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Dynamic cognitive differences
between internal and external
attention are associated with
depressive and
anxiety symptoms
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The internal/external attention framework distinguishes attention directed
toward internal representations (e.g., emotions) from attention focused on
perceptual stimuli.1 Dysfunctions in this attention balance are associated

with various psychiatric symptoms, including depression.2 Emerging evi-
dence suggests these imbalances may reflect dysfunction in neural systems,
such as the fronto-parietal network.2 While many researchers have empha-
sized the need to clarify dynamic differences in neural activity underlying
various cognitive dimensions of internal/external attention and their associa-
tions with psychiatric symptoms, this area remains understudied.3

To investigate how cognitive processes differ across conditions in terms
of brain representations, fMRI provides a useful and common approach. Tech-
niques such as regression and representational similarity analysis (RSA) have
helped examine the geometry of brain activity patterns and associations with
specific behavioral features.4 However, complex functions like internal and
external attention emerge from the dynamic interplay of multiple cognitive
processes (e.g., emotions, selective attention).1 Traditional approaches cannot
fully capture the temporal dynamics of these processes and their interrelations.
While dynamic functional connectivity can characterize time-varying inter-
regional coupling patterns,5 it is less suited to tracking how specific cognitive
representations diverge across conditions. Thus, a novel method is needed to
disentangle how these dynamics differ across conditions.
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Schemes of the experiment and Cognitive Dynamic Similarity Analysis (C-DSA)
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(c) Associations between cognitive dynamic dissimilarities and psychiatric symptoms
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Fig. 1 Overview and results of Cognitive Dynamic Similarity Analysis (C-DSA). (a) Overview of C-DSA. Brain activation patterns were extracted using meta-analytic software
and used as independent variables in a transposed Generalized Linear Model (GLM) based on cognitive dynamical estimation. Time series of each cognitive process were
derived from regression coefficients, followed by the computation of cognitive dynamic dissimilarity matrices (CDM) using correlation-based measures. Finally, Distance
Correspondence Indexes (DCI) were calculated by comparing the distance matrix across attentional types with the CDMs of each cognitive process. See Supporting Infor-
mation Methods for further details. (b), (c) the results of the comparison of dynamic dissimilarities and their associations with psychiatric symptom scores. Error bars denote
standard errors. # P< 0.05, uncorrected; *P< 0.05, **P< 0.01, ***P< 0.001, FDR-corrected for multiple comparisons over the number of statistical tests.
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Here, we sought to clarify the cognitive dynamic differences in inter-
nal and external attention using a new analytical method: Cognitive
Dynamic Similarity Analysis (C-DSA, see Fig. 1a). Eighteen non-clinical
adult participants completed the task. Internal/external attention was
manipulated through an introspection task requiring participants to focus
on each attentional dimension during emotion word-processing (see
Table S1 and Fig. S1 for the methodology details and Fig. S3 for behav-
ioral results). All fMRI scans underwent motion correction, realignment,
and normalization to MNI space without spatial and temporal smoothing.
A linear trend was removed from each time course. (See Supporting Infor-
mation Methods for full preprocessing details.) Next, we extracted trial-
wise cognitive dynamics of the two attention types using Cognitive
Dynamics Estimation.6 This method applies linear regression to an fMRI-
derived two-dimensional matrix using spatial patterns of cognitive pro-
cesses obtained from a meta-analytic platform as regression variables.7 We
focused on four a priori cognitive processes (emotions, selective attention,
self-referential thoughts, and working memory; see Fig. S2 for full time
series) while controlling for confounding factors (see Supporting Informa-
tion Methods). We then computed dissimilarity indices between the two
attentional types (internal vs. external) for each cognitive dimension. This
approach allowed us to examine how independent cognitive processes dif-
fer dynamically between internal and external attention and to explore
their relationship with psychiatric symptoms. Since difficulties in
switching or differentiating between internal and external attention have
been linked to psychiatric symptoms,3 we hypothesized that greater simi-
larity in cognitive dynamics across these attention types would correlate
with symptom severity.

