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Artificial intelligence algorithms are capable of fantastic
exploits, yet they are still grossly inefficient compared with the
brain’s ability to learn from few exemplars or solve problems
that have not been explicitly defined. What is the secret that the
evolution of human intelligence has unlocked? Generalization is
one answer, but there is more to it. The brain does not directly
solve difficult problems, it is able to recast them into new and
more tractable problems. Here, we propose a model whereby
higher cognitive functions profoundly interact with
reinforcement learning to drastically reduce the degrees of
freedom of the search space, simplifying complex problems,
and fostering more efficient learning.
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Introduction

Artificial Intelligence (AI) has come a long way since the
summer of 1956, when it was first envisaged at the Dart-
mouth Summer Research Project on Artificial Intelligence.
In the last ten years, we have witnessed how the principles
of supervised and reinforcement learning, when embedded
in neural networks composed of many hidden layers (‘deep
neural networks’, or ‘DNN”), can reach —and often surpass
— human-level performances in visual object recognition,
and in playing video-games and GO [1-3]. Despite DNN’s
massive computational capabilities, there are two aspects
that temper these accomplishments: first, the number of
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training samples required to reach acceptable perfor-
mances is huge - tens or hundreds of millions; second,
these architectures show a limited ability to generalize to
new tasks/settings that were not encountered during train-
ing. These limitations become largely evident in motor
control as shown by the clumsy behavior of humanoid
robots in the DARPA robotic challenge [4].

A second avenue of exciting progress in Al has come from
probabilistic machine learning (a.k.a. Bayesian machine
learning) [5], where agents can achieve impressive perfor-
mance on one-shot learning or using a limited amount of
examples [6,7]. This probabilistic approach resonates well
with intuitive theories of human cognitive development
and inductive reasoning [8]. The learning algorithm tries to
find among all possible models the one that best explains
the data (or, by extension, infer what causes the reality
perceived through the sensorium). This approach, while
conceptually appealing, is unlikely to provide a realistic
model of how the brain operates. The main issue is that
fully probabilistic inference might work well in simple and
well constrained conditions, but becomes quickly compu-
tationally intractable for more complex and unconstrained
scenarios. T'o exacerbate the problem, in order to function
efficiently, probabilistic programs have to be endowed with
ad-hoc definitions of the necessary representations [5].
Strictly speaking, in Bayesian inference we usually do
not have a principled way to select initial priors. Generali-
zation is thus limited to the class of problems, for which the
program was designed for [6,7].

A considerable hurdle for artificial agents concerns gener-
alization; how can machine learning algorithms deal with
new and never-experienced scenarios? Humans and ani-
mals can easily and appropriately respond to new scenarios,
mostly transferring knowledge acquired in loosely related
contexts. What are the brain mechanisms that enable the
human brain with its remarkable generalization capacity?
Plain reinforcement learning is too slow, and hierarchical
architectures [9], albeit ameliorating the algorithm by sub-
dividing learning among multiple systems and meta-vari-
ables [10,11°], remain dependent on the need for ad-hoc
definitions. Here, we suggest that brains do not simply solve
supervised classification problems but transform them into
different—and more tractable — problems. We propose that
anadaptive role of higher cognition is to allow precisely this
transformation to take place.

More specifically, we propose a model of how higher cogni-
tion is able to simultancously operate the dimensionality
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reduction and feature selection processes necessary for
simplifying complex problems. Adjusting the degree of
synchronization between neurons has been suggested as
one possible way to control the degrees-of freedom of a
neural system [12]. We draw on similarities with simulated
annealing, exploring how different frequency modes of brain
dynamics serve as inherent implementation channels to
reduce degrees-of-freedom and reach optimal solutions.

Computational advantages of higher cognitive
functions in learning

Statistical learning theory of singular problems demonstrates
that the generalization error is given by dividing the degrees-
of-freedom (#) of the search space by the number of training
sample (#): ¢ < /(2n) [13,14°]. If brains (4~ 10" neu-
rons) need to solve arbitrary classification problems uti-
lizing only a few hundred learning samples (# ~ 10%), the
generalization error would become huge, at least 10"/
10%=10". We postulate that brains transform these intrac-
table learning problems into more feasible reinforcement
learning problems with small degrees of freedom while
being guided by reward and penalty. Higher cognitive
functions such as attention, memory, concept formation,
and metacognition might find low-dimensional manifolds

Figure 1

of meta-representations that are essential for learning
from a small sample (Figure 1). Here, we will briefly
review findings from attention, memory, concept forma-
tion, and metacognition, focusing on their role in facili-
tating learning. We are aware that these are vast and
active areas of investigation and that it would be hard to
do justice to all the relevant work that has been done. We
have, therefore, decided to provide a snapshot of proper-
ties, modules and architectures that we believe are par-
ticularly relevant to inspire the development of new Al
architectures. It is important to recognize that a recent
work in the field of machine learning has also started to
incorporate some of the intuitions discussed here.

