
Sparse Logistic Regression ToolBox ver1.1alpha
(Updated on 2009/06/05 by Okito Yamashita)

The Sparse Logistic Regression toolbox (SLR toolbox hereafter) is a suite of MATLAB

functions for solving classification problems. It provides one of solutions for binary or

multi-class classification problem. The unique feature is parameters of the classifier are

learned in a sparse way, resulting in automatic feature selection while learning weight

parameters in the classifier. This feature may be appropriate to classification problems of

neuro-imaging data where only a limited number of training data (from several tens to

several hundreds) can be used to classify a rather high dimensional feature vector (over

one thousand). Furthermore SLR releases users from the time-consuming feature

selection task preceding classification although results may be suboptimal.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Installation 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
SLR toolbox is a suite of MATLAB functions and scripts. MATLAB, a commercial

engineering mathematics package, is required to use SLR toolbox. A couple of functions

require the optimization toolbox (see below). Codes in the toolbox were written for MATLAB

ver7.0.1 or later under UNIX. This toolbox has originally been developed by Okito

Yamashita in ATR Computational Neuroscience laboratories for personal use.

To get installed the toolbox, you just download and unzip the file (SLR1.0beta.zip)

wherever you like. You may also download two test-data acquired from two real

experiments in order to see how binary and multi-class classification problems are solved

(this is optional). Please start from demo functions ('demo_*.m') to learn how the functions

in SLR toolbox work.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Contents Summary (functions) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Functions in SLR toolbox can be separated into 5 classes; low-level functions, run-level

functions, demo functions, common functions, functions from others (see figure 1).

 “Low-level functions” are the functions that implement learning parameters in the

classifiers. Most functions take a pair of label and a feature matrix as inputs and output

estimated weight parameters.

 “Run-level functions” are the functions that implement whole procedure to solve a

classification problem (i.e. normalization features learning parameters testing

learning parameters). Most functions take pairs of label and a feature matrix for

learning and testing as inputs and output estimated parameters as well as some

performance measure. There are five functions for each of the binary classification

problem and the multi-class classification problem (see below).

 “Demo functions” are for demonstration purpose. You can learn how functions in the

toolbox work using some examples.

 “Common functions” are the functions that are commonly used in toolbox.

 “Functions from others” are the functions that are borrowed from EEGLAB toolbox and

MATLAB File exchange.

slr_learning.m
slr_learning_var2.m

rlr_learning.m
rlr_learning_var2.m

(linfun.m)
(linfun2.m)

smlr_learning.m
rmlr_learning.m

(linfunmlr.m)

biclsfy_*.m

demo_multiclass_classification.m

Low-level
function

Run-level
function muclsfy_*.m

demo_binary_classification.m
demo_binary_classification_gaussian_rvm.m

demo_calculate_selection_count.m

Binary Classification Multi-class Classification

Demo
function

slr_learning.m
slr_learning_var2.m

rlr_learning.m
rlr_learning_var2.m

(linfun.m)
(linfun2.m)

smlr_learning.m
rmlr_learning.m

(linfunmlr.m)

biclsfy_*.m

demo_multiclass_classification.m

Low-level
function

Run-level
function muclsfy_*.m

demo_binary_classification.m
demo_binary_classification_gaussian_rvm.m

demo_calculate_selection_count.m

Binary Classification Multi-class Classification

Demo
function

Common
functions

calc_SCval.m calc_label.m calc_percor.m gen_gm_data.m
gen_gmgm_data.mgen_simudata.m gen_sin_data.m

label2num.m normalize_feature.m
randmn.m separate_train_test.m slr_*.m

Functions
from others finputcheck.m xyrefline.m

Figure 1: Functions in SLR toolbox


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Contents Details (Run-level functions) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

In “run-level functions”, each of five functions of which name starts from ‘biclsfy_*’

implements five binary classifiers and each of five functions of of which name starts from

‘muclsfy_*’ implements five multi-class classifiers (see figure 2). Classifier in the row of

‘Sparse’ has feature selection property while classifiers in the row of ‘Others’ do not (for

comparison purpose).

RMLR (muclsfy_rmlr.m)
RLR-VAR-1vsR (muclsfy_rlrvarovrm.m)

RLR-LAP (biclsfy_rlrlap.m)
RLR-VAR (biclsfy_rlrvar.m)
RVM (biclsfy_rvm.m)

Others

SMLR (muclsfy_smlr.m)
SLR-LAP-1vsR (muclsfy_slrlapovrm.m)
SLR-VAR-1vsR (muclsfy_slrvarovrm.m)
SLR-VAR-1vs1 (muclsfy_slrvarovo.m) New

SLR-LAP (biclsfy_slrlap.m)
SLR-VAR (biclsfy_slrvar.m)

Sparse

Multi-class
classification

Binary classification

RMLR (muclsfy_rmlr.m)
RLR-VAR-1vsR (muclsfy_rlrvarovrm.m)

