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Artificial intelligence algorithms are capable of fantastic

exploits, yet they are still grossly inefficient compared with the

brain’s ability to learn from few exemplars or solve problems

that have not been explicitly defined. What is the secret that the

evolution of human intelligence has unlocked? Generalization is

one answer, but there is more to it. The brain does not directly

solve difficult problems, it is able to recast them into new and

more tractable problems. Here, we propose a model whereby

higher cognitive functions profoundly interact with

reinforcement learning to drastically reduce the degrees of

freedom of the search space, simplifying complex problems,

and fostering more efficient learning.

Addresses
1Computational Neuroscience Laboratories, ATR Institute International,

Kyoto, Japan
2 Institute of Cognitive Neuroscience, University College of London,

Alexandra House, 17-19 Queen Square, London WC1N 3AR, United

Kingdom
3Wellcome Centre for Human Neuroimaging, University College London,

WC1N 3BG London, United Kingdom
4RIKEN Center for Advanced Intelligence Project, ATR Institute

International, Kyoto, Japan

Current Opinion in Neurobiology 2019, 55:133–141

This review comes from a themed issue on Machine learning, big

data, and neuroscience

Edited by Jonathan Pillow and Maneesh Sahani

For a complete overview see the Issue and the Editorial

Available online 3rd April 2019

https://doi.org/10.1016/j.conb.2019.02.011

0959-4388/ã 2019 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Introduction
Artificial Intelligence (AI) has come a long way since the

summer of 1956, when it was first envisaged at the Dart-

mouth Summer Research Project on Artificial Intelligence.

In the last ten years, we have witnessed how the principles

of supervised and reinforcement learning, when embedded

in neural networks composed of many hidden layers (‘deep

neural networks’, or ‘DNN’), can reach – and often surpass

– human-level performances in visual object recognition,

and in playing video-games and GO [1–3]. Despite DNN’s

massive computational capabilities, there are two aspects

that temper these accomplishments: first, the number of
www.sciencedirect.com 
training samples required to reach acceptable perfor-

mances is huge - tens or hundreds of millions; second,

these architectures show a limited ability to generalize to

new tasks/settings that were not encountered during train-

ing. These limitations become largely evident in motor

control as shown by the clumsy behavior of humanoid

robots in the DARPA robotic challenge [4].

A second avenue of exciting progress in AI has come from

probabilistic machine learning (a.k.a. Bayesian machine

learning) [5], where agents can achieve impressive perfor-

mance on one-shot learning or using a limited amount of

examples [6,7]. This probabilistic approach resonates well

with intuitive theories of human cognitive development

and inductive reasoning [8]. The learning algorithm tries to

find among all possible models the one that best explains

the data (or, by extension, infer what causes the reality

perceived through the sensorium). This approach, while

conceptually appealing, is unlikely to provide a realistic

model of how the brain operates. The main issue is that

fully probabilistic inference might work well in simple and

well constrained conditions, but becomes quickly compu-

tationally intractable for more complex and unconstrained

scenarios. To exacerbate the problem, in order to function

efficiently, probabilistic programs have to be endowed with

ad-hoc definitions of the necessary representations [5].

Strictly speaking, in Bayesian inference we usually do

not have a principled way to select initial priors. Generali-

zation is thus limited to the class of problems, for which the

program was designed for [6,7].

A considerable hurdle for artificial agents concerns gener-

alization; how can machine learning algorithms deal with

new and never-experienced scenarios? Humans and ani-

mals can easily and appropriately respond to new scenarios,

mostly transferring knowledge acquired in loosely related

contexts. What are the brain mechanisms that enable the

human brain with its remarkable generalization capacity?

Plain reinforcement learning is too slow, and hierarchical

architectures [9], albeit ameliorating the algorithm by sub-

dividing learning among multiple systems and meta-vari-

ables [10,11�], remain dependent on the need for ad-hoc

definitions. Here, wesuggest that brains donotsimplysolve

supervised classification problems but transform them into

different – and more tractable – problems. We propose that

an adaptive role of higher cognition is to allow precisely this

transformation to take place.