Attention is the ability to direct computing resources
toward relevant dimensions (stimulus attributes, spatial
location, etc.) for focal processing, acting as a filter to
amplify relevant information while dampening back-
ground clutter [15]. But how does an agent learn what
to attend? Rewards and punishments serve to constrain
attentional focus [16], and attending to specific features
rather than to the whole improves versatility [17]. Essen-
tially, we learn @/af to attend to at the same time as we are
paying attention to what we are learning [18,19°]. In
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General schematic, solutions to complex problems in artificial intelligence and nature (brains). The key insight discussed here is that higher
cognitive functions continuously interact between them and with reinforcement learning to drive generalization and learning from small sample.
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machine learning, a useful and efficient way to use
attention mechanisms is to decompose tasks or questions
into a series of simpler operations [20], or target specific
parts of a query (e.g. particular words in a sentence) [21].

Anintelligent agent must also be able to remember or even
sometime forget past events. Accordingly, episodic mem-
ory plays a special role in goal-directed behavior and
learning [22]. Reality is statistically structured however,
and forms of gist-like memory can enhance reinforcement
learning [23°°]. Schematic memory still depends on epi-
sodes; it is by virtue of statistics over individual traces that
summaries can be created. Not surprisingly, both persis-
tence (remembering) and transience (forgetting) are essen-
tial ingredients to optimize decision-making [24]. Human-
like memory processes are very different from what is
usually considered in Al agents, where memory is often
deterministic and non-sparse as well as storing all informa-
tion. Linking neural networks to external buffer memory
resources already produces impressive learning capabili-
ties, unattainable by classic neural networks architectures
[25,26°]. The development of predictive memory architec-
tures, where memory formation itself is guided by a process
of predictive inference [27], is one step toward systems
storing only relevant information.

Concepts are abstractions, closely intertwined with sche-
matic memories. Concepts can be created almost at will,
and a key aspect is that they can be connected, creating
conceptual maps [28]. Being highly hierarchical and com-
positional, more abstract concepts can be formed from
existing ones. New concepts or conceptual maps can
emerge from learning, but can also direct subsequent
learning [29]. Concepts share obvious links with memory
in their ability to represent schematized information, but
work in Al has not yet capitalized on this approach. Con-
ceptual representations in Al are currently restricted to
simple visual domain examples that make use of the
principles of hierarchy and compositionality [30].

Self-monitoring processes, a more abstract class of cognitive
functions, can encompass much richer representations. The
ability to monitor one’s thoughts is referred to as metacog-
nition, and is linked to the psychological construct of confi-
dence, that is, how good an agent is at keeping track of the
probability of a choice being correct [31,32]. This aspect is
very important for Al since it dovetails with a broad range of
phenomena such as error monitoring and reality checking
[33]. Of particular relevance to Al systems is the ability to
explicitly track the evolution of the level of self-knowledge,
which might provide biological agents with significant
advantages when interacting with their environment [34-
38]. Although metacognition and consciousness are inti-
mately related, the question of what is the computational
advantage of consciousness itself remains currently unan-
swered. Consciousness could represent the selection of
information for global broadcasting within the system,

making it flexibly available for local (and distant) computa-
tional units [33]. In machine learning consciousness could
also be interpreted as a powerful constraint on low-dimen-
sional representations [39°]. Earlier efforts suggest that some
forms of self-monitoring are computationally simple and can
directly arise even in two-layer attractor networks [40].
Generative adversarial networks (GANs) are an exciting
development in this direction: a generative model captures
the data distribution, and a discriminative model, akin to
metacognition, operates a reality check on new samples [41].

Neural implementation of high level cognitive

architecture

"T'o generate solutions leading to efficient learning and flexible
behaviors, nature had to solve a number of physical con-
straints. The brain cannot be equipped with ad /ioc representa-
tions for every possible event in the world, since the horizon of
possible states is practically infinite; moreover, it does not have
unlimited computing resources. Understanding how the brain
has overcome these constraints may be inspirational for
developing new Al, yet it is important to keep in mind that
some biological constraints (e.g. positive neuronal firing rates)
may be bypassed by #n-silico intelligent systems.

