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In SLR toolbox, there are seven binary classification algorithms implemented. In this
document, the probabilistic models of the implemented classifiers are described and
then the brief derivation of algorithms is given. The details of deformation of formula is

given in the appendix.

0. Notations
- Data
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Linear discriminant function
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where W=[Wy,W,,---,Wp], X >[LX%,+,Xp]

Sigmoid function (Logistic function)
o(x) =1/(1+exp(—x))

Normal distribution
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where E(x) and V(x) represent expectation and variance of a random variable x,
respectively.

Gamma distribution
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1. Probabilistic Model
All the probabilistic models introduced here can be described in the Bayesian model,
which has the likelihood function and a prior distribution of weight (or boundary)
parameters. All the models share the identical likelihood function known as the

logistic regression (Eq.1) while they uses the different prior distributions.

Likelihood Model (Logistic Regression (LR)
The logistic regression model is a probabilistic model for binary data developed in

the field of statistics. The likelihood function of LR is given in the following form,
Py| X, w) =[P, |x,w)=]]ord-o,)™ (1)

where o, = o(w'x,) and the linear boundary is assumed.

1.1 Sparse Logistic Regression (SLR)
The likelihood function is given by Eq.(1).
The prior distribution of SLR has the following hierarchical form;

For d=1---,D
Po(w, [ay) = N(O,a;) (2
P(ay) =y

This hierarchical distributions are known as the automatic relevance determination
(ARD) priors in the sparse Bayesian learning literature. The parameter oy 1s
called the relevance parameter that represents relevance of the corresponding
weight parameter. The larger this value is, less relevant the corresponding weight
parameter is. If the relevance parameter is marginalized beforehand, we know that
the hierarchical prior distributions are equivalent to the following prior distribution

of weight parameters,
P (w,)=1/|w, | d=1---D.

The hierarchical form makes it easier to calculate the posterior distribution in an

analytical way. Thus the equation (2) is used.

1.2 Regularized Logistic Regression (RLR)
The likelihood function is given by Eq.(1).

The prior distribution of RLR is the following multivariate Gaussian distribution;



R(W)=N@O0.a"l;) . (3)

I, isthe identity matrix of size D x D.

1.3 Linear Relevance Vector Machine (RVM)
The likelihood function is given by Eq.(1) except the linear discriminant function
being represented by the linear kernel as follows,

N
g W) = D W XX+ W,
n=1

=k'(xX)w

where K(X)= (XX, XX, 1)" and W= (W,---,W,,W,)".

Thus the likelihood for each single data is represented by o, = o(k(x, )w).
The prior distribution of RVM is the ARD prior (Eq(2)).

It should be noted that the sparseness of SLR and RVM results in the different
interpretation. The parameters in SLR are associated with features, while the
parameters in SVM are associated with samples (note that the number of weight
parameters in RVM is Nnot D). If the parameters in SLR are estimated in a sparse
way, it can be interpreted as feature selection process but that of RVM can be

interpreted as sample selection process (similar to ‘support vectors’in SVM).

Another thing to be noticed is that the extension to the nonlinear discriminant
function is easily realized in RVM because RVM uses the kernel representation.
Changing the linear kernel to any other nonlinear kernel such as Gaussian kernel,

polynomial kernel can model a non-linear boundary.

1.4 L1-Sparse Logistic Regression (L1-SLR)
The likelihood function is given by Eq.(1).
The prior distribution of L1-SLR is the following Laplace distribution;

Fz(wd)zgﬁexp(—«/ﬂwd ) d=1--D. @

This Laplace prior can be expressed in the hierarchical form as follows;



Py(w, |ey) =N(0,ery)

A A
R(ay) = EeXp(__ad

d=1---.D (5)
)

Note that «, is variance of Gaussian distribution in Eq.(5) whereas it is precision

(inverse variance) of Gaussian distribution in Eq.(2).

. Derivation of Algorithms
Since all the probabilistic models described above are Bayesian models, the task to
estimate weight parameters is to calculate the posterior probability distribution of

weight parameters given by

_ J.P(y |wW)P, (W | a)P,(a)da
~ [P(YIW)R, (W a)Py(a) darciw

P(wly)

Here and hereafter the dependency on X is omitted for notational simplicity.
Unfortunately the integrals of numerator and denominator are not analytically
tractable. Therefore some approximation method should be applied. In the
algorithm derivation, we apply the variational Bayesian method (VB) that assumes
the conditional independence condition on posterior distributions and then solve the

posterior calculation by maximizing a specific criteria (called free energy).