More specifically, we propose a model of how higher cogni-

tion is able to simultaneously operate the dimensionality
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reduction and feature selection processes necessary for

simplifying complex problems. Adjusting the degree of

synchronization between neurons has been suggested as

one possible way to control the degrees-of freedom of a

neural system [12]. We draw on similarities with simulated

annealing, exploring howdifferent frequency modesofbrain

dynamics serve as inherent implementation channels to

reduce degrees-of-freedom and reach optimal solutions.

Computational advantages of higher cognitive
functions in learning
Statistical learning theory of singular problems demonstrates

that the generalization error is given by dividing the degrees-

of-freedom (d) of the search space by the number of training

sample (n): e / d=ð2nÞ [13,14�]. If brains (d � 1011 neu-

rons) need to solve arbitrary classification problems uti-

lizing only a few hundred learning samples (n � 102), the

generalization error would become huge, at least 1011/

102 = 109. We postulate that brains transform these intrac-

table learning problems into more feasible reinforcement

learning problems with small degrees of freedom while

being guided by reward and penalty. Higher cognitive

functions such as attention, memory, concept formation,

and metacognition might find low-dimensional manifolds
Figure 1
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of meta-representations that are essential for learning

from a small sample (Figure 1). Here, we will briefly

review findings from attention, memory, concept forma-

tion, and metacognition, focusing on their role in facili-

tating learning. We are aware that these are vast and

active areas of investigation and that it would be hard to

do justice to all the relevant work that has been done. We

have, therefore, decided to provide a snapshot of proper-

ties, modules and architectures that we believe are par-

ticularly relevant to inspire the development of new AI

architectures. It is important to recognize that a recent

work in the field of machine learning has also started to

incorporate some of the intuitions discussed here.

Attention is the ability to direct computing resources

toward relevant dimensions (stimulus attributes, spatial

location, etc.) for focal processing, acting as a filter to

amplify relevant information while dampening back-

ground clutter [15]. But how does an agent learn what

to attend? Rewards and punishments serve to constrain

attentional focus [16], and attending to specific features

rather than to the whole improves versatility [17]. Essen-

tially, we learn what to attend to at the same time as we are

paying attention to what we are learning [18,19�]. In
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nd nature (brains). The key insight discussed here is that higher

ent learning to drive generalization and learning from small sample.
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machine learning, a useful and efficient way to use

attention mechanisms is to decompose tasks or questions

into a series of simpler operations [20], or target specific

parts of a query (e.g. particular words in a sentence) [21].

An intelligent agent must also be able to remember or even

sometime forget past events. Accordingly, episodic mem-

ory plays a special role in goal-directed behavior and

learning [22]. Reality is statistically structured however,

and forms of gist-like memory can enhance reinforcement

learning [23��]. Schematic memory still depends on epi-

sodes; it is by virtue of statistics over individual traces that

summaries can be created. Not surprisingly, both persis-

tence (remembering) and transience (forgetting) are essen-

tial ingredients to optimize decision-making [24]. Human-

like memory processes are very different from what is

usually considered in AI agents, where memory is often

deterministic and non-sparse as well as storing all informa-

tion. Linking neural networks to external buffer memory

resources already produces impressive learning capabili-

ties, unattainable by classic neural networks architectures

[25,26�]. The development of predictive memory architec-

tures, where memory formation itself is guided by a process

of predictive inference [27], is one step toward systems

storing only relevant information.

Concepts are abstractions, closely intertwined with sche-

matic memories. Concepts can be created almost at will,

and a key aspect is that they can be connected, creating

conceptual maps [28]. Being highly hierarchical and com-

positional, more abstract concepts can be formed from

existing ones. New concepts or conceptual maps can

emerge from learning, but can also direct subsequent

learning [29]. Concepts share obvious links with memory

in their ability to represent schematized information, but

work in AI has not yet capitalized on this approach. Con-

ceptual representations in AI are currently restricted to

simple visual domain examples that make use of the

principles of hierarchy and compositionality [30].