In its most basic interpretation, solving complex problems
for the brain accounts to finding the relevant (hidden)
states for RL. One solution to accelerate the search for
hidden states is to capitalize on the brain’s massively
parallelized neural circuit architecture. Parallel searches
are instantiated in multple recurrent circuits linking
basal ganglia with the cortex (Figure 2). These recurrent
circuits effectively are information-transmitting loops (bi-
directional and closed neural-circuit connections between
basal ganglia and cortex): they can carry task-dependent
explicit representations (stimuli, goals, etc.), abstract
summaries, reward prediction errors (RPEs), and pre-
dicted states. Although parallel loops carry heterogeneous
information, they do not function independently from
each other. Rather, loops formed by sparse neural popu-
lations continuously interact at the synaptic level through
cooperation and competition. Excitatory interactions
(cooperation) appear between loops with similar, inclu-
sive and related representations. In contrast, inhibitory
interactions (competition) develop between loops with
exclusive, different or unrelated representations. Because
of the dynamic nature of the neural networks comprising
these excitatory and inhibitory interactions, a winner-
take-all scenario emerges [42,43]. That is, only the loop
with the ‘best’ representation survives while other loops
are suppressed. Here ‘best’ means the loop associated
with the representation that minimizes RPE. Therefore,
the selection of the best loop essentially corresponds to
the automatic selection of relevant states for RL.

Excitatory and inhibitory interactions can occur virtually
anywhere in the brain. However, the basal ganglia, a
group of structures located deep within the cerebral
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Winner-take-all parallel computing takes place in loops spanning basal ganglia and neocortex. Excitatory and inhibitory interactions between
multiple loops formed by the basal ganglia, thalamus and cerebral cortical regions implement winner-take-all computations. The loop with the best
representation for reinforcement learning and minimum reward prediction errors thus wins and all other loops are suppressed. These winner-take-
all computations implement dimension reduction and feature selection accelerated by high cognitive functions as follows. Attention executes
feature selection rather than dimension reduction, with relatively low abstraction. Episodic memory, among different kinds of memories, represents
feature selection in the time domain, and its abstraction level is relatively low. Conceptualization executes dimension reduction rather than feature
selection, and its abstraction level is high. Metacognition does both dimension reduction and feature selection and its abstraction level is very
high. Consciousness has the highest abstraction level and results in pure dimension reduction. dIPFC, dorsolateral prefrontal cortex; OFC,
orbitofrontal cortex; HPC, hippocampal formation; MC, motor cortex; PPC, posterior parietal cortex; ITC, inferior temporal cortex; VC, visual
cortex; VTA/SNc, ventral tegmental area/substantia nigra; RL, reinforcement learning. Figure modified from Haruno and Kawato [67].

hemispheres, should play the most important role in
these synaptic interactions for the following reasons:
(1) multiple inhibitions and direct, indirect, as well as
hyperdirect pathways link basal ganglia to cortex; there-
fore, winner-take-all computations can best be imple-
mented in basal ganglia [43,44]. (2) RPEs are largely
computed in basal ganglia [45], making these nuclei the
ideal focal point for the comparison and selection of
loops carrying the smallest RPEs.

So far, we have discussed a relatively simplified model that is
amenable to clearly delineate the theory. The reality of the
brain is nevertheless more intricate. Several brain areas are

likely interacting to orchestrate an efficient search and ensure
convergence to task-relevant low-dimensional manifolds.
Prefrontal, sensorimotor, hippocampal cortices, as well as
cerebellum, thalamus, and basal ganglia all share recurrent
connections. Above this automatic machinery, whatis the role
of higher cognitive functions? How can they further acceler-
ate learning computations? Metacognition, attention and
memory synchronize abstract representations in prefrontal
cortex (PFC) or hippocampal formation (HPC) with concrete
representations in sensorimotor areas. Recurrent connections
between these cortico-striatal regions connect reinforcement
learning mechanisms with representational and abstraction
engines that makes for an ideal candidate circuitry (Figure 2).
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Dopamine inputs to the HPC ensure that learned or
partially learned rules are conceptualized and stored in
memory [46]. But HPC function stretches far beyond
memories, and one influential idea is that it plays a key
role in building cognitive maps for spatial [47] and
conceptual navigation [28]. HPC neurons functionality
probably extends so that they take the role of predictive
units extracting structure and low-dimensional bases of
the world [48,49°]. These discoveries are in line with a
recent proposal that during decision making, inferable
state-to-state transitions represented in the cortex keep
track of the evolving hidden space to accelerate learning
[50,51]. More specifically, the PFC is thought to hold an
exclusive position along the hierarchy of representations
as the substrate forging meta-representations [11°,31]
and abstraction processes [10,52,53]. Furthermore, the
PFC oscillatory frequencies act as mediators of abstrac-
tion: the synchronization frequency helps shuffle the
abstraction level encoded in different regions of the
PFC [54°°]. In fact, this extends well beyond the
PFC; oscillatory frequencies effectively form communi-
cation channels throughout the brain [54°°,55-57].

