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Foreseeing the future outcomes is the art of decision-making. Substantial evidence shows that, during choice deliberation, the brain 
can retrieve prospective decision outcomes. However, decisions are seldom made in a vacuum. Context carries information that can 
radically affect the outcomes of a choice. Nevertheless, most investigations of retrieval processes examined decisions in isolation, 
disregarding the context in which they occur. Here, we studied how context shapes prospective outcome retrieval during deliberation. 
We designed a decision-making task where participants were presented with object–context pairs and made decisions which led to a 
certain outcome. We show during deliberation, likely outcomes were retrieved in transient patterns of neural activity, as early as 3 s 
before participants decided. The strength of prospective outcome retrieval explains participants’ behavioral efficiency, but only when 
context affects the decision outcome. Our results suggest context imparts strong constraints on retrieval processes and how neural 
representations are shaped during decision-making. 
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Introduction 
In our everyday lives, we make numerous decisions that are 
prompted and affected by the context around us. For example, 
choosing whether to carry an umbrella with us largely depends 
on the season we are in and the weather forecast. While we 
make choices, our brains engage in prospective planning, where 
the possible outcomes of our actions are retrieved and reinstated 
at the neural level (Redish 2016; Rich and Wallis 2016; Shadlen 
and Shohamy 2016; Castegnetti et al. 2020; Crivelli-Decker et al. 
2023; Wimmer et al. 2023). Retrieval of prospective outcomes is 
considered an integral ingredient of decision-making across many 
species: for example, in rodents, future trajectories of choices are 
reinstated in the hippocampus to assist in goal-oriented naviga-
tion (Pfeiffer and Foster 2013; Ólafsdóttir et al. 2018). Similarly, the 
human brain represents possible future outcomes and states of 
the environment during decision deliberation (Castegnetti et al. 
2020; Wise et al. 2021) and offline, during rest (Kurth-Nelson 
et al. 2016; Schuck and Niv 2019). A number of benefits have 
been suggested for the reinstatement of neural representation of 
previously experienced or prospective information. This includes 
supporting the consolidation of learned information (Schapiro 
et al. 2018) and planning (Singer et al. 2013; Schuck and Niv 2019; 
Eldar et al. 2020; Wimmer et al. 2023). In short, neural retrieval of 
outcomes is critical to facilitate learning to achieve future goals 
(Mattar and Daw 2018; Liu et al. 2021; Wise et al. 2021). 

Although retrieval of neural representations has been observed 
across tasks and species, circumstances under which neural 
representations are retrieved in the brain is an open question. 
Recent computational frameworks have proposed that neu-
ral retrieval during deliberation manifests depending on the 
combination of how often an option is expected to be chosen 
and the expected reward gain after choosing an option (Mattar 
and Daw 2018). However, such neural calculations underlying 
deliberation are computationally expensive and may therefore be 
omitted in decisions that do not require strenuous deliberation 
(Keramati et al. 2011; Mattar and Daw 2018). Although such 
decisions are rather fast, they are not sensitive to the changes 
in the environment such as context or goal switches (Keramati 
et al. 2011). On the other hand, the behavioral readout of the 
decisions that need deliberation demonstrates higher flexibility 
at the cost of longer reaction times (Daw et al. 2005; Balleine 
and O’Doherty 2010; Keramati et al. 2011). This trade-off leads 
to both types of decisions to occur, depending on deliberation 
demands (Daw et al. 2005; Balleine and O’Doherty 2010; Keramati 
et al. 2011; Dolan and Dayan 2013). Several factors modulate the 
demands for deliberation, including whether a given decision is 
goal-oriented (Dolan and Dayan 2013), its difficult,y, or whether 
the action-outcome associations are well-learned (Tzovara et al. 
2015). Although prospective outcome retrieval is considered to 
largely benefit and underlie decision-making, it remains unknown
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whether and how it manifests as a function of deliberation 
demands. 

To address this question, we designed a novel experimental 
protocol, where the need for choice deliberation is modulated by 
the context into which a decision takes place: deliberation about 
whether to carry an umbrella or not may be beneficial in spring, 
where the weather is more changeable, but less so in the middle 
of the summer or during winter. Converging evidence suggests 
that context is an integral part of decision-making, acting on mul-
tiple levels, from sensory representations to abstract valuation 
(Grueschow et al. 2015; Frömer et al. 2019; Castegnetti et al. 2021; 
Moneta et al. 2023; Schaffner et al. 2023), shaping neural represen-
tations and attentional allocation (Grueschow et al. 2015; Frömer 
et al. 2019; Sepulveda et al. 2020; Castegnetti et al. 2021; Moneta 
et al. 2023; Schaffner et al. 2023). The context into which a decision 
is made plays a crucial role in identifying the desired choice 
(Sepulveda et al. 2020; Moneta et al. 2023), suggesting that context 
is inherently integrated into the deliberation process. However, 
most of existing studies used functional magnetic resonance 
imaging which has a very low temporal resolution, making it dif-
ficult to determine at what point during deliberation the context 
is integrated. At the same time, most studies on outcome retrieval 
while using techniques with a better temporal resolution (e.g. 
intracranial recordings, electroencephalography [EEG], or magne-
toencephalography [MEG]) have often treated decisions detached 
from context. These leave 2 important questions unanswered: (i) 
how context affects the neural computations underlying decision 
deliberation and (ii) how early in time it is integrated into the 
decision-making process. 

This work aims to bridge the gap between these 2 strands 
of research. We investigated how the neural representation of 
likely decision outcomes unfolds over time before a choice is 
made, and how retrieval of these representations is altered by 
context. To achieve this, we employed high-density scalp EEG 
together with multivariate decoding to detect the neural represen-
tation and retrieval of prospective outcomes during deliberation. 
We hypothesized that outcome representations are retrieved in 
the brain while deliberating and that outcome retrieval would 
be stronger and behaviorally relevant for those decisions where 
context determines their outcome. By examining the interplay 
between context and the neural retrieval of prospective outcomes, 
our study aims to provide new insights into the complex neural 
mechanisms underlying decision-making and how they are mod-
ulated by contextual factors. 

Materials and methods 
Participants 
Thirty healthy volunteers (16 women and 14 men, mean age 
24.9 ± 4.2 SD) participated in the study. The sample size was 
selected following common practices in recent studies using sim-
ilar techniques as ours to study the neural retrieval of outcome 
in decision-making (Castegnetti et al. 2020; McFadyen et al. 2023; 
Wimmer et al. 2023). The experiment protocol was approved by 
the Health, Social, and Cantonal Ethics Committee of the canton 
of Bern, Switzerland (reference number: 2020-00060). All partic-
ipants reported having a normal or corrected-to-normal vision. 
Before the experiment, a written informed consent was signed by 
the participants. 

Experimental procedures 
The experimental procedure consisted of 2 phases: a functional 
localizer, and the main decision-making task. As stimuli, a set of 

images with a gardening theme was used (Fig. 1C). Each stimulus 
was presented at the center of the screen in order to minimize eye 
artifacts in EEG responses. Stimuli were delivered by the PsychoPy 
package (version: 3.1.5) in Python (version: 3.7.3), on a monitor 
positioned 75 cm away from participant’s forehead, with a visual 
angle of 6◦ 15′ 0.49′′. 

Functional localizer 
Before the main decision-making task, participants took part in a 
functional localizer. The goal of the localizer was to isolate EEG 
responses to 3 outcome stimuli from confounding neural pro-
cesses that would be present in the decision-making task, such as 
motor responses or decision-related variables. Participants were 
presented with an outcome image for 0.3 s, followed by a fixation 
cross, presented for 1.5–2.5 s (Fig. S1). To ensure that participants 
were paying attention to the localizer, they were asked to fixate 
on the presented images and press a button every time that the 
fixation cross changed color from white to red. The cross was 
white in 90% of the trials and red in 10%. All participants were 
able to detect all the red crosses with an average response time 
(RT) of 0.47 ± 0.01 s. This session consisted of 100 presentations of 
each outcome image, or 300 trials in total. 

Decision-making task 
We designed a novel decision-making task to investigate how 
the neural retrieval of outcomes during decision deliberation is 
affected by the decision context (Fig. 1A). The task followed a 
narrative according to which participants role-played a gardener. 
On each trial, they were presented with a gardening tool (object, 
which could be scissors, watering can or fertilizer) and a fictional 
season (context, highlighted by a rectangle or circle surrounding 
the object, Fig. 1A). On each trial, participants were asked to 
make a decision on the market to which they would sell the 
gardening outcome of the presented object-context pair in order 
to maximize their profit. The possible markets (wood, flower, 
fruit) were revealed 1.5 s after the presentation of the context, 
prompting participants to select 1 of the 3 via a button press. In 
the narrative of the task, the gardener could only sell the product 
if it matched the market. Otherwise, they would lose money as the 
product would not be suitable for the chosen market and would be 
lost due to rotting. Participants indicated their responses through 
a button press on a keyboard. 

Every pair of object and context was associated with one most 
likely outcome with an 80% probability, and the other 2 outcomes 
with a 10% probability each (Fig. 1C). In the majority of decisions 
(320 trials; 67% of all decisions), context determined the likely 
outcome of a given object (context-dependent), while in the con-
trol condition outcome was independent of context (context-free; 
Fig. 1B). An exemplar object-context-likely outcome association 
table is provided in Fig. 1C. These associations were randomized 
across participants but kept constant throughout the experiment 
for a given participant. 