Self-monitoring processes, a more abstract class of cognitive

functions, can encompass much richer representations. The

ability to monitor one’s thoughts is referred to as metacog-

nition, and is linked to the psychological construct of confi-

dence, that is, how good an agent is at keeping track of the

probability of a choice being correct [31,32]. This aspect is

very important for AI since it dovetails with a broad range of

phenomena such as error monitoring and reality checking

[33]. Of particular relevance to AI systems is the ability to

explicitly track the evolution of the level of self-knowledge,

which might provide biological agents with significant

advantages when interacting with their environment [34–

38]. Although metacognition and consciousness are inti-

mately related, the question of what is the computational

advantage of consciousness itself remains currently unan-

swered. Consciousness could represent the selection of

information for global broadcasting within the system,
www.sciencedirect.com 
making it flexibly available for local (and distant) computa-

tional units [33]. In machine learning consciousness could

also be interpreted as a powerful constraint on low-dimen-

sional representations [39�]. Earlier efforts suggest that some

forms of self-monitoring are computationally simple and can

directly arise even in two-layer attractor networks [40].

Generative adversarial networks (GANs) are an exciting

development in this direction: a generative model captures

the data distribution, and a discriminative model, akin to

metacognition, operates a reality check on new samples [41].

Neural implementation of high level cognitive
architecture
Togeneratesolutions leadingtoefficient learningandflexible

behaviors, nature had to solve a number of physical con-

straints.Thebraincannotbeequippedwithadhoc representa-
tions for every possible event in the world, since the horizon of

possiblestates ispracticallyinfinite;moreover, itdoesnothave

unlimitedcomputingresources.Understandinghowthebrain

has overcome these constraints may be inspirational for

developing new AI, yet it is important to keep in mind that

some biological constraints (e.g. positive neuronal firing rates)

may be bypassed by in-silico intelligent systems.

In its most basic interpretation, solving complex problems

for the brain accounts to finding the relevant (hidden)

states for RL. One solution to accelerate the search for

hidden states is to capitalize on the brain’s massively

parallelized neural circuit architecture. Parallel searches

are instantiated in multiple recurrent circuits linking

basal ganglia with the cortex (Figure 2). These recurrent

circuits effectively are information-transmitting loops (bi-

directional and closed neural-circuit connections between

basal ganglia and cortex): they can carry task-dependent

explicit representations (stimuli, goals, etc.), abstract

summaries, reward prediction errors (RPEs), and pre-

dicted states. Although parallel loops carry heterogeneous

information, they do not function independently from

each other. Rather, loops formed by sparse neural popu-

lations continuously interact at the synaptic level through

cooperation and competition. Excitatory interactions

(cooperation) appear between loops with similar, inclu-

sive and related representations. In contrast, inhibitory

interactions (competition) develop between loops with

exclusive, different or unrelated representations. Because

of the dynamic nature of the neural networks comprising

these excitatory and inhibitory interactions, a winner-

take-all scenario emerges [42,43]. That is, only the loop

with the ‘best’ representation survives while other loops

are suppressed. Here ‘best’ means the loop associated

with the representation that minimizes RPE. Therefore,

the selection of the best loop essentially corresponds to

the automatic selection of relevant states for RL.

Excitatory and inhibitory interactions can occur virtually

anywhere in the brain. However, the basal ganglia, a

group of structures located deep within the cerebral
Current Opinion in Neurobiology 2019, 55:133–141
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Winner-take-all parallel computing takes place in loops spanning basal ganglia and neocortex. Excitatory and inhibitory interactions between

multiple loops formed by the basal ganglia, thalamus and cerebral cortical regions implement winner-take-all computations. The loop with the best

representation for reinforcement learning and minimum reward prediction errors thus wins and all other loops are suppressed. These winner-take-

all computations implement dimension reduction and feature selection accelerated by high cognitive functions as follows. Attention executes

feature selection rather than dimension reduction, with relatively low abstraction. Episodic memory, among different kinds of memories, represents