At first VB defines the free energy using the test function Q0;

FE(Q(w,a)) = IQ(w,u) Iogwdadw. (6)
Q(w,a)

The notable issue in this equation is that FE is maximized when and only when the

test function Q is equal to the joint posterior distribution P(W, @ |y) . In addition the

maximized value is equivalent to the evidence P(Y). Therefore maximizing FE

with respect to test function corresponds to finding the joint posterior distribution

and computing the evidence. However this functional maximization is as difficult as

the original problem, thus it can not be solved directly. VB solves this problem by

restricting the test function to having some functional form. In our application, the

test function assumes to satisfy the conditional independence condition as

Q(w, ) =Q(W)Q(a) . (7

Under this condition, FE is maximized by alternately maximizing FE with respect

to Q(w) and Q(a). These steps are equivalent to computing the following W-step
and A-step (for more mathematical details, see Bishop 2006).



W-step : logQ(w) =<log P(y,w,a) >,
A-step : logQ(a) =<log P(y, w,a) >,

where < f(X) >, denotes the expectation of f(X) with respect to a probabilistic

measure Q(X). Concrete algorithms to compute the posterior distributions as well
as the posterior mean (the estimate of the weights) can be derived by substituting
the probabilistic models described in section 1. But unfortunately even with this
approximation, W-step is the analytically intractable for the logistic regression
model since the prior distribution and the likelihood function are not conjugate. A
further approximation to Q(W) is required. There are two approximation methods
for this purpose; Laplace approximation and variational approximation. Both of the
methods use the Gaussian distribution as the approximate distribution. This is why

there are two algorithms in the toolbox even for one probabilistic model SLR (also
RLR).

2.1. SLR
2.1.1. SLR with Laplace approximation (SLR-LAP)
This algorithm uses the Laplace approximation that approximates the posterior

distribution with Gaussian distribution around the MAP estimate.

N
logQ(w) =Y {y,logc, +(1-y,)log(1- an)}—%wtﬂw + const (8
=1

where A=diag(a, -, @,). Let’s denote the right-hand side of Eq (8) by E(W).

E(w) is not the quadratic form of w, thus Q(W) is not the Gaussian distribution
and analytically intractable. But if we notice that E(W) is the exactly same form
as the log-likelihood function of logistic regression with the regularization term, this
function is well approximated by the quadratic function at the maximizer W
(Laplace approximation). This maximization is done by the Newton-Rapson method
using the following gradient and Hessian
E _ X5 Aw,
ow

0’E
OWow'

= —XBX '—= A=—H (W)



where 0, X,B are given by

8:[y1_o-l"“1yN_O-N]t : N x1
X =[X;,--,Xy] : DxN .
B =diag(o,(1-0,),"-,0y(1—0y)) : NxN

Then we obtain the quadratic approximation of logQ(w) (or equivalently E(w))

around the maximizer W,
logQ(w) ~ E(W)—%(W—W)‘H(W)(W—W). 9)

Thus Q(w) ~ N(W,S) where S=H(W)™".

A-step:
D
logQ(a) = —%Z(ad (W; +5s5) +loga, ) +const
i
D D o _ 1 _ 1
Thus Q(a):HQ(ad)zl_[F(ad;ad,yd) where @y =———, 7y == (10
d=1 d=1 Wy + Sq 2

Wy, Sg are the dth element and the dth diagonal element of W and S, respectively.

This updating rule is very slow to converge. Instead we use the following fast

updating rule motivated by Mackay’s effective number of parameters.

Fast updating rule:
> — _ l-as; _ 1

Q(a) =Hr(ad1ad)7/d)where ad :%’ 7/d = —, (11)
d=1 Wy 2

Note that the numerator 1—-¢, Sj of Eq.(11) is related to Mackay’s effective number

of parameters (see section 3.5.3 of Bishop 2006). If this value is close to 1, the
corresponding parameter W, can be mainly determined by observations, whereas
if this value is close to 0, the corresponding parameter is not sensitive to

observations and determined by prior information.

2.1.2. SLR with variational approximation (SLR-VAR)
This algorithm first approximate the logistic function with a Gaussian distribution
with one auxiliary variable (variational approximation). According to Jaakkola and

Jordan 2000, the logistic function can be lower-bounded by

o002 o@en| ¥ £ - A0 -2 where 2= [ o0)-3 >0 (£>0),



Thus the likelihood function is bounded by
Z f—
Py w) = [Tt exp {55~ A& (2 - £ -1 -u)| = hrw.§

with z, = X;W. Using this formula, FE is lower-bounded as follows,

FEQ(W,a)) > [Q(w, ) log "% %E’SSV;;“) Fo(®) dadw = FEQ(w, ). £).