The task had the following structure (Fig. 1A, lower panel): 
first, an object was presented for 1.5 s and then the context was 
shown together with the object for 1.5 s. Next, the 3 possible 
markets were revealed prompting participants to select one. After 
participants made their choice, there was a 0.5 s wait period 
and subsequently their chosen outcome was presented together 
with feedback on whether the decision was correct (green tick) or 
wrong (red cross). 

EEG recordings started with the functional localizer (∼9 min),  
and then participants received a briefing about the decision-
making task. This task consisted of 8 sessions, each of which
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Fig. 1. Task design and behavioral outcomes. A) Design decision-making task. Each trial started with an object (gardening tool) which was presented 
for 1.5 s. then the context (fictional season) was presented together with the object for 1.5 s. This period of the first 3 s was considered as decision 
deliberation. Next, participant’s decisions on which market to sell the gardening outcome given the object and context were asked. After the participant’s 
response, the outcome was presented together with a sign (tick or cross) for 1 s and followed by a 1.5 to 2.5 s long fixation cross. The thought balloon 
indicates the deliberation period before a decision was made. B) The types of decisions in the task. A decision was context-dependent if object and 
context together determined the outcome. It was a context-free decision when only object was enough to determine the decision outcome. C) Exemplar 
object-context-outcome association table. Three gardening tools (the most left column) were used as objects and 2 geometric shapes (top row) indicated 
the fictional seasons. Every object-context pair was associated with a gardening outcome. For 2 objects, context determined the likely outcome of a given 
object (first 2 rows of the table) whereas for the control condition outcome was independent of context (last row of the table). d) Behavioral accuracy in 
context-free was significantly higher than in context-dependent decisions [Wilcoxon signed-rank test, z(25) = 3.14, P < 0.002]. e) RT for context-dependent 
decisions was significantly longer than for context-free decisions [Wilcoxon signed-rank test, z(25) = −3.42, P < 0.001]. In B and C, each dot corresponds 
to a participant’s average behavioral accuracy in context-free or context-dependent decisions. 

contained 10 presentations of every object-context pair, the deci-
sion for this pair, and the outcome (lasting 6–7.5 min), resulting in 
480 decision-making trials. 

Analysis of behavioral readouts 
Participants’ behavioral performance was assessed by the 
percentage of trials in which they selected the most profitable 
market, given the presented object-context pair and also by 
their RT. To test the effect of context on behavioral performance, 

non-parametric paired Wilcoxon signed-rank tests were applied 
to statistically compare the average behavioral performance and 
RTs across participants for context-free vs. context-dependent 
decisions. 

EEG recordings and preprocessing 
EEG data were recorded with a 256-channel Geodesic sensor 
system (Electrical Geodesics Inc.) with 1,000 Hz sampling rate 
and an online reference at the Cz electrode. After the acquisition,
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raw EEG data were filtered between 1–20 Hz. Among the avail-
able channels, 48 horizontal ocular and cheek channels were 
excluded from the EEG analysis due to persistent muscle arti-
facts, resulting in 208 electrodes. Heartbeat, eye blink, and eye 
movement artifacts were removed by independent component 
analysis (Hyvarinen 1999) followed by manual inspection. For the 
functional localizer, trials were extracted from −0.1 to 1 s relative 
to stimuli presentation. From the main task, we extracted 3 types 
of trials: outcome trials (−0.1 to 1 s relative to outcome onset); 
deliberation trials −0.1 to 1 s relative to object onset and − 0.1 to 
1 s relative to context onset. Baseline correction was not applied 
to avoid contamination of outcome and deliberation periods. 
Noisy epochs affected by muscle activity, movement or other arti-
facts that remained after independent component analysis were 
excluded based on visual inspection of the data. This resulted in 
the exclusion of on average 22% of the epochs (mean 66.7 ± 23.6 
SD). Noisy electrodes were interpolated (on average 14.6% across 
participants). After data cleaning, epochs were re-referenced to 
the common average reference and down-sampled to 256 Hz, 
to reduce computational time for the decoding analysis, as it is 
commonly done in the field (Liu et al. 2019; Castegnetti et al. 
2020; Wise et al. 2021). Data preprocessing was done using MNE 
library (version 0.24; Gramfort et al. 2013). Two of the participants 
were excluded from the analyses because of large artifacts in their 
EEG signals that could not be cleaned. Two additional participants 
failed at learning the task and were therefore also excluded. 
Hence, the final dataset that was used in all analyses contained 
26 participants. 

Multivariate decoding analysis 
In order to extract EEG patterns reflecting neural responses to 
the identity of the 3 possible outcomes, we trained classifiers on 
the EEG responses to the 3 outcome images presented during 
the functional localizer (Fig. 2). Prior to the decoding analysis, 
EEG data were normalized to zero mean and unit variance, as is 
common practice in the field. We used logistic regression to train 
and test one 3-class classifier per time point across the trial and 
participant, in a 5-fold cross-validation, using L2 regularization. 
Decoding performance was quantified via the classification 
accuracy (ratio of correctly classified trials along the 3 classes). 
In a control analysis, the same approach was followed to decode 
the identity of the 3 outcomes during the decision-making task by 
using EEG responses during the outcome presentation (Fig. S2a) 
after a decision was made. Last, we tested the generalization 
of the classification models trained on EEG responses in the 
functional localizer and tested on the EEG responses to outcomes 
during the decision-making task (Fig. S2b). In all cases, we 
performed the decoding analysis at the single-participant 
level and then averaged the time-courses of classification 
accuracy across the group of participants. For the classification 
analysis, we used MNE (Gramfort et al. 2013) and Scikit-Learn 
(Pedregosa et al. 2011). 

Estimation of chance levels 
Chance was computed empirically for each participant by training 
classifiers using the same training data, but randomly permuting 
their labels 100 times. To identify time periods with above-chance 
decoding performance, the decoding performance of “true” 
classifiers was statistically compared to empirical chance levels 
by non-parametric Wilcoxon signed-rank tests and corrected 
for multiple comparisons across time via the false discovery 
rate (FDR). 

Reconstruction of outcome representation during 
deliberation 
To study the neural retrieval of prospective outcome we used the 
decoding models trained on the EEG responses to the functional 
localizer and applied them in the deliberation phase of the main 
experiment, before the outcome was revealed. To this aim, we 
used EEG responses to the localizer between 0.09 and 0.23 s post-
stimulus onset, to train 1 model per participant, reflecting the 
patterns of their EEG responses to each of the 3 possible outcomes. 
This window was selected as it corresponded to the temporal 
interval where decoding performance in the localizer was the 
strongest (Fig. 3B). We opted for using a time window instead 
of a fixed time point to account for inter-individual variability 
and to capture more diverse patterns of outcome representation, 
following a similar approach as previous studies (Wise et al. 2021). 
Using this temporal window, we trained 1 classifier per participant 
using all trials from the localizer to represent neural patterns 
corresponding to the 3 possible outcomes (Fig. 2 top row). As these 
classifiers were trained using data of the localizer, isolated from 
the decision-making task, they solely represent neural activity 
related to the identity of the 3 possible outcomes (neural rep-
resentation of outcomes), dissociated from confounding factors 
like valuation, decision-making, or motor response. The trained 
classifier for each participant was then applied on EEG data 
recorded during the decision-making task, in the deliberation 
period, which corresponded to the time period before an outcome 
was chosen. As this time period is unlabeled (i.e. there are no 
actual outcome images presented), we computed the probability 
of a given outcome to be represented given the EEG data, using 
the following formula:P (Outcome|EEGt) =  

1 
1 + e−(β0+β1EEGt,1+···+βnEEGt,n) (1) 

where βn are the classifier weights and EEGt,n the EEG measure-
ments recorded from channel n, with  n = 208 channels in total, 
at time point t. This corresponds to the step before assigning the 
labels. Outcome probabilities were computed for each time point 
(t) and trial. In our analyses we focused on the probabilities of 
the most likely outcome out of 3 possible outcomes (Fig. S3 for 
exemplar time course of reconstructed probabilities). For context-
dependent decisions, 2 outcomes were equally likely before the 
presentation of context. Therefore, for this case we reconstructed 
probabilities for both outcomes separately. Since we were inter-
ested in the likely outcome, for or time-locked analysis, when 
studying the effect of context, the probability values were bina-
rized by applying a threshold of 0.33 to the reconstructed proba-
bilities. The resulting values reflected whether the likely outcome 
was “represented” or not. The reported results remained similar 
whether we binarized or not. All other analyses were conducted 
on the actual probabilities without binarizing. The time-locked 
results were also replicated without binarizing. 