After computing the correlation matrix of each cognitive process,
we obtained four distance-corresponding indexes (DCI), reflecting the
difference in internal vs. external attention for each process (see Supporting
Information Methods). All results were statistically significant (Wilcoxon
signed-rank test, emotions: Z = 3.72, pFDR <0.001, r = 0.88; selective atten-
tion: Z = 3.72, pFDR <0.001, r = 0.88; self-referential thoughts: Z = 3.72,
pFDR <0.001, r = 0.88; working memory: Z = 3.33, pFDR <0.001, r = 0.79,
see Fig. 1b), indicating that cognitive dynamics significantly differed
between attention types (see Fig. S4 for permutation tests with 1000
repetitions).

We observed significant negative associations between the DCI of
selective attention and depression and state anxiety scores (β = �0.002,
pFDR = 0.023; β = �0.002, pFDR = 0.002, Fig. 1c). This suggests that
greater similarity in selective attention dynamics across internal and exter-
nal attention types corresponds to more severe symptoms. Conversely,
there was a significant positive association between the DCI of selective
attention and trait anxiety (β = 0.002, pFDR = 0.002, see Table S3 for all
statistical values). Though these findings may seem paradoxical, they pro-
vide mechanistic evidence supporting the role of attention-training tech-
niques in psychiatric symptom improvement. Specifically, interventions
targeting attentional control could be effective in reducing symptoms
related to rumination and anxiety.8 Moreover, the findings suggest that
cognitive training or tailored neurofeedback protocols could be used to
reinforce more adaptive patterns of cognitive dynamics. For example, indi-
viduals with excessive similarity in selective attentional dynamics could be
trained to increase the differentiation between internal and external atten-
tion using decoded fMRI neurofeedback.

In sum, C-DSA offers a novel method for quantifying temporal dif-
ferences across cognitive dynamics, enabling the study of complex psycho-
logical constructs like internal and external attention from an ontological
perspective.9 This allows investigating associations between dynamic cog-
nitive processes and psychiatric symptoms. While previous research has
explored neural differentiation in psychiatric symptoms,10 these studies
primarily focused on static brain structures and functions, potentially limit-
ing direct clinical applicability. In contrast, C-DSA identifies specific cog-
nitive processes involved in psychiatric symptom modulation. This method
could open new avenues for understanding dynamic cognitive mechanisms
underlying complex mental functions, such as hierarchical decision-
making and problem-solving, but also link these processes to dysfunctions
in psychiatric issues.
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Diagnosing schizophrenia
spectrum disorders: Large
language models (LLMs)
vs. leading international
psychiatrists (LIPs)

doi:10.1111/pcn.13864

The availability of large language models (LLMs) as putative diagnostic aids
has a tangible transformative potential in many areas of science. Unlike many
fields of medicine where diagnostic processes heavily rely on laboratory tests
and imaging, psychiatric assessment fundamentally depends on narrative
understanding and linguistic analysis of patients’ experiences, emerging as
relevant fields to further test LLMs potential for diagnostic purposes. A
recent work by Li and colleagues1 provides the first comprehensive evalua-
tion of LLMs in psychiatric assessment by testing GPT-4, Bard, and
Llama-2 against both a standardized licensing examination and real clinical
scenarios presented as multiple-choice questions. Their study demonstrated
that certain LLMs, particularly GPT-4, could achieve diagnostic accuracy
approaching that of expert psychiatrists.

Furthermore, a recent study by Urkin et al.2 demonstrated concerningly
suboptimal levels of diagnostic accuracy among Leading International Psychi-
atrists (LIPs). Notably, when tasked with ascribing the best diagnostic estimate
to two real-world clinical vignettes of schizophrenia spectrum disorders
(SSDs), only 33% correctly identified both test cases (an overt and a more sub-
let clinical presentation). The study, aimed at benchmarking diagnostic preci-
sion in psychiatry for SSD by quantifying the diagnostic performance of LIPs
on simulated cases, raises critical questions about diagnostic reliability. Yet, it

provides an opportunity to assess LLMs on the same diagnostic task, exten-
ding the work from Li et al. in a more challenging scenario where LLMs must
generate diagnoses without predefined options, specifically focusing on SSDs,
and using a broader range of LLMs, including both closed-source and open-
source models.