Thus maximizing FE(Q(wW,a),&) with respect to Q(wW),Q(a),& alternately gives

us the posterior distributions and optimal variational parameters &. Since the
function h(y,w,&) is the quadratic function of W for fixed &, Q(w) becomes
the Gaussian distribution, which is easy to calculate analytically. See Bishop and

Tipping 2000 for more details

W-step:

logQ(w) = —%Wt [ﬂ + iZ?ﬁ(ﬁn)xnxf‘]w + (i(yn - O.5)x;jw +const

= —%(W—v‘v)tsl(w—v‘v) + const
Thus Q(w) ~ N(W,S) where

s :K+ZN:22(§n)xnx‘n =A+2XAX"':DxD
L (12)
W=5> (y,—05)x,=(A+2XAX')*Xy :Dxl
n=1
y=[y,-05,---,y, —05]' : Nx1
X =[x,--+,Xy] : DxN
A =diag(A(&),--+, A(&y)) © NxN

The computation of W requires the inverse of A+2XAX", which is heavy when
the number of features (=D) is large. The use of Sherman-Morrison-Woodbury

formula for matrix inversion reduces this burden.
— N —
ST = A+ 22(E )X, X, =A+2XAX" 1 DxD
-1
W=AXAT+2X'ATX)TATY : Dx1

Since the size of matrix which requires inversion (A™ + 2X'A™X)is NxN, thisis

operated much faster when the number of samples is less than the number of



features.

A-step:
A-step is identical to that of SLR-LAP (see Eq.(11)).
Fast updating rule :

D D _ _ l-ast _ 1
Q(a) :HQ(ad) =Hr(ad;ad,7d) where @, = 7 74 =3 (13)
d=1 d=1

d

& -step:

Taking partial derivative of FE(Q(W,a),§) and setting it to zero, we have

E=x (Ww'+S)x, n=1---,N (14)

n

By noticing that & is the nth diagonal element of X'(WW' +S)X , we obtain

£ = [x‘wwtx XA ((2A) P+ XAX) (2A)l}

nn
where the right hand side means (12,n) element of the matrix. Here the

Sherman-Morrison-Woodbury formula was used again.

2.2. RLR
2.2.1. RLR with Laplace approximation (RLR-LAP)

If A=diag(a, -, @,) in SLR-LAP algorithm is replaced with A=l this step

1s identical to SLR-LAP algorithm.

A-step:

logQ(ax) = —% <w'w > a+(%—1jloga+const

Thus Q(a)=I(a ;a,7) where d=5———, 7 = (15)

> (Wi + Sj)

d=1

D D
2



Fast updating rule : Q(a) =I'(a ;&,7) where a=—5
W
d=1
2.2.2. RLR with variational approximation (RLR-VAR)
W-step:

If A=diag(a,, -, @,) in SLR-VAR algorithm is replaced with A =al, this step

is identical to SLR-VAR algorithm.

A-step:
A-step is equivalent to that of RLR-LAP.
D
D-a)s]

d=1

D

2
2 W,
d=1

_ D
)7/:_'

Fast updating rule : Q(a)=T'(« ;a,7) where a = 5

& -step:
This step is identical to that of SLR-VAR since this step does not depend on the prior

distribution.

E=x (Ww' +S)x, n=1---,N

n

2.3 RVM
The algorithm implemented for RVM is identical to SLR-VAR except the boundary

being modeled by the linear kernels. Thus if 7, = X;W in SLR-VAR algorithm is

replaced with z, =k'(X, )W, the derivation is identical. See Tipping 2001 for the

original RVM algorithm.

W-step:
N N

logQ(w) = _%w‘ (KJF ZZ/I(fn)k(xn)k‘(xn)jw +(Z(yn —0.5)k‘(xn)jw +const
n=1 n=1

= —%(W —W)'S™ (W — W) + const

Thus Q(w) ~ N(W,S) where



St= ﬂ+i22(§n)k(xn)k‘(xn) =A+2XAX" (N +1) x(N +1)
o 17
W=S> (y,-05)k(x,) : (N+1)x1

X =[K(X,), - K(x )] © (N+1)xN
A =diag(A(&), - A(&,)) : NxN

A-step:
A-step is identical to that of SLR-LAP (see Eq.(11)).
Fast updating rule:
D D o _ l-ast _ 1
Q(Q)ZHQ(%):HF(%’%’%) where oy =———, J; =5 (18)
d=1 d-1 W, 2
& -step:

Taking partial derivative of FE(Q(W,a),§) and setting it equal to zero, we have

& =K (X )(WW +S)k(x,) n=L-N. (19)

2.4 L1-SLR
The algorithm of L1-SLR-LAP is obtained by modifying the derivation in
Krishnapuram et.al 2004. The algorithm of L1-SLR-c is based on component-wise

update procedure with the surrogate function in Krishnapuram et.al 2005.