Quantifying outcome retrieval during 
deliberation 
As outcome representations can be retrieved at any time point 
during deliberation, we quantified outcome retrieval via the 
strength and temporal structure of single-trial reconstructed 
probabilities via the power spectral density (PSD; Fig. 4) and  
autocorrelation function (Fig. S4), respectively. The PSD was used 
to uncover the strength of patterns of reconstructed probabilities 
that were not necessarily time-locked to external events, while 
the autocorrelation function was used to quantify the temporal

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae483#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae483#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae483#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae483#supplementary-data
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Fig. 2. Schematic representation of our data analysis. Top: patterns for the three outcome images were decoded by training classifiers on EEG responses 
during the functional localizer, as the first step of the analysis. Bottom: the decoded and tested patterns were then used to detect outcome representation 
during deliberation, before making a decision. We first reconstructed the probability of outcome representations at every time point on the single-trial 
EEG responses during deliberation based on the classifiers trained to discriminate the three outcomes. As an outcome can be retrieved at any time during 
deliberation, we analyzed the strength and temporal structure in retrieval of outcome representations via PSD and autocorrelation of reconstructed 
probabilities on single-trial level. 

Fig. 3. EEG responses to outcomes and decoding of outcome identity from EEG responses. A) Average EEG responses to outcome images presented during 
the functional localizer across the group of participants. B) Time point-by-time point decoding of the identity of the three outcomes. Black solid line 
shows the group average of decoding accuracy whereas black dashed line shows the chance level. Gray-shaded areas show standard error. Horizontal 
bar with asterisks (∗) indicates time periods in which decoding accuracy was above chance. Gray dashed vertical lines at 0.09 and 0.23 s show the time 
period used for training final decoders which were used to detect outcome representations during deliberation. 

structure of outcome retrieval. To ensure that our results were not 
driven by properties of EEG signals like a power law but reflected 
outcome probabilities, we computed the same metrics but based 
on the randomly trained classifiers, which provide a measure of 
chance, and then computed the area under the curve between 
PSDs and temporal autocorrelation obtained by real vs. chance 
probabilities. 

We computed the strength of prospective outcome retrieval 
by extracting the single-trial power of the time course of 

reconstructed outcome probabilities [P (Outcome|EEGt)]. We 
used multitapers, applied on the single-trial time-course of 
reconstructed probabilities in the frequency range of 1 to 20 Hz 
(using time_frequency.psd_array_multitaper function from MNE 
with adaptive weights and full normalization). The resulting 
power spectra were then averaged across deliberation trials. For 
context-dependent decisions, before context was revealed, there 
were 2 equally likely outcomes. Therefore, PSDs were computed 
for each likely outcome separately and then averaged together.
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Fig. 4. Outcome retrieval and its relation with behavioral performance. A) Strength of outcome retrieval (solid black line) vs. chance (dashed line), 
quantified via power spectral analysis on reconstructed outcome probabilities. Chance level was evaluated based on the randomly permuted classifiers 
of outcome images. Horizontal bar with asterisks (∗) indicate frequencies which were different from chance. B and C) Neuro–behavioral coupling between 
the behavioral performance and strength of outcome retrieval. Regression of behavioral performance on strength of outcome retrieval in B) context-free 
and V) context-dependent conditions. In context-free decisions, there was no significant regression of behavioral performance on strength of outcome 
retrieval [panel B, linear regression, F(1, 24) = 0.08, P = 0.78]. However, the regression was significant for context-dependent decisions [panel C, linear 
regression, F(1, 24) = 6.98, P = 0.014]. For context-dependent decisions (panel C), single-subject results are provided for 2 exemplar participants (1 with 
high behavioral performance, and another 1 with low behavioral performance). D and E) Neuro–behavioral coupling between the RTs and strength 
of outcome retrieval for D) context-free and E) context-dependent decisions. In context-free decisions, there was no significant regression of RT on 
the strength of outcome retrieval [panel D, linear regression, F(1,24) = 0.022, P = 0.88], which was the case for context-dependent ones [panel E, linear 
regression, F(1,24) = 5.39, P = 0.03]. 

We quantified the single-trial temporal structure of recon-
structed outcome probabilities by computing their temporal auto-
correlation, which quantifies how similar a time-series signal 
is to its lagged (future or past) values. The autocorrelation was 
computed for time-lags up to 0.3 s, with steps of 0.004 s, based 
on single-trial probabilities, and was then averaged across trials, 
similar as in previous studies ( Castegnetti et al. 2020). 

To test whether neural representation of prospective outcome 
was retrieved during the deliberation period, we contrasted the 
PSD and autocorrelation of the likely outcome probabilities to 
chance levels. We estimated chance levels via the decoding mod-
els obtained by randomly permuting the classifier labels and 
repeating the calculation of PSD and autocorrelation based on 
these chance models. The PSD and autocorrelation of a given 
outcome were then compared to that of random permutations 

using Wilcoxon signed-rank test and were corrected for multiple 
comparisons over frequencies (for the PSD) and time-lags (for the 
autocorrelation) via FDR correction. 

Neural–behavioral coupling 
To study the link between neural retrieval of prospective outcome 
and behavioral outputs, we quantified for each participant the 
strength and temporal structure of outcome retrieval and then 
tested its links to behavioral performance and RTs. We com-
puted for each participant the average PSD or autocorrelation 
across the relevant deliberation trials and the computed the 
area between the PSD corresponding to probabilities of the true 
and chance decoding models (Fig. 4C, side panels for exemplar 
participants). We focused on those frequencies (PSD) where the
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group-level measures were different from chance in the condi-
tion of interest. These were chosen for 2 reasons: first because 
these frequencies reflect unambiguous signatures of prospective 
outcome retrieval, where it is represented above chance levels, 
and second because this allowed us to keep the selection of 
frequencies orthogonal to the neural–behavioral coupling anal-
ysis. The outcome retrieval strength across participants was then 
regressed on their behavioral performance and RTs with linear 
regression. We used a regression model that included 1 factor for 
outcome retrieval (strength or temporal structure), and 1 factor 
for context-dependence (context-free vs. context-dependent deci-
sions) as well as their interaction. 

We further investigated the observed link between outcome 
retrieval and behavior by analyzing the time course of outcome 
retrieval strength and behavioral performance (Fig. S5 for group-
level average behavioral performance over the course of exper-
iment) throughout the experiment on a single-participant level. 
To this aim, we computed the time course of outcome retrieval 
by calculating the area between average PSD corresponding to 
probabilities of the true decoding models and chance models over 
sub-averages of n = 20 trials per object and context pair for each 
participant. The behavioral accuracy of respective trials was also 
averaged. We repeated this process in a sliding window fashion, 
resulting in a time course of outcome retrieval strength and 
behavioral accuracy. Employing an approach previously used to 
detect changes in learning rate (Frank et al. 2022) and behavioral 
sensitivity (Tom et al. 2007), we quantified changes in behavior as 
well as outcome retrieval over the course of the experiment by fit-
ting a linear model across trials (Fig. S6 for exemplar time-course 
of behavioral accuracy with fitted models). Then we computed the 
speed of change in behavioral accuracy and in retrieval strength 
by extracting the slope of a linear model, fitted to every 10 trials 
(this analysis was repeated with n = 5  and  n = 15 showing similar 
results). With this analysis we aimed at testing the hypothesis that 
an improvement in behavioral performance would be explained 
by a change in outcome retrieval. For this reason, we identified 
positive model fits (slopes) for behavioral changes and slopes of 
the outcome retrieval in the respective trials. All positive slopes 
of behavioral accuracy were then averaged per object and context 
pair in context-free and context-dependent decisions for each par-
ticipant as an aggregate indicator of learning speed. We averaged 
all the slopes of outcome retrieval that correspond to positive 
slopes of behavior. This analysis was performed separately for 
each context/object/outcome association, as each of those could 
be learned at a different speed. We then regressed the improve-
ment in behavior to the absolute change in outcome retrieval 
strength with a linear mixed effects model with a random factor 
of participants. 

Results 
Thirty healthy participants performed a decision-making task 
while their neural activity was being recorded via high-density 
EEG. In our task participants were instructed to play the role 
of a virtual market farmer. They had to select the market they 
would sell their product to. Each participant was shown fictional 
gardening tools (object) and seasons (context; Fig. 1A) for 1.5 s. 
They learned outcome-object-context associations by trial and 
error. Each object-context pair was associated with one most likely 
outcome with 80% probability (Fig. 1C). For 2 out of 3 objects, 
their likely outcome was determined by the context (context-
dependent, Fig. 1B). For the third, control object, the outcome was 
independent of context (context-free, Fig. 1B). Prior to the main 

task, participants took part in a localizer, where they were exposed 
to the 3 possible outcomes, presented in a random order (Fig. S1). 

Participants were significantly better at selecting the market 
to which they could sell the corresponding gardening outcome, 
which had to match with the market to be sold, in context-
free (likelihood of selecting likely market: 0.87 ± 0.02 mean ± SEM 
here and in the following) than in context-dependent (0.81 ± 0.02) 
decisions [Wilcoxon signed-rank test, z (25) = 3.14, P < 0.002]. They 
were also significantly faster in indicating their choice in context-
free (0.45 s ± 0.02 s) than in context-dependent (0.49 s ± 0.02 s) 
decisions [Wilcoxon signed-rank test, z (25) = −3.42, P < 0.001]. 
These results provide a first indication that additional neural 
processes or computations may take place when information 
about the context must be integrated and used to guide a decision. 