RLR-LAP (biclsfy_rlrlap.m)
RLR-VAR (biclsfy_rlrvar.m)
RVM (biclsfy_rvm.m)

Others

SMLR (muclsfy_smlr.m)
SLR-LAP-1vsR (muclsfy_slrlapovrm.m)
SLR-VAR-1vsR (muclsfy_slrvarovrm.m)

SLR-LAP (biclsfy_slrlap.m)
SLR-VAR (biclsfy_slrvar.m)

Sparse

Multi-class
classification

Binary classification

SLR-VAR-1vs1 (muclsfy_slrvarovo.m) New

SLR-LAP = rse stic ession (with ace approximation)
SLR-VAR = se istic ression (with ational approximation)
SMLR = se inomial stic ression

RLR-LAP = larized istic gression (with ace approximation)
RLR-VAR = ularized istic ression (with tional approximation)
RMLR = ularized ltinomial ession

RVM = ance r hine

1vsR = sus- t
1vs1 = rsus-

 Spa Logi Regr Lapl
Spar Log Reg vari
Spar Mult Logi Reg

Regu Log Re Lapl
Reg Log Reg varia

 Reg Mu Logistic Regr

Relev Vecto Mac

 One-Ver Res
 One-Ve One

Figure 2: Supported classifiers in SLR toolbox (Run-level functions)

Binary classifiers
Two sparse classifiers and three non-sparse classifiers are supported so far.

 SLR-LAP: SLR with Laplace approximation. The marginal posterior-distribution of

weight parameters is approximated by multivariate Gaussian distribution (see ref.[1]

for details). This was developed for the research in ref.[1]. The optimization toolbox is

required (‘fminunc.m’).

 SLR-VAR: SLR with variational approximation. The logistic function is approximated

by Gaussian distribution using a variational parameter (see ref.[2.3] or section 10.6 of

ref.[4]). The faster and the less memory.

 RLR-LAP: Regularized logistic regression with Laplace approximation. This is not

sparse algorithm. The regularization parameter is automatically determined by the

algorithm. The optimization toolbox is required (‘fminunc.m’).

 RLR-VAR: Regularized logistic regression with variational approximation. This is not

sparse algorithm. The regularization parameter is automatically determined by the

algorithm.

 RVM: Relevance Vector Machine as proposed by Tipping (see ref.[5]). Bayesian

version of Support Vector Machine (SVM). The linear and Gaussian kernels are

supported. The Gaussian kernel RVM is only non-linear classifier supported in this

toolbox.

Two sparse classifiers, SLR-LAP and SLR-VAR, are derived from the identical probabilistic

model (see ref[1]) but different approximation to the posterior distribution. The difference

between RLR-LAP and RLR-VAR is as in the same way. Among two sparse classification

methods, I recommend use of SLR-VAR because it is faster and require less memory. It

can be applied to higher dimensional problems with less computational resource.

Multi-class classifier
Three sparse classifiers and two non-sparse classifiers are supported so far.

 SMLR : Sparse Multinomial Logistic Regression (see ref.[1]). The multinomial

distribution is used for observation. In general, memory and time required are huge.

The optimization toolbox is required (‘fminunc.m’).
 SLR-LAP-1vsR : Combination of SLR-LAP classifiers. One-versus-the rest scheme is

used. The optimization toolbox is required (‘fminunc.m’).
 SLR-VAR-1vsR : Combination of SLR-VAR classifiers. One-versus-the rest scheme is

used. The faster computation and the less memory.

 RMLR : Regularized Multinomial Logistic Regression. One regularization parameter

common to all the classes is automatically estimated. The optimization toolbox is

required (‘fminunc.m’).

 RLR-VAR-1vsR : Combination of SLR-VAR classifiers. One-versus-the rest schemes

is used. One regularization parameter per each class is automatically estimated.

 SLR-VAR-1vs1: Combination of SLR-VAR classifiers. One-versus-the one scheme is

used. The faster computation and the less memory.

SMLR is a true multinomial classifier that uses multinomial distribution for observation.

SLR-LAP-1vsR and SLR-VAR-1vsR are consisting of combination of sparse binary

classifiers. Especially one-versus-the-rest scheme is employed (see chapter4 of ref[4] for

example). In this release, one-versus-one scheme is also supported for SLR-VAR. In

theory, SMLR is the best classifier for multi-class problem since the model learning take

into account all the information among classes. But in my experience SLR-LAP-1vsR or

SLR-VAR-1vsR, SLR-VAR-1vs1 do perform as well as SMLR probably due to a small

number of training samples. Thus I recommend to start from SLR-VAR-1vs1 that is fast and

requires less memory.

Details of ‘biclsfy_slrvar.m’
In order to see what kinds of processing are done in each run-level function, the content of

“biclsfy_slrvar.m” is explained. The other run-level functions share the same structure.

The function has following format;

[ww, ix_eff_all, errTable_tr, errTable_te, parm, AXall,Ptr,Pte] =…

 biclsfy_slrvar(x_train, t_train, x_test, t_test, varargin).