2.4.1. L1-SLR with Laplace approximation (L1-SLR-LAP)
We use the hierarchical form of the Laplace prior (Eq.5). The derivation is very
similar to that of SLR-LAP.

W-step:
N

logQ(w) = > {y, logc, +(1-y,)log(l-c,)} —%WtVW +const (20)
=1

where V =diag(<a; ' >,--,<ag >) . Q(W) is obtained in the same way

(Newton-Rapson method) as W-step of SLR-LAP with A replaced with V .



A-step:

D 2 2
logQ(a) :%Z(— Wy + S — ey —log adJ+const

d=1 a4

Here V_\Id,Sj denote the dth element and the dth diagonal element of the weight

posterior distribution.
D
Q(a) =] [Q(exy)
d=1

1 o2 o '
Q(ay) =Cay? exp(_Wd—-i_Sd_iadJ

20, 2

(21)

Unfortunately this distribution is not the Gamma distribution unlike SLR model.
But only necessary quantity in W-step is the expectation of ¢ ! and this value can

be analytically computed as follows,

1 2 2
Iadz exp(—Wd TS ad)dad
d
72 2 29
_227z : exp(—Z A Wy +5d] (22)
Wy + S 2 2

Ji
JWE +]
The formula derived from EM algorithm is very similar (see Krishnapuram et.al
2004),

<ay >=——. (23)
i

Only the difference is whether the posterior variance of weights is included in the

denominator. My little experience showed that Eq.(23) does work well but Eq.(22



does not. Thus Eq.(23) is applied in the current implementation. Reasons for this

1ssue have not been made clear yet.

2.4.2. L1-SLR with component-wise updates (L1-SLR-c)

This algorithm uses the prior distribution Eq.(4) rather than the hierarchical prior
distributions Eq.(5). Thus the relevance parameters do not appear in the algorithm
derivation. The weight updating rule is obtained by directly differentiating the

surrogate function.

The MAP estimated of weight parameters are obtained by
W = arg max {Iog P(y |w) —\/I||W|||1 } .

Taking the lower bound of the logP(y|w), we have the following surrogate

function,
Q(w [ W) = w!(g(W®) - BW®) + %wt Bw — A |w],

The function ¢(-) is the gradient of logP(y|w). The matrix B can be any
positive-definite matrix that bounds Hessian of logP(y|w) everywhere. Here we

chose

B=-X"' X
0.25
where X =[x;,--+,Xy] : DxN.

Then by directly differentiating Q(wW |W™) with respect to W, we have the

following updating rule,

~(t)
W = soft [Wétﬂ) Ok |(3W ) - fj »
kk Kk

where soft(a; o) = sign(a) max{0,|a | -5}

For more mathematical details, please read the original paper.



3. Algorithm Summary
The algorithms of SLR-LAP and SLR-VAR are described here. The other algorithms
(RLR-LAP, RLR-VAR, RVM, L1-SLR-LAP) are similar therefore omitted.

- SLR-LAP

1. Initialization

Set ;=1 d=1---,D

2. W-step

Q(w) ~ N(w,S) where S=H(w)™*

W is the maximizer of E(W) that can be obtained by the Newton-Rapson
method.

N
E(w)=>{y,logo, +@-y,)logl-05,)} —%Wtﬂw +const
n=1

where
E= X& — Aw
oW
2 b
G - =—XBX '—A=-H(w)
OWOW

A=diag(a,, -+, a,) : DxD
d=[y,~oy Yy —o] + Nxl

X =[x, Xy] : DxN

B =diag(c,(1-0,),--,0,(1—0y)) : NxN

3. A-step:
D D
Q(a):HQ(ad)ZHF(ad;&d'7d)
d=1 d=1
_ l-as; _ 1 . _ O |
@, =—8% 7 == ( lrule: @y =———, 7y ==)
d Wg 7/d 2 see original rule d V_Vj +S§ ]/d 2

V_\Id,Sj are the dth element and the dth diagonal element of W and S,

respectively.

