and randomized-block design. The statistical method to conduct

group analysis of connectivity is also desired.
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Appendix A. Maximum likelihood estimation

Let us define H as the collection of MAR coefficients as in Eq.

(16). The log likelihood is represented as:

L H;Ceð Þ ¼ log P Z1;: : :;ZT ;H;Ceð Þ

¼
XT

t¼pþ1

log P ZtAZt�1;: : :;Zt�p;H;Ce
� �

þ log P Z1;: : :;Zp;H;Ce

� �
ð14Þ

Under the assumption of Gaussian innovation, the conditional

distribution in Eq. (14) is given by:

P ZtAZt� 1;: : :; Zt�p;H;Ce
� �

¼ N Z̄Zt ;Ceð Þ ð15Þ

where

Z̄Zt ¼
Xp
i¼ 1

A ið ÞZt� iuHVXt

Xtu ZV
t�1;

: : :;ZV
t�1

� �V

HV ¼ A 1ð Þ;: : :;A pð Þð Þ: ð16Þ

The log-likelihood (Eq. (14)) can be rewritten in the form,

L H;Ceð Þ ¼ C þ T � p

2
logAC�1

e A

� 1

2

XT
t¼ pþ1

Zt � HVXt

� �V
C�1

e Zt � HVXt

� �
; ð17Þ

where C is a constant term and the term log P(Z1,: : :,Zp;H,Ce) has

been neglected (when T is large, this term is small compared with

the second and third terms in Eq. (17)). The maximum likelihood

(ML) estimator can be obtained as the maximizer of L(H,Cq),

which results in

ĤH
V ¼

" XT
t¼pþ1

ZtX
V
t

#" XT
t¼pþ1

XtX
V
t

#�1

ð18Þ
ĈeCe ¼
1

T � p

XT
t¼pþ1

êet êtV ð19Þ

where the innovation estimate is given by

êet ¼ Zt � ĤH
V
Xt: ð20Þ

The jth row of ĤVis

ĥh
V

j ¼
XT

t¼ pþ1

zj;tX
V
t

# XT
t¼ pþ1

XtX
V
t

#�1
2
4

2
4 ð21Þ

where hj = (Aj1 (1),: : :,Ajd (1),: : :,Aj1( p),: : :,Ajd ( p))Vis a vector of
size pd � 1. The variance of ĥjVis given by

Var ĥh
V

j

� �
¼ r2

j
ˆ

" XT
t¼pþ1

XtX
V
t

#�1

ð22Þ

where r̂j
2 is the jth diagonal element of Ĉe. Note that the ML

estimators of the coefficients (Eq. (14)) are equivalent to the

ordinary least-squares estimators (for further details, see chapter 11

of Hamilton, 1994).

Selection of p

The parameters ( p) are preferably determined by informa-

tion criteria, such as AIC (Akaike, 1973), SIC (Schwarz,

1978) or AICc (Hurvich and Tsai, 1989). In this study, we

chose to employ AIC because of its simple form and the wide

use of these criteria in various applications. AIC is defined as

follows

AIC ¼ � 2L ĤH; ĈeCe
� �

þ 2Np ð23Þ

where Np is the number of parameters in the model for fitting.

AIC represents the asymptotically unbiased estimates of the

Kullback–Leibler (KL) discrepancy between the true model and

the fitted model. Therefore, the minimization of these criteria

corresponds to choosing the nearest model to the true model in

the sense of KL discrepancy. The AR order p is determined by

calculating AIC for each p in some range and by choosing the

minimizers.

Bootstrap method

The bootstrap method is one of the resampling techniques used

on the data. Intuitively speaking, by resampling randomly from the

histogram of the original data, a new sample can be obtained that

shares the same probability distribution as the original data. This

new sample can be used to calculate a new realization of some

quantity.

As the analytical distribution of the values of the RPC is

difficult to obtain, the parametric bootstrap method (Carstein,

1992) is applied to the MARX model as follows:

1. Obtain the parameter estimates Â(i),ŵ, Ĉe and the innovation

estimates q̂p + 1,: : :,q̂T from the original data Z1,: : :,ZT.

2. Obtain a new sample of the innovation process q*p + 1,: : :,q*T
from the histogram of {q̂p + 1,: : :,q̂T}.
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3. Generate a new sample of time series Z*
1,: : :, Z*

T as follows:

Z4
t ¼ Zt t ¼ 1;: : :; pð Þ

Z4
t ¼

Xp
k¼1

ÂA ið ÞZ4
t� k þ ŵwSt þ e4t t ¼ pþ 1;: : :; Tð Þ

4. Obtain new parameter estimates from the new sample and

compute the RPC values.

These steps are iterated until a sufficiently large number of

samples can be obtained. In our application, 250 samples were

generated to construct the confidence interval.
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