At the neuronal level, one way to discover correlations
between meta-representations and RPEs is to character-
ize these representations as statistical distributions in
neural population activities. The cortex could perform
probabilistic inference on such distributions either by
sampling over neural populations [58], or by weighting
correlations between neurons [59].

Learning new problems should invariably start with a
consistent scenario: ignition of myriads of parallel loops
resulting in widespread neural activity over extensive
cortico-striatal networks. The selection of RL states starts
with broad sweeps to evolve in a fine search. Initially,
broad brain regions are equally activated and participate
in the search. Next, dimension reduction and feature
selection begin, in parallel, to drop-out less activated
loops, a process accelerated by higher cognition such as
attention, memory, metacognition (Figure 2). In the end,
only a small number of loops will remain activated and
neural activity should be concentrated to the few cortical
locations carrying the most relevant representations and
the corresponding parts of basal ganglia. A useful analogy
for this search from broad to fine neural substrates (and
representations) is simulated annealing or Gibbs sam-
pling, optimization techniques to approximate global
solutions in large search spaces [60,61]. For example,
annealing starts by first using high temperatures causing
large changes in the objective function, then iteratively
descending to lower temperatures causing ever smaller
rearrangements — until convergence.

Furthermore, to extend this analogy, high temperatures are
depicted as a form of dimension reduction, while low
temperatures as akin to feature selection. We suggest that

dimension reduction relates to abstraction, operating at low
oscillatory frequency modes with low spatial resolution and
using large neural populations, while feature selection
relates to specific content utilizing high frequency modes
and sparse neural ensembles (Figure 3a). By frequency
modes here we mean specific bands in neural oscillation
frequencies — that is, the frequency at which neuronal
populations show synchronized activity. Low frequency
synchronization delineates the horizon of relevant dimen-
sions so that high frequency-based feature selection can
happen. To note, the direction of search from broad to fine
holds in terms of brain areas/neural networks involved; but
in terms of abstraction, the search directionality of the
model discussed here is unconstrained. The key intuition
isthatin the brain the processes of dimension reduction and
feature selection should take place simultaneously, acceler-
ating interaction and winner-take-all convergence of loop
drop-out (Figure 3b). A recent work has elegantly linked
the brain’s structural connectivity (particularly the tha-
lamo-cortical system) with neural activity patterns and
dynamics, providing a formal basis for harmonic patterns
of certain frequencies [62°°]. The authors of this work
demonstrate that these connectome-specific harmonics
patterns self-organize through the interplay of neural exci-
tation and inhibition in coupled dynamical systems.