4. Convergence:

Continue W-step and A-step alternately until the change of weight parameters is

very small or the number of iterations exceeds the predefined value.




- SLR-VAR

1. Initialization
Set ¢y =1 d=1---D and £, =2 n=1---,N

2. W-step
Q(w) ~ N(w,S)
N
T= A+ 20(E )X X, = A+2XAX' 1 DxD
e
W=5> (y,—-0.5)x, . Dx1
n=1
[ (A+2XAX"Y) XY D<N
ATX (AT +2X'AX)'AYy D>N

¥y=[y,-05,--,y, —0.5]' : Nx1
X =[x, Xy]: DxN
A =diag(4(&), -+ A(Sy))  NxN

(&) = 2 (0(5) ——j >0 (¢>0)

3. A-step:
D D
Q(a):HQ(ad)ZHF(ad;&d'7d)
d=1 d=1
_ l-as; _ 1 . 1 1
a,=——0% 5 == ( lrule: @, : =)
d Wg 7/d 2 see original ru e: d — Wd Sg ]/d 2

V_\Id,Sj are the dth element and the dth diagonal element of W and S,

respectively.
4. & -step:
E=x (Ww'+S)x, n=1---N

5. Convergence:
Continue W-step, A-step and & -Step alternately until the change of weight

parameters is very small or the number of iterations exceeds the predefined value.
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Appendix : Deformation of formula : Details

This appendix presents details of equation manipulation.

In 1.1 Sparse Logistic Regression (SLR)

R(w) = [ Py(w| @)Py(a)de

1 1
= J.(27r)_50(E exp(—%WZJ ‘o da

1 1
- (27;)7‘[0[E exp (—%wzj do

= (Zﬁ)_%r(ll 2) (%2]‘2 j F(lll 2) [%ij a_% exp(—%v\ﬂjda

1
21w 2
=(2r) ?n? (—v; j -1

In 1.4 1.1-Sparse Logistic Regression (I.1-SLR)

R,(wW) = [R(W|a)R,(a)da
= J‘(Zﬂa)_; exp(—%} : %exp(—%aj da
= (27;)_% %J. a_% exp {—%(W;Z + la]} da
—~Zexp(-7 W)

Here we used the following formula,
1 2
_[ X 2 exp{—%[% + axj} dx = \/gexp(—Zb\E) :

In 2.1.1. SLR-LAP
W-step:




logQ(w) =< log P(y, W, @) >,
=log P(y |w)+ <log Fy(w | @) >, +const

N
=> {Y,logo, +(1- yn)log(l—Gn)}—%wtﬂw+const

_E(W) —%(w— W)'H (W)(W — W) + const

Q(w) ~ N(W,S) where S = H (W) *and W is maximizer of E(w).

Using the following notations:

A=diag(a,,---,@,) :DxD

E(w) = i{y logo, + (-, )log(l— J)}—%WAW

n=1

N — —
oE _Z yn 8(7 _1-y, do, AW
oW 1= 1—0'n ow

Z{yn(l 0) (1 yn)a }X _AW

:ZN:( Yn _O-n)xn _'E‘W

8:[y1_o-l"“1yN_O-N]t :Nx1
X =[x, Xy] :DxN
B =diag(o,(1-0,),"-,0,(1—0y)) :NxN

A-step:



logQ(e) =<log P(y, w,a) >4,
=<log R,(w|@) >4, +10g F,(a) + const

_ 139 <w; >-loga,)- y log &, + const
2d d d
=1 =1

:_%ZD:(ad <W, > +loga, )+ const

= 10gQ()
Q(a) = HQ(%) = Hr(% ;&y,74) Where

7, Wo+s; _ 1 _ 1 _ 1)
—_ =, = — >, =—F = —
a, 2 72 CTWess 70

Wy, Sg are the dth element and the dth diagonal element of W and S, respectively.

Fast convergence rule can be obtained at the convergent point.

1
2 2
Wy + S

ad =
a,W, +a,s; =1
a,W, =1-a,s:

_ 1-a5s’ (_ 1)
Oy = — Ya =5 |
W 2

In 2.1.2. SLR with variational approximation (SLR-VAR

From the variational approximation to the logistic function(Jaakkola and Jordan 2000),

we have

o092 o(@erp| XS5 a0 )}

where A(&) = (J((f)——j>0 (£>0) . Since the likelihood function can be

rewritten as
P(y|w)= HO“/” (1-0,) "
= HO‘ “(exp(~2,)o0,) ™
= HO‘ exp(-z,(1-1y,))

then



Py w) = [Tt exp {55~ A& (2 - £ -1 -u)| = hrw.§

ot
where z, =x W.