feature selection in the time domain, and its abstraction level is relatively low. Conceptualization executes dimension reduction rather than feature

selection, and its abstraction level is high. Metacognition does both dimension reduction and feature selection and its abstraction level is very

high. Consciousness has the highest abstraction level and results in pure dimension reduction. dlPFC, dorsolateral prefrontal cortex; OFC,

orbitofrontal cortex; HPC, hippocampal formation; MC, motor cortex; PPC, posterior parietal cortex; ITC, inferior temporal cortex; VC, visual

cortex; VTA/SNc, ventral tegmental area/substantia nigra; RL, reinforcement learning. Figure modified from Haruno and Kawato [67].
hemispheres, should play the most important role in

these synaptic interactions for the following reasons:

(1) multiple inhibitions and direct, indirect, as well as

hyperdirect pathways link basal ganglia to cortex; there-

fore, winner-take-all computations can best be imple-

mented in basal ganglia [43,44]. (2) RPEs are largely

computed in basal ganglia [45], making these nuclei the

ideal focal point for the comparison and selection of

loops carrying the smallest RPEs.

So far, we have discussed a relatively simplified model that is

amenable to clearly delineate the theory. The reality of the

brain is nevertheless more intricate. Several brain areas are
Current Opinion in Neurobiology 2019, 55:133–141 
likely interacting to orchestrate an efficient search and ensure

convergence to task-relevant low-dimensional manifolds.

Prefrontal, sensorimotor, hippocampal cortices, as well as

cerebellum, thalamus, and basal ganglia all share recurrent

connections.Abovethisautomaticmachinery,what is therole

of higher cognitive functions? How can they further acceler-

ate learning computations? Metacognition, attention and

memory synchronize abstract representations in prefrontal

cortex (PFC) or hippocampal formation (HPC) with concrete

representations in sensorimotor areas. Recurrent connections

between these cortico-striatal regions connect reinforcement

learning mechanisms with representational and abstraction

engines that makes for an ideal candidate circuitry (Figure 2).
www.sciencedirect.com
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Dopamine inputs to the HPC ensure that learned or

partially learned rules are conceptualized and stored in

memory [46]. But HPC function stretches far beyond

memories, and one influential idea is that it plays a key

role in building cognitive maps for spatial [47] and

conceptual navigation [28]. HPC neurons functionality

probably extends so that they take the role of predictive

units extracting structure and low-dimensional bases of

the world [48,49�]. These discoveries are in line with a

recent proposal that during decision making, inferable

state-to-state transitions represented in the cortex keep

track of the evolving hidden space to accelerate learning

[50,51]. More specifically, the PFC is thought to hold an

exclusive position along the hierarchy of representations

as the substrate forging meta-representations [11�,31]
and abstraction processes [10,52,53]. Furthermore, the

PFC oscillatory frequencies act as mediators of abstrac-

tion: the synchronization frequency helps shuffle the

abstraction level encoded in different regions of the

PFC [54��]. In fact, this extends well beyond the

PFC; oscillatory frequencies effectively form communi-

cation channels throughout the brain [54��,55–57].

At the neuronal level, one way to discover correlations

between meta-representations and RPEs is to character-

ize these representations as statistical distributions in

neural population activities. The cortex could perform

probabilistic inference on such distributions either by

sampling over neural populations [58], or by weighting

correlations between neurons [59].

Learning new problems should invariably start with a

consistent scenario: ignition of myriads of parallel loops

resulting in widespread neural activity over extensive

cortico-striatal networks. The selection of RL states starts

with broad sweeps to evolve in a fine search. Initially,

broad brain regions are equally activated and participate

in the search. Next, dimension reduction and feature

selection begin, in parallel, to drop-out less activated

loops, a process accelerated by higher cognition such as

attention, memory, metacognition (Figure 2). In the end,

only a small number of loops will remain activated and

neural activity should be concentrated to the few cortical

locations carrying the most relevant representations and

the corresponding parts of basal ganglia. A useful analogy

for this search from broad to fine neural substrates (and

representations) is simulated annealing or Gibbs sam-

pling, optimization techniques to approximate global

solutions in large search spaces [60,61]. For example,

annealing starts by first using high temperatures causing

large changes in the objective function, then iteratively

descending to lower temperatures causing ever smaller

rearrangements — until convergence.