Decoding outcomes from EEG activity patterns 
To investigate whether decision outcome is represented the neu-
ral level during decision deliberation we used multivariate pattern 
analysis (Fig. 2, top;  Castegnetti et al. 2020; Eldar et al. 2020; 
Wise et al. 2021). We focused on EEG responses to the three 
possible outcomes recorded in the pre-task functional localizer 
session to obtain neural representations of the possible decision 
outcomes unconfounded by decision-making or contextual vari-
ables (Fig. 3A). Multivariate decoders were trained to discriminate 
EEG responses to the three possible outcomes for each partici-
pant (Fig. 2, top). Classification performance was above chance 
(PFDR < 0.05) from 0.05 to 0.72 s post-stimulus onset and peaked at 
0.11 s with a 3-class mean accuracy of 0.53 ± 0.01 across partici-
pants (Fig. 3B). Chance level decoding performance was estimated 
by training 100 classifiers on randomly permuted labels, and was 
around 0.33, which corresponded to the theoretical chance level 
(Fig. 3B, dashed line). 

After training these classifiers, we ensured that decoding dur-
ing the outcome presentation was above chance (Fig. S2a) and that  
trained classifiers generalized from the pre-task localizer to the 
main task (Fig. S2b). We then proceeded with studying how the 
neural retrieval of outcome unfold in a prospective manner, and 
what their behavioral relevance is. To this aim, we retrained 1 out-
come decoder per subject, over a time window of 0.09–0.23 s post-
stimulus onset, using the localizer EEG responses. This temporal 
window was chosen because it exhibited the strongest decoding 
performance and covered the peak in the decoding analysis in 
the functional localizer decoding (Fig. 3B), outcome presentation 
(Fig. S2a), as well as in the localizer-to-outcome generalization 
(Fig. S2b). 

Neural representation of prospective outcome 
Next, we focused on the decision deliberation period (Fig. 1A) and  
we examined whether the prospective outcome is represented 
in the brain. To test this, we computed the probability of the 
most likely outcome to be represented on single-trial EEG activ-
ity during decision deliberation (Fig. 2, bottom) before and after 
presentation of context separately. We assessed whether neural 
representations of outcome were retrieved during decision delib-
eration by computing the strength of reconstructed probabilities, 
assuming that outcome can be retrieved at any time point during 
deliberation, and not in a strictly time-locked manner. 

To compute the strength of outcome retrieval, we calculated 
the PSD of reconstructed probabilities of the most likely outcome 
for each individual decision before and after context presentation 
separately. In context-dependent decisions during the period 
before context presentation, 2 outcomes were equally likely. 
Therefore, in this condition we performed our analysis for each

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae483#supplementary-data
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outcome separately and then averaged the resulting power 
spectra. Then we compared that to the PSD of probabilities 
obtained via randomly trained classifiers for the likely outcome, 
which quantified chance (Fig. 4A). We found a significantly 
stronger than chance power in the decoded outcomes during 
decision deliberation between 4.5 and 19.1 Hz (Wilcoxon 
signed-rank test, PFDR < 0.05, Fig. 4A, see  Fig. S7 for PSDs of 
outcome retrieval and of EEG data and Fig. S8 for control 
analysis of oscillatory activity in EEG). Stronger than chance 
power in outcome representations suggests that prospective 
outcome was retrieved in the brain during decision deliberation. 
This finding was also confirmed by computing the temporal 
autocorrelation of reconstructed outcome (Fig. S4a). As outcome 
retrieval deviated from chance at certain frequency range 
and time lags, which shows that retrieval of outcome is a 
structured process during deliberation. These findings support 
our hypothesis that likely outcomes are retrieved at the neural 
level during decision deliberation, before the outcome itself is 
experienced. 

Neural–behavioral coupling during choice 
deliberation 
After establishing that outcome is retrieved during deliberation, 
we next tested how its retrieval is affected by deliberation 
demands, and whether it is related to behavioral readouts. 
For each participant, we quantified the strength and temporal 
structure of outcome retrieval during deliberation before and 
after context presentation as the area between likely outcome 
and chance curves in their power spectra (Fig. 4, exemplar single-
subject results in bottom panels) and temporal autocorrelation, 
respectively. Then, we computed a regression of the behavioral 
decision accuracy of each participant on strength of outcome 
retrieval during deliberation, including both before and after 
context periods. 

To this aim, we expressed behavioral performance as a function 
of the strength of prospective outcome retrieval, of context-
dependence, and their interaction. The resulting model [F(3, 
48) = 4.26, P = 0.01] revealed a significant interaction between the 
strength of prospective outcome retrieval and context (P = 0.03), 
and a main effect of context relevance (P = 0.003), while the 
strength of outcome retrieval alone was not significant (P = 0.78). 
In a post-hoc analysis, we regressed behavioral performance 
on outcome retrieval separately for context-free and context-
dependent decisions. For context-dependent decisions, we found 
a significant regression of behavioral performance on the 
strength of outcome retrieval [F(1, 24) = 6.98, P = 0.014, Fig. 4C]. 
We found largely similar results when repeating this analysis on 
intervals before [F(1,24) = 7.5, P = 0.011] and after [F(1,24) = 5.39, 
P = 0.03] context presentation separately (Fig. S9). For context-
free decisions there was no significant relationship between 
behavioral performance and strength of outcome retrieval [F(1, 
24) = 0.08 P = 0.78, Fig. 4B; while a complementary analysis based 
on the temporal autocorrelation can be found in Fig. S4]. Moreover, 
there was a significantly negative regression of RTs on outcome 
retrieval for context-dependent [F(1,24) = 5.39, P = 0.03, Fig. 4E] but  
not for context-free decisions [F(1,24) = 0.022, P = 0.88, Fig. 4D]. 
These results show that in context-dependent decisions there is a 
strong neuro–behavioral coupling between prospective outcome 
retrieval and choice: participants with stronger retrieval of 
prospective outcome (Fig. 4C) were the ones more likely to select 
the likely outcome and did so faster. By contrast, in context-free 
decisions the strength of outcome retrieval was not related to 
behavioral performance and RT. 

To investigate whether this neuro–behavioral coupling was spe-
cific to the retrieval of the most likely outcome in the deliberation 
phase we performed 2 additional analyses. First, we tested that 
the neuro–behavioral coupling was not trivially driven by the 
decoding models that discriminate the three outcomes. To this 
aim, we repeated the regression analysis but this time between 
behavioral performance and accuracy of the classifiers that dis-
criminate EEG responses to three outcomes, based on the pre-
task localizer. We found no significant regression of behavioral 
performance on outcome classification performance neither for 
context-free [Fig. S10, left panel, green, linear regression, F(1, 
24) = 0.07, P = 0.8] nor context-dependent decisions [Fig. S10, right 
panel, pink, linear regression, F(1, 24) = 0.05, P = 0.83]. 

Second, we ensured that the neuro–behavioral coupling in the 
context-dependent decisions and its lack in context-free ones 
was not due to a lack of behavioral variability in the latter. To 
exclude this possibility, we repeated this analysis for the early and 
late phases of the experiment, which corresponded to periods of 
high vs. low behavioral variability across participants (Fig. S11). 
We found a significant and strong regression of behavioral per-
formance on the strength of prospective outcome for both early 
[Fig. S11b, left, pink, F(1, 24) = 4.94, P = 0.036] and late [Fig. S11b, 
right, pink, F(1, 24) = 5.40, P = 0.029] context-dependent decisions. 
For context-free decisions, there was no significant regression 
neither for early [Fig. S11b, left, green, F(1, 24) = 1.23, P = 0.28] nor 
for late decisions [Fig. S11 right, green, F(1, 24) = 0.16, P = 0.69], 
although the former were characterized by strong behavioral 
variability. These analyses suggest that the neural–behavioral 
coupling is specific to context-dependent decisions and reflects 
decision deliberation and not the quality of EEG decoding or 
variability in behavioral performance. 

We further investigated the observed coupling between out-
come retrieval and behavior by analyzing the time-course of 
retrieval strength and behavior over the time-course of the exper-
iment. With this analysis we quantified whether the speed of 
learning each specific object-context pair was related to changes 
in outcome retrieval and was thus performed for each context-
free and context-dependent context/object pair separately (n = 2  
for context-free and n = 4 for context dependent pairs for each 
participant). Across-participant differences in the overall speed of 
learning were adjusted with the use of mixed-effect models and 
a random factor for participants. 

We expressed the improvement in behavioral performance 
(probability of selecting the most likely outcome over a time 
horizon of 10 outcomes) as the change in retrieval strength over 
the same time horizon of 10 decisions. We found a significant 
main effect of change in behavioral performance on change 
in retrieval strength for context-dependent decisions [F(1, 
101.86) = 10.52, P = 0.0016, Fig. 5B] which remained significant 
when controlled for average behavioral performance (Fig. S12). 
However, for context-free decisions there was no significant 
relationship between changes in behavioral performance and 
changes in retrieval strength [F(1, 44.91) = 1.7, P = 0.2, Fig. 5A]. To 
control for different sample sizes in context-free and context-
dependent associations, we did an analysis where we randomly 
excluded 2 object/context/outcome associations from context-
dependent and repeated the regression analysis with a linear 
mixed-effects model. This procedure was repeated 100 times 
which resulted in significant regression (P < 0.05) in 71% of the 
times. 