Using this formula, FE is lower bounded as follows

FEQ(W,a)) > [Q(w, ) log "% %E’SSV;;“) Fo(®) dadw = FEQ(w, ). £).

FE(Q(w,a),&) is maximized with respect to Q(W),Q(a),& alternately.

W-step:
logQ(w) =<logh(y,w, &) +log R, (w | a) + log Py (a) >q
=logh(y,w,&)+ <log Py(w | @) >, +const

—Z{|090(§)+ Wb —AENL -E 7,1 )}—%Wtﬂw+const

:_Z{(Zyn 1)z, —2A(&) 2 }—%w Aw + const

n=1

- —Z{(Zyn —Dxiw —24(&,)W'X X, W}—%W‘KWJr const

nl

- —%wt (K+ zZﬁ(fn)XnX;jWJ{z(yn —0.5)xthw+ const
n=1 n=1

= —%(W —W)'S™H(w — W) + const

Thus Q(w) ~ N(W,S) where
N
T=A+) 20E)X X, = A+2XAX' 1 DxD

N
w=S5>(y,—05)x,

n=1
=(A+2XAXY) XY
=AX(ATT+2X'ATTX) AT - DXL

y=[y,-05,--,y, —05]' : Nx1
X =[x, xy] : DxN
A =diag(A(¢),--- A(&y)) + NxN

& -Step:



FE(Q(w, a),8) =<logh(y, w,&) +log R,(w | @) +log Ry () >4 )0
=<logh(y,w,&) >4 o) +cONSt

=< Zl:{log O-(é:n) - % - ﬂ“(gn)(zr? - é:nz)} >Q(W) +const

Taking partial derivative of FE(Q(W,a),§), we have

OFE _o'(&) 1 _, _ |
2 o) 2 M ma) T A 2,
1

~1-0(6) 5 - A< 7 > -8 v olE)
— KGN 2> =E)
Since A'(&,)#0for & >0, aF%g =0 leads to
o<t

=X <WW'>X_ .

=X (WW' + S)X,

By noticing that & is the nth diagonal element of X'(WW'+S)X and
X'SX = X'(A+2XAX") X
= X' (A= ATX((2A) T+ XATX) X AT X
= XA (1=(A) + X ATX) XA )

= X'AX ((2A) 1+ XAIX) T (2A)

wehave &2 = [x‘wwtx + X ATX((28)+ X ATX )*l (2A)1}

nn

In 2.2.1 RLR with Laplace approximation (RLR-LAP
A-step:



logQ(a) =<log P(y,w, ) >q
=<logR,(W|a) >4, +10g R)(«) + const

1 ‘ D
=—§<WW>a+EIoga—Ioga+const

1 D
=—§<ww>a+ E_l log & + const

Thus Q(a@)=T(a ;@ 7) where @ =2, 7:% (15)
Z(Wj +s§)
d=1
> 2
D-a) s
: : U _ ; ¢ _ D
Fast updating rule : Q(a)=T(x ;a,7) where a = , 7= >

D

2
2 W,
d=1

In 2.4.1 1.1-SLR with Laplace approximation (I.1-SLR-LAP
W-step
logQ(w) =<log P(y,w,a) >,

=log P(y |w)+ <log Fy(w | @) >, +const

N
=> {Valogo, +(1-y,)log(1- Gn)}—%Wti+ const

=1

=}

E(w) —%(w _ )" H (W)(W — W) + const

Q(w) ~ N(W,S) where S = H (W) *and W is maximizer of E(w).

Using the following notations:

V =diag(< ;" >,---,< o' >) :DxD

E(w) = i{yn logo, +(1-y,) Iog(l—an)}—%thW

N f— —_
%ZZ Yo 0o, 1-vy, do, Ry
ow 1=Z|o,ow l-o, ow

{y.(l=0,)-(A-y,)o, X, ~Vw

M= 1M

(yn - Un)xn _\7W

I
iN

n

o —Vw

x



. oo,

0°E
—— =) X, —7—V
owow oW
N
= _Z (1_ O-n)O-anX:] _\7
=1
=—XBX'-V
=-HW)
d=[y,~ oy, ¥y —oy] :Nxl
X =[x, Xy] :DxN )
B =diag(o,(1-0,),-,0,(1—0y)) :NxN