For this reason, we tested multiple state-of-the-art LLMs on the two
vignettes presented in the original benchmark study2 (see: https://pmc.ncbi.nlm.nih.
gov/articles/PMC11207759/). Among open-source LLMs, we included large-scale
architectures (DeepSeek-V3, Llama 3.1 405B, and Mixtral-8nu00D722B)
and lightweight ones (Phi-3.5-mini, Ministral-8B, and Llama-3.2-3B). We
also evaluated closed-source LLMs including GPT-4o, Claude-3.5-Haiku,
and Gemini Flash 1.5. Each model was prompted in a Chain-of-Thought
(CoT) fashion3 (i.e., prompting the model to reason step-by-step through
symptoms and diagnostic criteria to reach a clinical conclusion, see Data S1
for the prompt template visualization) to provide diagnostic impressions. All
models were used in inference mode by setting the temperature to zero to ensure
that the outcomes (reported in the following Github repository: https://github.
com/Fede-stack/LLMs-vs-LIPs) would be deterministic and thus reproducible.
The experiments were conducted following TRIPOD-AI research guidelines.4

No ethical approval was required for this study as it involved the use of
anonymized clinical vignettes and computational analysis of publicly available
large language models, without human participant involvement or access to per-
sonal data. The research adhered to established guidelines for artificial intelli-
gence research (TRIPOD-AI).

Figure 1 presents the results of the LLMs diagnostic evaluation of the
two vignettes: closed-source and large-scale open-source LLMs correctly identified
the diagnosis for both vignettes, while open-source lightweight LLMs showed
selective competence, correctly diagnosing the first—most flamboyant SSD
presentation—case, but misinterpreting the second—more attenuated SSD
presentation—as various forms of depressive disorder.

While Li et al.1 demonstrated that earlier LLMs could approach psy-
chiatrists’ performance in structured multiple-choice scenarios, our evalua-
tion of more recent models shows that state-of-the-art LLMs are comparable
to the top-performing 33% of diagnostically precise LIPs who correctly
identified both SSD cases, without predefined diagnostic options. They
effectively recognize both classical (e.g., David vignette) and subtle
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(e.g., Michael vignette) SSD presentations. These findings suggest that com-
plex LLMs excel in psychiatric pattern recognition, particularly for nuanced
clinical states, achieving expert-level diagnostic precision on textual case
material, and outperforming simpler LLMs models. This corroborates their
potential as decision-support tools to enhance diagnostic accuracy, reduce
time-to-treatment in real-world settings and marks a significant step toward
clinically implementable AI assistance in psychiatric diagnosis.

Limitations: (i) For comparability reasons, the clinical testing mate-
rial is limited to the two SSD vignettes previously used to benchmark
LIPs diagnostic performance; (ii) we tested a subset of LLMs, although
representative of current state of the art. (iii) While our focus was on
diagnostic performance, we acknowledge that implementation of LLMs in
psychiatric practice would require addressing considerations around
potential algorithmic biases, privacy, and appropriate integration with
clinical judgment. While broader testing incorporating a range of diverse
clinical presentations is desirable to further validate LLMs performance
across other diagnostic categories, the current study confirms their poten-
tial for diagnostic precision. Closed-source and large-scale open-source
LLMs achieve a level of accuracy comparable to that of the top-
performing LIPs, whereas lightweight LLMs, though suboptimal, still
align with the performance of a substantial fraction of LIPs. Our findings
highlight the potential of LLMs in psychiatric education and clinical sup-
port, especially in recognizing complex diagnostic patterns. Large-scale
training programs5 could benefit from AI-guided decision support. Future
research should investigate how LLMs might complement human exper-
tise in psychiatric diagnosis while acknowledging the irreplaceable role
of clinical experience and human judgment. Additionally, evaluating
LLMs’ diagnostic adaptability across different scenarios warrants further
exploration.
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