Overall, these results show that behavioral performance 
can be explained by the neural retrieval of outcome during 
decision deliberation, as a stronger outcome retrieval is found in
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Fig. 5. Neuro–behavioral coupling between the change in behavioral performance and in strength of outcome retrieval in A) context-free and B) context-
dependent decisions. In context-free decisions, there was no significant regression of change in behavioral performance on change in retrieval strength 
[panel a, linear regression, F(1, 44.91) = 1.7, P = 0.2]. However, the regression was significant for context-dependent decisions [panel B, linear regression, 
F(1, 101.86) = 10.52, P = 0.0016]. Each data point corresponds to a pair of object and context for a participant. For visualization purposes the data points 
from each participant were not grouped together however, analysis was done with a linear mixed effect model, taking into account the participants as 
a random factor. 

better-performing participants in context-dependent, but not 
context-free decisions. This coupling between behavioral per-
formance and retrieval strength was observed at the average 
level, across participants ( Fig. 4) and also over the time-course 
of the experiment, as participants refined their internal models 
of context/object and outcome representations (Fig. 5), but again 
only in context-dependent decisions. 

Context alters decision deliberation 
To evaluate the effect of context in decision-making further, 
we analyzed retrieval of prospective outcomes relative to the 
appearance of context in the decision-making task. Upon context 
presentation, the most likely outcome was more strongly retrieved 
for context-dependent decisions compared to context-free ones 
(Wilcoxon signed-rank test, Puncorr < 0.05), starting at 0.16 s after 
context presentation (Fig. 6A, see  Fig. S13 for reconstructed out-
come probabilities without binarization). In the control, context-
free condition, where context information was not needed for the 
decision, the retrieval of likely outcomes was not affected by the 
presentation of context, resulting in indistinguishable outcome 
retrieval probabilities before vs. after the presentation of context 
(Fig. 6B). 

We next focused on context-dependent decisions, and on the 
time interval following context presentation. This is an impor-
tant period, as it is the moment when the most likely outcome 
can be inferred given the presented context. We asked whether 
the neuro–behavioral coupling that we observed for context-
dependent decisions was specific to the relevant outcome. We 
focused on context-dependent decisions, as they were the ones 
showing a neuro–behavioral coupling and computed the strength 
of retrieval of relevant (likely context-dependent) and irrelevant 
(context-free) outcomes (Fig. 6C and D). We then regressed behav-
ioral accuracy on neural retrieval of relevant vs. irrelevant out-
comes. We found a significant regression of behavioral perfor-
mance on strength of relevant [Fig. 6C, F(1, 24) = 5.39, P = 0.03], but 
not irrelevant [Fig. 6D, F(1, 24) = 1.79, P = 0.19] outcomes. This find-
ing suggests that the neuro–behavioral coupling that we observe 
in context-dependent decisions is specific to the neural retrieval 
of relevant outcome. 

Discussion 
In this study, we investigated how contextual information is 
integrated in neural retrieval of prospective outcomes during 
deliberation by using a well-controlled new EEG task and 

multivariate decoding. We showed that the representation 
of prospective outcomes was retrieved by the brain during 
deliberation before the choice is made. Critically, we observed 
that the likely outcome was more strongly represented when 
context could alter the decision outcome, compared to when 
it was irrelevant, as early as 0.16 s after the presentation of 
context. This finding suggests that contextual information is 
integrated very early during outcome retrieval. Importantly, we 
found that during deliberation, outcome retrieval was mediating 
participants’ behavioral accuracy, but only when there was a clear 
deliberation demand to reach a decision. Our findings showed 
that decision deliberation involves neural retrieval of prospective 
outcome which reflects behavioral performance. 

Previous work has shown that while making a choice our brains 
engage in retrieval of prospective outcome (Rich and Wallis 2016; 
Shadlen and Shohamy 2016; Castegnetti et al. 2020; Wimmer et al. 
2023). This manifests in a variety of tasks as a mechanism used to 
consolidate learned information (Carr et al. 2011; Schapiro et al. 
2018; Buch et al. 2021) and to reflect on prospective choices and 
planning mostly in navigation tasks by building and retrieving 
a cognitive map of task structure (Schuck and Niv 2019) to  
make memory-guided choices (Singer et al. 2013) which allows 
flexible adaptation to changing environments (Eldar et al. 2020; 
Wimmer et al. 2023). Our findings with a non-navigation task 
show that prospective outcome is represented in temporally 
structured patterns of neural activity. This finding, together with 
prior literature, could imply that prospective outcome retrieval 
may represent a universal mechanism underlying decision-
making. Nevertheless, the circumstances under which outcome 
retrieval manifests and its links to deliberation demands are 
under-studied. 

Our results further show that in decisions that require deliber-
ation, the strength of outcome retrieval could explain the capacity 
of participants to select the likely outcome. In context-free deci-
sions, where the best choice was not altered by decision context, 
there was a significantly stronger than chance outcome retrieval, 
but this was not related to behavioral performance. We showed 
that the lack of links to behavior in context-free decisions was not 
due to a ceiling effect in participants’ performance, by repeating 
the same analysis for the first and second half of the experiment 
(Fig. S11). Moreover, we showed that the neuro–behavioral cou-
pling that we observed for context-dependent decisions was spe-
cific to the most likely outcome as there was no coupling between 
context-dependent behavioral performance and retrieval of the 
context-free outcome.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae483#supplementary-data
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Fig. 6. Effect of context on outcome retrieval. A) Time course of reconstructed outcome probabilities during decision deliberation, for context-free (green) 
vs. context-dependent (pink) decisions. Time zero corresponds to the time when context is revealed. Outcome retrieval was significantly stronger for 
context-dependent than context-free decisions, between 0.16 and 0.23 s post-context onset (Wilcoxon signed-rank test, Puncorr < 0.05). B) Time course of 
reconstructed outcome probabilities, time-locked to the period when an object was presented alone without context (blue line) vs. the time period when 
the context was presented together with the object (green line), for context-free decisions. The time courses of reconstructed probabilities were identical, 
which suggests that for the case of context-free decisions, they were not affected by context. C and D) Neuro–behavioral coupling in context-dependent 
decisions after context presentation was significant for the c) relevant outcome [left panel, solid line, linear regression, F(1, 24) = 5.39, P = 0.03], but it was 
nonsignificant for the D) irrelevant outcome [right panel, dashed line, linear regression, F(1, 24) = 1.79, P = 0.19]. 

Although our results clearly show that retrieval of neural 
representations during deliberation is linked to the probability 
of selecting the most likely outcome, the exact mechanism 
underpinning this finding is unknown. To this aim, we conducted 
an exploratory analysis which showed that how fast the 
behavioral performance improves can be explained by the change 
in the strength of outcome retrieval for context-dependent but 
not context-free decisions. This finding was specific to decisions 
where context can alter the decision outcome, consistent with the 
neuro–behavioral coupling observed at an aggregate level. In the 
literature, it has been shown that memory retrieval during rest 
can help consolidate newly acquired experience ( Carr et al. 2011; 
Pfeiffer and Foster 2013; Ólafsdóttir et al. 2018; Schapiro et al. 
2018). Our findings indicate that outcome retrieval could be a 
proxy for learning, especially in nontrivial cases where contextual 
information can alter decision outcome. We are adding to this 
literature by showing that in humans learning through retrieval 
of neural representations takes place not only in “passive” off-
task rest (Schapiro et al. 2018) and  sleep (Schönauer et al. 2017; 
Belal et al. 2018; Zhang et al. 2018) but also while “actively” 
decisions are made. Further research is needed to uncover the 
exact mechanism behind this which could help improve our 
understanding of learning disorders. 

Previous studies which have reported that retrieval of prospec-
tive outcome is mediating behavioral choices, have either used 

complex sequences that unfold over several seconds and require 
intensive planning (Wise et al. 2021; Wimmer et al. 2023), or 
have changed the outcome of choices over the course of the 
experiment (Doll et al. 2015; Wise et al. 2021; Wimmer et al. 
2023). These demanding factors naturally increase the need for 
deliberation. In our task, we directly manipulated deliberation 
demands by including decisions whose outcome can be altered 
by context, and decisions whose likely outcome is unaltered. 
Context-dependent decisions exhibit different behavioral read-
outs compared to context-free ones, namely longer reaction times 
and lower decision accuracy (Fig. 1D). This already suggests that 
context-free decisions may be mediated by different neural com-
putations than context-dependent ones. Our findings confirm 
this view at a behavioral level. At a neural level, we showed that 
outcome retrieval may take place for both types of decisions, 
but that it is behaviorally relevant only for context-dependent 
ones. One interpretation of our finding is that the neural calcula-
tions underlying outcome retrieval are computationally expensive 
and are therefore not used for decisions that do not require 
long deliberation. An example of decisions with low deliberation 
demands is habitual decisions. Here, we do not explicitly study 
those decisions, although we cannot exclude that in the late 
phases of the experiment, when participants had fully learned 
the context-object-outcome associations, they might make more 
“automatic” decisions (Wang et al. 2022). However, we excluded
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the possibility that our findings on neuro–behavioral coupling and 
their context-dependence were simply reflecting mechanisms 
underlying “automatic” decisions, by repeating our analyses for 
the first and second half of the experiment. In the first half, 
the object-context-outcome associations were still clearly being 
learnt, as indicated by longer reaction times and lower behavioral 
performance (Fig. S11a, Table S1). For the complex process of 
decision-making, a network of brain regions have been reported 
to mediate retrieval of neural representations, encompassing key 
areas such as the frontal cortex, known for encoding value (Doll 
et al. 2015; Castegnetti et al. 2020; Minxha et al. 2020; Wise et al. 
2021), along with the visual cortex (Wimmer and Shohamy 2012; 
Castegnetti et al. 2020) and hippocampus (Wimmer and Shohamy 
2012; Wise et al. 2021). In our study, we observed retrieval of 
outcome representations which were extracted from topographic 
EEG responses without any spatial restriction (Castegnetti et al. 
2020; Wise et al. 2021). In this work, we did not conduct source 
localization as our main goal was to investigate the temporal 
structure of context-dependent outcome retrieval and not its 
spatial correlates. Future work can link the two, ideally based 
on intracranial EEG which offers the advantage of high spatial 
resolution (Johnson et al. 2020). 