We can now delineate how cognitive functions may affect
and expedite learning processes. We have proposed a
system composed of massively parallelized modules cen-
tered around an RL. machinery, where communication
frequency determines the abstraction level of representa-
tions, and where cognitive functions have the ability to
synchronize representations at different abstraction
levels. At the very outset the search is characterized by
activity over broad areas of the brain, but the system is
typified by low abstraction and little synchronization.
RPEs may be tied to any aspects of the task, with most
RPEs being unspecific and irrelevant. Conceptualization
or integration of (task, instruction) rules, together with
visuospatial attention [63], can generate the first optimal
low-frequency modes, leading an initial dimensionality
reduction to define the search horizon where specific
features can be selected. Attention and episodic memory
also play important roles from the initial stages for the
selection of relevant features (i.e. loops) [64°°] through
synchronization in high spatiotemporal-frequency chan-
nels [55,65], nested within low-frequency modes. As
learning progresses, high-frequency feature-specific
RPEs become predominant [64°°,66], and the number
of activated loops greatly decreases. The abstraction level
is maintained high because feature-specific RPEs can be
represented in summarized fashion, hence further reduc-
ing the dimensionality and complexity of the problem.
Hidden states in reinforcement learning can now be
discovered more readily because the search domain has
shrunk. Importantly, the degree of certainty or uncer-
tainty on neural meta-representations can provide a fast
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Different frequency modes in synchronization of neural activity represent broad and fine dimension reduction and feature selection. (a) Neural
oscillations are rhythmic repetitions of patterned neural activity. These oscillations can cover frequencies from approximately 0.05Hz (low
spectrum) to 500 Hz (high spectrum). While low-frequency spatio-temporal modes contain many neurons and connections, high frequency modes
contain small numbers of neurons and connections. Nonlinear dynamic interactions between low and high-frequency modes provide the
computational means for fast parallel search of the optimal metarepresentation, corresponding smallest reward prediction errors (RPE), neurons
and connections. When a low frequency mode is selected first, all high frequency modes contained within it are generally activated because low
and high frequency modes share common neurons and connections. Among the activated high-frequency modes, those with the highest
correlations between meta-representations and RPE are further activated, and an optimal mode is thus selected. Consequently, dimension
reduction with low-frequency synchronization and feature selection with high-frequency synchronization proceed together by closely interacting.
(b) lllustration of the search implemented by the model. Low frequency mode corresponds to dimension reduction such as principal component
analysis (PCA) and high temperature in annealing. High frequency mode corresponds to feature selection such as L1-norm regularization or
automatic relevance determination, and low temperature in annealing. Real or simulated annealing takes long time but brains cannot afford that.
There exists no external control of temperature in the proposed interaction between different modes; nonlinear brain dynamics directly implements
simulated annealing. With low signal to noise ratio, a common issue in most learning problems, first an optimal low-frequency mode is activated
because it contains many areas, neurons and connections. This increases the chances of correlation computations surviving high noise
conditions. Then, high-frequency modes contained in it are generally activated, and correlations can be more reliably computed by constrained

domains and general excitatory inputs to them. The selection of the optimal high-frequency mode can be executed more robustly. This interaction
between low and high-frequency modes roughly implements annealing. The key difference with annealing though is that activation and inhibition of
all loops start simultaneously in the brain. But convergence starts from large dimension and low abstraction (top left, black dot on top arrow) and

proceeds to small dimension and high abstraction (bottom right). This is analogous to simulated annealing (direction of oblique arrow).

track to which states are relevant or irrelevant in rein-
forcement learning, by virtue of metacognition self-mon-
itoring properties [33]. Finally, consciousness itself may
lead learning to the highest level of abstraction. Con-
scious representation of the relevant states or decision
policies can be interpreted as a maximally abstract sum-
mary, a tensor with very low dimensionality that never-
theless carries all the fundamental information [39°].
These meta-representation vectors are extremely useful
for generalization because they can be easily applied to
new, previously unexperienced, problems.

Conclusions

Fruitful interactions between neuroscience and Al have
opened up a new exciting era beyond DNN, which
require huge training samples. Brains utilize higher
cognitive functions such as attention, memory, concept
formation, and metacognition to transform seemingly
intractable supervised learning problems with astro-
nomical degrees-of-freedom state spaces and small
samples, into reasonable reinforcement learning pro-
blems within a low-dimension meta-representation
manifold.
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We postulated that the neuronal mechanism implement-
ing this transformation of computational problems is
likely comprises parallel search of low-dimensional
meta-representations via synchronization of multiple
loops formed by the cerebral cortex, HPC and basal
ganglia. Brain connectivity and nonlinear neural dynam-
ics provide harmonic modes spanning from low to high
spatiotemporal frequencies. Interactions between differ-
ent modes may provide dimension reduction and feature
selection analogous to simulated annealing, albeit much
faster. That is, low frequency mode could allow for
dimension reduction analogous to high temperature in
annealing, while high frequency modes could select a
small number of features analogous to low temperature.
Furthermore, real-time interactions between high and
low frequency modes may enable fast parallel searches
to quickly determine the reinforcement learning search
domain. Attention and episodic memory are presumed
mechanisms operating feature selection, while conceptu-
alization mainly takes the form of dimension reduction.
Discovery of relevant hidden states may be greatly accel-
erated by metacognition through synchronization of
meta-representations.

Taken together these cognitive modules, acquired over
millions of years by natural selection, might inspire a new
generation of Al architectures that will take us one step
closer to human level intelligence.
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