Input variables are a pair of a feature matrix and a label vector for training (x_train, t_train),

and a pair of those for testing (x_test, t_test). Output variables are weight parameters (ww)

that represents linear boundary between class1 and class2, results of classification

(errTable_tr, errTable_te), probabilistic outputs (Ptr, Pte) and so on. ‘varargin’ takes ‘key’

-‘value’ form to specify optional parameters (as defined in a table of the function around line

75). The default values usually worked reasonably well.

In the function, the following steps are successively processed;

1. check optional variable

2. normalize feature matrix

3. add a bias regressor to the feature matrix depending on ‘parm.usebias’

4. learning weight parameters (boundary parameters) of a classifier

5. evaluating percent correct for training and test data.

The step 2, normalization, is simply to apply linear transformation to each element in the

feature matrix so that all the elements range from -1 to 1. If ‘mean_mode’ = ‘each’ (default),

the bias term of the linear transformation is calculated such that mean value of each

feature gets zero (feature-wise). If ‘mean_mode’ = ‘all’, the bias term of the linear

transformation is calculated such that mean value of all the elements gets zero (all

elements mean). In the same way, ‘scale_mode’ defines the way to compute the slope of

the linear transformation. If ‘norm_sep’ = 0 (default), the transformation derived from

training data is applied to both training and test feature matrices. On the other hand, if

‘norm_sep’ = 1, two linear transformations derived from training and test data, respectively,

are applied to training and test data.

:: Tips ::

 Among optional inputs, ‘scale_mode’ and ‘mean_mode’ may have most impact on

performance. So you may try different parameters such as ‘all’ and ‘none’, if your result

is not satisfactory. But it should be noted these parameters more often suffer from

computational errors (scale difference).

 The option ‘invhessian’ is also important in some case. It does not affect performance

but computation time. If the dimension of your feature matrix is larger than the number

of training samples, the default setting is fast. Otherwise, setting invhessian = 1 is fast.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Brief Mathematical Basics 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Logistic regression (LR) is a well-known classifier originally developed in statistics. SLR is

a Bayesian extension of LR in which a sparseness prior is imposed on LR. In the literature,

two kinds of the sparsenss prior has been suggested; Automatic Relevance Determination

(ARD) prior ([7,8]) and Laplace prior ([5]). In this toolbox the ARD prior is employed. Please

see the appendix of [1] for equations of the model and derivation of the algorithm. It should

be noted that for SLR having feature selection property, the boundary must be linear (but

not using linear kernel). This is because in this case each feature has its own weight

parameter and thereby sparse estimation of weight parameters can be interpreted as

removing irrelevant features.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Referencing the toolbox 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
When using this tool for a paper please refer to the following paper:

Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y (2008).
Sparse estimation automatically selects voxels relevant for the decoding of fMRI
activity patterns. Neuroimage. Oct 1;42(4):1414-29.

The above manuscript contains basics of SLR (SLR-LAP) and applications to fMRI

decoding.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Feedback & Bug report   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Any feedback and bug report are welcome. Please keep contact with me

(oyamashi@atr.jp). I would like to respond as quickly as possible.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Licencing & Copy Right 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
SLR toolbox is free but copyright software, distributed under the terms of the GNU General

Public Licence as published by the Free Software Foundation. Further details on "copyleft"

can be found at http://www.gnu.org/copyleft/. No formal support or maintenance is provided

or implied.

 Acknowledgements

This toolbox is brought to you by ATR Computational Neuroscience laboratories in Kyoto.

This research was supported in part by the NICT, Honda Research Institute, the SCOPE,

SOUMU, the Nissan Science Foundation, and grants from the National Eye Institute to FT

(R01 EY017082 and R01 EY14202).

 References

[1] Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y (2008).

Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity

patterns. Neuroimage. Oct 1;42(4):1414-29.

mailto:oyamashi@atr.jp

[2]Jaakkola TS, Jordan MI (2000), Bayesian parameter estimation via variational methods,

Statistics and Computing, 10, pp.25--37

[3] Bishop C, Tipping ME (2000),Variational relevance vector machines, Proceedings of the

16th Conference in Uncertainty in Artificial Intelligence, pp.46-53

[4] Bishop C (2006), Pattern recognition and machine learning, Springer, New York

[5] Tipping ME(2001), Sparse Bayesian Learning and the Relevance Vector Machine, J

Machine Learning Research, 1, pp.211-244

[6] Krishnapuram B, Carin L, Figueiredo MAT, and Hartemink AJ (2005), Sparse

Multinomial Logistic Regression Fast Algorithms and Generalization Bounds, IEEE Trans.

Pattern Analysis and Machine Intelligence, 27, pp.957-968

[7] MacKay D (1992), Bayesian interpolation, Neural Computation, 4, pp.415-447

[8] Neal RM(1996), Bayesian Learning for Neural Networks, Lecture Notes in Statistics 118,.

Springer