Neural retrieval has been linked to hippocampal theta oscil-
lations in both animal (Jadhav et al. 2012; Wu et al. 2017; Wang 
et al. 2020) and human studies (Osipova et al. 2006; Kerrén et al. 
2018; ter Wal et al. 2021), particularly in the context of spatial 
navigation. This raises the question of whether the frequency of 
outcome retrieval observed in our study reflects theta oscillations. 
While there is some overlap between the theta frequency range (4 
to 8 Hz) and the range in which outcome retrieval exceeds chance 
levels (4.5 to 19.1 Hz), our findings span a broader spectrum that 
includes alpha and beta oscillations as well. Therefore, we cannot 
conclude that the observed outcome retrieval is solely driven by 
theta oscillations. Furthermore, much of the existing literature 
focuses on spatial navigation and the activity of hippocampal 
place cells (Jadhav et al. 2012; Wu et al. 2017; Wang et al. 2020) 
which encode spatial information and may not fully account for 
neural activity patterns at the whole-brain level. Future research 
should investigate how outcome retrieval is implemented and 
communicated through among regions that play a role in neural 
outcome retrieval. 

What is represented in the brain is not static such that factors 
like context can change these representations (Castegnetti et al. 
2021; Hahamy et al. 2023; Muhle-Karbe et al. 2023). The effect of 
context on neural representations has been shown in memory 
tasks (Bornstein and Norman 2017; de Bettencourt et al. 2019) 
as well as spatial navigation (Muhle-Karbe et al. 2023) and goal-
directed decision-making (Frömer et al. 2019; Castegnetti et al. 
2021; Moneta et al. 2023). To this, we add that context modifies not 
only value computations but that it is also dynamically integrated 
into outcome retrieval. Although there is consensus that vmPFC is 
the region encoding and tracking decision contexts, the temporal 
dynamics of context integration into the decision process are 
unknown. Here, we leveraged the high temporal resolution of 
EEG, to show that context was integrated very early into the 
decision deliberation, starting already at 0.16 s after context is 
revealed. Notably, context strengthened the retrieval of relevant 
outcomes. Our findings for early integration of context into a 
decision provide neural evidence to recent behavioral and eye-
tracking findings which show that context-relevant information 
is prioritized in information gathering from the beginning of the 
deliberation process (Sepulveda et al. 2020). Here, we additionally 
show that context is not only altering valuation but also the 
neural implementation of prospective outcome retrieval itself. 

In summary, our study provides evidence supporting prospec-
tive outcome retrieval as a mechanism underlying choice delib-
eration in the brain. Importantly, our findings demonstrate the 
pivotal role of context in decision-making which affects both 
the deliberation process and consequent behavioral outputs. This 
emphasizes the necessity of including context as a crucial vari-
able in future investigations of outcome retrieval, especially to 
simulate real-world scenarios where context can alter mean-
ing and shape decision outcomes. Context may be contribut-
ing to decision uncertainty by modulating the choice and out-
come. Therefore, the observed robust outcome retrieval during 
deliberation in context-dependent decisions might arise from a 
more global mechanism for decision-making under uncertainty. 
These insights contribute to a broader understanding of decision-
making processes and have implications for future research and 
theoretical frameworks in cognitive neuroscience. 
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RJ, Bach DR. 2020. Representation of probabilistic outcomes 
during risky decision-making. Nat Commun. 11:2419. https://doi. 
org/10.1038/s41467-020-16202-y. 

Castegnetti G, Zurita M, De Martino B. 2021. How usefulness shapes 
neural representations during goal-directed behavior. Sci Adv. 
7:eabd5363. https://doi.org/10.1126/sciadv.abd5363. 

Crivelli-Decker J, Clarke A, Park SA, Huffman DJ, Boorman ED, Ran-
ganath C. 2023. Goal-oriented representations in the human hip-
pocampus during planning and navigation. Nat Commun. 14:2946. 
https://doi.org/10.1038/s41467-023-35967-6. 

Daw ND, Niv Y, Dayan P. 2005. Uncertainty-based competition 
between prefrontal and dorsolateral striatal systems for behav-
ioral control. Nat Neurosci. 8:1704–1711. https://doi.org/10.1038/ 
nn1560. 

Dolan RJ, Dayan P. 2013. Goals and habits in the brain. Neuron. 80: 
312–325. https://doi.org/10.1016/j.neuron.2013.09.007. 

Doll BB, Duncan KD, Simon DA, Shohamy D, Daw ND. 2015. Model-
based choices involve prospective neural activity. Nat Neurosci. 18: 
767–772. https://doi.org/10.1038/nn.3981. 

Eldar E, Lièvre G, Dayan P, Dolan RJ. The roles of online and 
offline replay in planning. In: Kahnt T, Wassum KM, Gershman 
SJ, editors. elife. 2020:9, 9:e56911. https://doi.org/10.7554/eLife. 
56911. 

Frank D, Garo-Pascual M, Velasquez PAR, Frades B, Peled N, Zhang 
L, Strange BA. 2022. Brain structure and episodic learning rate in 
cognitively healthy ageing. Neuro Image. 263:119630. https://doi. 
org/10.1016/j.neuroimage.2022.119630. 

Frömer R, Dean Wolf CK, Shenhav A. 2019. Goal congruency dom-
inates reward value in accounting for behavioral and neural 
correlates of value-based decision-making. Nat Commun. 10:4926. 
https://doi.org/10.1038/s41467-019-12931-x. 

Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, 
Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L et al. 2013. 
MEG and EEG data analysis with MNE-python. Front Neurosci. 
7(267):1–13 [accessed 2023 Apr 10] https://www.frontiersin.org/ 
articles/10.3389/fnins.2013.00267. 

Grueschow M, Polania R, Hare TA, Ruff CC. 2015. Automatic 
versus choice-dependent value representations in the human 
brain. Neuron. 85:874–885. https://doi.org/10.1016/j.neuron.2014. 
12.054. 

Hahamy A, Dubossarsky H, Behrens TEJ. 2023. The human 
brain reactivates context-specific past information at event 
boundaries of naturalistic experiences. Nat Neurosci. 26: 
1080–1089. https://doi.org/10.1038/s41593-023-01331-6. 

Hyvarinen A. 1999. Fast and robust fixed-point algorithms for inde-
pendent component analysis. IEEE Trans Neural Netw. 10:626–634. 
https://doi.org/10.1109/72.761722. 

Jadhav SP, Kemere C, German PW, Frank LM. 2012. Awake hip-
pocampal sharp-wave ripples support spatial memory. Science. 
336:1454–1458. https://doi.org/10.1126/science.1217230. 

Johnson EL, Kam JWY, Tzovara A, Knight RT. 2020. Insights into 
human cognition from intracranial EEG: a review of audition, 
memory, internal cognition, and causality. J Neural Eng. 17:051001. 
https://doi.org/10.1088/1741-2552/abb7a5. 

Keramati M, Dezfouli A, Piray P. 2011. Speed/accuracy trade-off 
between the habitual and the goal-directed processes. PLoS Com-
put Biol. 7:e1002055. https://doi.org/10.1371/journal.pcbi.1002055. 

Kerrén C, Linde-Domingo J, Hanslmayr S, Wimber M. 2018. An 
optimal oscillatory phase for pattern reactivation during mem-
ory retrieval. Curr Biol. 28:3383–3392.e6. https://doi.org/10.1016/j. 
cub.2018.08.065. 

Kurth-Nelson Z, Economides M, Dolan RJ, Dayan P. 2016. Fast 
sequences of non-spatial state representations in humans. Neu-
ron. 91:194–204. https://doi.org/10.1016/j.neuron.2016.05.028. 

Liu Y, Dolan RJ, Kurth-Nelson Z, Behrens TEJ. 2019. Human replay 
spontaneously reorganizes experience. Cell. 178:640–652.e14. 
https://doi.org/10.1016/j.cell.2019.06.012. 

Liu Y, Mattar MG, Behrens TEJ, Daw ND, Dolan RJ. 2021. Experi-
ence replay is associated with efficient nonlocal learning. Science. 
372:eabf1357. https://doi.org/10.1126/science.abf1357. 

Mattar MG, Daw ND. 2018. Prioritized memory access explains plan-
ning and hippocampal replay. Nat Neurosci. 21:1609–1617. https:// 
doi.org/10.1038/s41593-018-0232-z. 

McFadyen J, Liu Y, Dolan RJ. 2023. Differential replay of reward and 
punishment paths predicts approach and avoidance. Nat Neurosci. 
26:627–637. https://doi.org/10.1038/s41593-023-01287-7. 

Minxha J, Adolphs R, Fusi S, Mamelak AN, Rutishauser U. 2020. 
Flexible recruitment of memory-based choice representations by 
the human medial frontal cortex. Science. 368(6498). https://doi. 
org/10.1126/science.aba3313. 

Moneta N, Garvert MM, Heekeren HR, Schuck NW. 2023. Task state 
representations in vmPFC mediate relevant and irrelevant value 
signals and their behavioral influence. Nat Commun. 14:3156. 
https://doi.org/10.1038/s41467-023-38709-w. 

Muhle-Karbe PS, Sheahan H, Pezzulo G, Spiers HJ, Chien S, Schuck 
NW, Summerfield C. 2023. Goal-seeking compresses neural codes 
for space in the human hippocampus and orbitofrontal cor-
tex. Neuron. 111:3885–3899.e6. https://doi.org/10.1016/j.neuron. 
2023.08.021. 

Ólafsdóttir HF, Bush D, Barry C. 2018. The role of hippocampal 
replay in memory and planning. Curr Biol. 28:R37–R50. https://doi. 
org/10.1016/j.cub.2017.10.073. 

Osipova D, Takashima A, Oostenveld R, Fernández G, Maris E, Jensen 
O. 2006. Theta and gamma oscillations predict encoding and 
retrieval of declarative memory. J Neurosci. 26:7523–7531. https:// 
doi.org/10.1523/JNEUROSCI.1948-06.2006. 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel 
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al. 2011. 
Scikit-learn: machine learning in python. J Mach Learn Res. 12: 
2825–2830. 

Pfeiffer BE, Foster DJ. 2013. Hippocampal place-cell sequences depict 
future paths to remembered goals. Nature. 497:74–79. https://doi. 
org/10.1038/nature12112.

https://doi.org/10.1038/npp.2009.131
https://doi.org/10.1038/npp.2009.131
https://doi.org/10.1038/npp.2009.131
https://doi.org/10.1038/npp.2009.131
https://doi.org/10.1016/j.neuroimage.2018.04.029
https://doi.org/10.1016/j.neuroimage.2018.04.029
https://doi.org/10.1016/j.neuroimage.2018.04.029
https://doi.org/10.1016/j.neuroimage.2018.04.029
https://doi.org/10.1016/j.neuroimage.2018.04.029
https://doi.org/10.1016/j.neuroimage.2019.06.001
https://doi.org/10.1016/j.neuroimage.2019.06.001
https://doi.org/10.1016/j.neuroimage.2019.06.001
https://doi.org/10.1016/j.neuroimage.2019.06.001
https://doi.org/10.1016/j.neuroimage.2019.06.001
https://doi.org/10.1038/nn.4573
https://doi.org/10.1038/nn.4573
https://doi.org/10.1038/nn.4573
https://doi.org/10.1038/nn.4573
https://doi.org/10.1016/j.celrep.2021.109193
https://doi.org/10.1016/j.celrep.2021.109193
https://doi.org/10.1016/j.celrep.2021.109193
https://doi.org/10.1016/j.celrep.2021.109193
https://doi.org/10.1016/j.celrep.2021.109193
https://doi.org/10.1038/nn.2732
https://doi.org/10.1038/nn.2732
https://doi.org/10.1038/nn.2732
https://doi.org/10.1038/nn.2732
https://doi.org/10.1038/s41467-020-16202-y
https://doi.org/10.1038/s41467-020-16202-y
https://doi.org/10.1038/s41467-020-16202-y
https://doi.org/10.1038/s41467-020-16202-y
https://doi.org/10.1038/s41467-020-16202-y
https://doi.org/10.1126/sciadv.abd5363
https://doi.org/10.1126/sciadv.abd5363
https://doi.org/10.1126/sciadv.abd5363
https://doi.org/10.1126/sciadv.abd5363
https://doi.org/10.1126/sciadv.abd5363
https://doi.org/10.1038/s41467-023-35967-6
https://doi.org/10.1038/s41467-023-35967-6
https://doi.org/10.1038/s41467-023-35967-6
https://doi.org/10.1038/s41467-023-35967-6
https://doi.org/10.1038/nn1560
https://doi.org/10.1038/nn1560
https://doi.org/10.1038/nn1560
https://doi.org/10.1038/nn1560
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1016/j.neuron.2013.09.007
https://doi.org/10.1038/nn.3981
https://doi.org/10.1038/nn.3981
https://doi.org/10.1038/nn.3981
https://doi.org/10.1038/nn.3981
https://doi.org/10.7554/eLife.56911
https://doi.org/10.1016/j.neuroimage.2022.119630
https://doi.org/10.1016/j.neuroimage.2022.119630
https://doi.org/10.1016/j.neuroimage.2022.119630
https://doi.org/10.1016/j.neuroimage.2022.119630
https://doi.org/10.1016/j.neuroimage.2022.119630
https://doi.org/10.1038/s41467-019-12931-x
https://doi.org/10.1038/s41467-019-12931-x
https://doi.org/10.1038/s41467-019-12931-x
https://doi.org/10.1038/s41467-019-12931-x
https://doi.org/10.1038/s41467-019-12931-x
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267
https://www.frontiersin.org/articles/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.neuron.2014.12.054
https://doi.org/10.1038/s41593-023-01331-6
https://doi.org/10.1038/s41593-023-01331-6
https://doi.org/10.1038/s41593-023-01331-6
https://doi.org/10.1038/s41593-023-01331-6
https://doi.org/10.1109/72.761722
https://doi.org/10.1109/72.761722
https://doi.org/10.1109/72.761722
https://doi.org/10.1126/science.1217230
https://doi.org/10.1126/science.1217230
https://doi.org/10.1126/science.1217230
https://doi.org/10.1126/science.1217230
https://doi.org/10.1088/1741-2552/abb7a5
https://doi.org/10.1088/1741-2552/abb7a5
https://doi.org/10.1088/1741-2552/abb7a5
https://doi.org/10.1088/1741-2552/abb7a5
https://doi.org/10.1088/1741-2552/abb7a5
https://doi.org/10.1371/journal.pcbi.1002055
https://doi.org/10.1371/journal.pcbi.1002055
https://doi.org/10.1371/journal.pcbi.1002055
https://doi.org/10.1371/journal.pcbi.1002055
https://doi.org/10.1371/journal.pcbi.1002055
https://doi.org/10.1016/j.cub.2018.08.065
https://doi.org/10.1016/j.cub.2018.08.065
https://doi.org/10.1016/j.cub.2018.08.065
https://doi.org/10.1016/j.cub.2018.08.065
https://doi.org/10.1016/j.cub.2018.08.065
https://doi.org/10.1016/j.neuron.2016.05.028
https://doi.org/10.1016/j.neuron.2016.05.028
https://doi.org/10.1016/j.neuron.2016.05.028
https://doi.org/10.1016/j.neuron.2016.05.028
https://doi.org/10.1016/j.neuron.2016.05.028
https://doi.org/10.1016/j.cell.2019.06.012
https://doi.org/10.1016/j.cell.2019.06.012
https://doi.org/10.1016/j.cell.2019.06.012
https://doi.org/10.1016/j.cell.2019.06.012
https://doi.org/10.1016/j.cell.2019.06.012
https://doi.org/10.1126/science.abf1357
https://doi.org/10.1126/science.abf1357
https://doi.org/10.1126/science.abf1357
https://doi.org/10.1126/science.abf1357
https://doi.org/10.1126/science.abf1357
https://doi.org/10.1038/s41593-018-0232-z
https://doi.org/10.1038/s41593-018-0232-z
https://doi.org/10.1038/s41593-018-0232-z
https://doi.org/10.1038/s41593-018-0232-z
https://doi.org/10.1038/s41593-018-0232-z
https://doi.org/10.1038/s41593-023-01287-7
https://doi.org/10.1038/s41593-023-01287-7
https://doi.org/10.1038/s41593-023-01287-7
https://doi.org/10.1038/s41593-023-01287-7
https://doi.org/10.1126/science.aba3313
https://doi.org/10.1126/science.aba3313
https://doi.org/10.1126/science.aba3313
https://doi.org/10.1126/science.aba3313
https://doi.org/10.1126/science.aba3313
https://doi.org/10.1038/s41467-023-38709-w
https://doi.org/10.1038/s41467-023-38709-w
https://doi.org/10.1038/s41467-023-38709-w
https://doi.org/10.1038/s41467-023-38709-w
https://doi.org/10.1038/s41467-023-38709-w
https://doi.org/10.1016/j.neuron.2023.08.021
https://doi.org/10.1016/j.cub.2017.10.073
https://doi.org/10.1016/j.cub.2017.10.073
https://doi.org/10.1016/j.cub.2017.10.073
https://doi.org/10.1016/j.cub.2017.10.073
https://doi.org/10.1016/j.cub.2017.10.073
https://doi.org/10.1523/JNEUROSCI.1948-06.2006
https://doi.org/10.1523/JNEUROSCI.1948-06.2006
https://doi.org/10.1523/JNEUROSCI.1948-06.2006
https://doi.org/10.1523/JNEUROSCI.1948-06.2006
https://doi.org/10.1038/nature12112
https://doi.org/10.1038/nature12112
https://doi.org/10.1038/nature12112
https://doi.org/10.1038/nature12112


Pinar Göktepe-Kavis et al. | 13

Redish AD. 2016. Vicarious trial and error. Nat Rev Neurosci. 17: 
147–159. https://doi.org/10.1038/nrn.2015.30. 

Rich EL, Wallis JD. 2016. Decoding subjective decisions from 
orbitofrontal cortex. Nat Neurosci. 19:973–980. https://doi.org/10. 
1038/nn.4320. 

Schaffner J, Bao SD, Tobler PN, Hare TA, Polania R. 2023. Sensory 
perception relies on fitness-maximizing codes. Nat Hum Behav. 7:  
1135–1151. https://doi.org/10.1038/s41562-023-01584-y. 

Schapiro AC, McDevitt EA, Rogers TT, Mednick SC, Norman KA. 
2018. Human hippocampal replay during rest prioritizes weakly 
learned information and predicts memory performance. Nat 
Commun. 9:3920. https://doi.org/10.1038/s41467-018-06213-1. 

Schönauer M, Alizadeh S, Jamalabadi H, Abraham A, Pawlizki A, Gais 
S. 2017. Decoding material-specific memory reprocessing during 
sleep in humans. Nat Commun. 8:15404. https://doi.org/10.1038/ 
ncomms15404. 

Schuck NW, Niv Y. 2019. Sequential replay of nonspatial task states 
in the human hippocampus. Science. 364:eaaw5181. https://doi. 
org/10.1126/science.aaw5181. 

Sepulveda P, Usher M, Davies N, Benson AA, Ortoleva P, De Martino 
B. Visual attention modulates the integration of goal-relevant 
evidence and not value. Büchel C, Wyart V, Filipowicz AL, Gluth 
S, editors. elife. 2020:9, 9:e60705. https://doi.org/10.7554/eLife. 
60705. 

Shadlen MN, Shohamy D. 2016. Decision making and sequen-
tial sampling from memory. Neuron. 90:927–939. https://doi. 
org/10.1016/j.neuron.2016.04.036. 

Singer AC, Carr MF, Karlsson MP, Frank LM. 2013. Hippocampal SWR 
activity predicts correct decisions during the initial learning of an 
alternation task. Neuron. 77:1163–1173. https://doi.org/10.1016/j. 
neuron.2013.01.027. 

Tom SM, Fox CR, Trepel C, Poldrack RA. 2007. The neural basis of 
loss aversion in decision-making under risk. Science. 315:515–518. 
https://doi.org/10.1126/science.1134239. 

Tzovara A, Chavarriaga R, De Lucia M. 2015. Quantifying the 
time for accurate EEG decoding of single value-based deci-
sions. J Neurosci Methods. 250:114–125. https://doi.org/10.1016/j. 
jneumeth.2014.09.029. 

ter Wal M, Linde-Domingo J, Lifanov J, Roux F, Kolibius LD, Gollwitzer 
S, Lang J, Hamer H, Rollings D, Sawlani V et al. 2021. Theta 
rhythmicity governs human behavior and hippocampal signals 
during memory-dependent tasks. Nat Commun. 12:7048. https:// 
doi.org/10.1038/s41467-021-27323-3. 

Wang M, Foster DJ, Pfeiffer BE. 2020. Alternating sequences of 
future and past behavior encoded within hippocampal theta 
oscillations. Science. 370:247–250. https://doi.org/10.1126/science. 
abb4151. 

Wang S, Feng SF, Bornstein AM. 2022. Mixing memory and desire: 
how memory reactivation supports deliberative decision-making. 
Wiley Interdiscip Rev Cogn Sci. 13:e1581. https://doi.org/10.1002/ 
wcs.1581. 

Wimmer GE, Shohamy D. 2012. Preference by association: how mem-
ory mechanisms in the hippocampus bias decisions. Science. 338: 
270–273. https://doi.org/10.1126/science.1223252. 

Wimmer GE, Liu Y, McNamee DC, Dolan RJ. 2023. Distinct replay sig-
natures for prospective decision-making and memory preserva-
tion. Proc Natl Acad Sci. 120:e2205211120. https://doi.org/10.1073/ 
pnas.2205211120. 

Wise T, Liu Y, Chowdhury F, Dolan RJ. 2021. Model-based aver-
sive learning in humans is supported by preferential task state 
reactivation. Sci Adv. 7:eabf9616. https://doi.org/10.1126/sciadv. 
abf9616. 

Wu C-T, Haggerty D, Kemere C, Ji D. 2017. Hippocampal awake replay 
in fear memory retrieval. Nat Neurosci. 20:571–580. https://doi. 
org/10.1038/nn.4507. 

Zhang H, Fell J, Axmacher N. 2018. Electrophysiological mechanisms 
of human memory consolidation. Nat Commun. 9:4103. https:// 
doi.org/10.1038/s41467-018-06553-y. 

© The Author(s) 2024. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
Cerebral Cortex, 2024, 34, bhae483 
https://doi.org/10.1093/cercor/bhae483 
Original Article

https://doi.org/10.1038/nrn.2015.30
https://doi.org/10.1038/nrn.2015.30
https://doi.org/10.1038/nrn.2015.30
https://doi.org/10.1038/nrn.2015.30
https://doi.org/10.1038/nn.4320
https://doi.org/10.1038/s41562-023-01584-y
https://doi.org/10.1038/s41562-023-01584-y
https://doi.org/10.1038/s41562-023-01584-y
https://doi.org/10.1038/s41562-023-01584-y
https://doi.org/10.1038/s41562-023-01584-y
https://doi.org/10.1038/s41467-018-06213-1
https://doi.org/10.1038/s41467-018-06213-1
https://doi.org/10.1038/s41467-018-06213-1
https://doi.org/10.1038/s41467-018-06213-1
https://doi.org/10.1038/ncomms15404
https://doi.org/10.1038/ncomms15404
https://doi.org/10.1038/ncomms15404
https://doi.org/10.1038/ncomms15404
https://doi.org/10.1126/science.aaw5181
https://doi.org/10.1126/science.aaw5181
https://doi.org/10.1126/science.aaw5181
https://doi.org/10.1126/science.aaw5181
https://doi.org/10.1126/science.aaw5181
https://doi.org/10.7554/eLife.60705
https://doi.org/10.1016/j.neuron.2016.04.036
https://doi.org/10.1016/j.neuron.2016.04.036
https://doi.org/10.1016/j.neuron.2016.04.036
https://doi.org/10.1016/j.neuron.2016.04.036
https://doi.org/10.1016/j.neuron.2016.04.036
https://doi.org/10.1016/j.neuron.2013.01.027
https://doi.org/10.1016/j.neuron.2013.01.027
https://doi.org/10.1016/j.neuron.2013.01.027
https://doi.org/10.1016/j.neuron.2013.01.027
https://doi.org/10.1016/j.neuron.2013.01.027
https://doi.org/10.1126/science.1134239
https://doi.org/10.1126/science.1134239
https://doi.org/10.1126/science.1134239
https://doi.org/10.1126/science.1134239
https://doi.org/10.1016/j.jneumeth.2014.09.029
https://doi.org/10.1016/j.jneumeth.2014.09.029
https://doi.org/10.1016/j.jneumeth.2014.09.029
https://doi.org/10.1016/j.jneumeth.2014.09.029
https://doi.org/10.1016/j.jneumeth.2014.09.029
https://doi.org/10.1038/s41467-021-27323-3
https://doi.org/10.1038/s41467-021-27323-3
https://doi.org/10.1038/s41467-021-27323-3
https://doi.org/10.1038/s41467-021-27323-3
https://doi.org/10.1126/science.abb4151
https://doi.org/10.1126/science.abb4151
https://doi.org/10.1126/science.abb4151
https://doi.org/10.1126/science.abb4151
https://doi.org/10.1126/science.abb4151
https://doi.org/10.1002/wcs.1581
https://doi.org/10.1002/wcs.1581
https://doi.org/10.1002/wcs.1581
https://doi.org/10.1002/wcs.1581
https://doi.org/10.1126/science.1223252
https://doi.org/10.1126/science.1223252
https://doi.org/10.1126/science.1223252
https://doi.org/10.1126/science.1223252
https://doi.org/10.1073/pnas.2205211120
https://doi.org/10.1073/pnas.2205211120
https://doi.org/10.1073/pnas.2205211120
https://doi.org/10.1073/pnas.2205211120
https://doi.org/10.1126/sciadv.abf9616
https://doi.org/10.1126/sciadv.abf9616
https://doi.org/10.1126/sciadv.abf9616
https://doi.org/10.1126/sciadv.abf9616
https://doi.org/10.1126/sciadv.abf9616
https://doi.org/10.1038/nn.4507
https://doi.org/10.1038/nn.4507
https://doi.org/10.1038/nn.4507
https://doi.org/10.1038/nn.4507
https://doi.org/10.1038/s41467-018-06553-y
https://doi.org/10.1038/s41467-018-06553-y
https://doi.org/10.1038/s41467-018-06553-y
https://doi.org/10.1038/s41467-018-06553-y
https://doi.org/10.1038/s41467-018-06553-y
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/cercor/bhae483

	 Context changes retrieval of prospective outcomes during decision deliberation
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgments
	Author contributions
	Supplementary material
	Funding
	Data availability