Furthermore, to extend this analogy, high temperatures are

depicted as a form of dimension reduction, while low

temperatures as akin to feature selection. We suggest that
www.sciencedirect.com 
dimension reduction relates to abstraction, operating at low

oscillatory frequency modes with low spatial resolution and

using large neural populations, while feature selection

relates to specific content utilizing high frequency modes

and sparse neural ensembles (Figure 3a). By frequency

modes here we mean specific bands in neural oscillation

frequencies – that is, the frequency at which neuronal

populations show synchronized activity. Low frequency

synchronization delineates the horizon of relevant dimen-
sions so that high frequency-based feature selection can

happen. To note, the direction of search from broad to fine

holds in terms of brain areas/neural networks involved; but

in terms of abstraction, the search directionality of the

model discussed here is unconstrained. The key intuition

is that in the brain the processes of dimension reduction and

feature selection should take place simultaneously, acceler-

ating interaction and winner-take-all convergence of loop

drop-out (Figure 3b). A recent work has elegantly linked

the brain’s structural connectivity (particularly the tha-

lamo-cortical system) with neural activity patterns and

dynamics, providing a formal basis for harmonic patterns

of certain frequencies [62��]. The authors of this work

demonstrate that these connectome-specific harmonics

patterns self-organize through the interplay of neural exci-

tation and inhibition in coupled dynamical systems.

We can now delineate how cognitive functions may affect

and expedite learning processes. We have proposed a

system composed of massively parallelized modules cen-

tered around an RL machinery, where communication

frequency determines the abstraction level of representa-

tions, and where cognitive functions have the ability to

synchronize representations at different abstraction

levels. At the very outset the search is characterized by

activity over broad areas of the brain, but the system is

typified by low abstraction and little synchronization.

RPEs may be tied to any aspects of the task, with most

RPEs being unspecific and irrelevant. Conceptualization

or integration of (task, instruction) rules, together with

visuospatial attention [63], can generate the first optimal

low-frequency modes, leading an initial dimensionality

reduction to define the search horizon where specific

features can be selected. Attention and episodic memory

also play important roles from the initial stages for the

selection of relevant features (i.e. loops) [64��] through

synchronization in high spatiotemporal-frequency chan-

nels [55,65], nested within low-frequency modes. As

learning progresses, high-frequency feature-specific

RPEs become predominant [64��,66], and the number

of activated loops greatly decreases. The abstraction level

is maintained high because feature-specific RPEs can be

represented in summarized fashion, hence further reduc-

ing the dimensionality and complexity of the problem.

Hidden states in reinforcement learning can now be

discovered more readily because the search domain has

shrunk. Importantly, the degree of certainty or uncer-

tainty on neural meta-representations can provide a fast
Current Opinion in Neurobiology 2019, 55:133–141
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Figure 3
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Different frequency modes in synchronization of neural activity represent broad and fine dimension reduction and feature selection. (a) Neural

oscillations are rhythmic repetitions of patterned neural activity. These oscillations can cover frequencies from approximately 0.05 Hz (low

spectrum) to 500 Hz (high spectrum). While low-frequency spatio-temporal modes contain many neurons and connections, high frequency modes

contain small numbers of neurons and connections. Nonlinear dynamic interactions between low and high-frequency modes provide the

computational means for fast parallel search of the optimal metarepresentation, corresponding smallest reward prediction errors (RPE), neurons

and connections. When a low frequency mode is selected first, all high frequency modes contained within it are generally activated because low

and high frequency modes share common neurons and connections. Among the activated high-frequency modes, those with the highest

correlations between meta-representations and RPE are further activated, and an optimal mode is thus selected. Consequently, dimension

reduction with low-frequency synchronization and feature selection with high-frequency synchronization proceed together by closely interacting.

(b) Illustration of the search implemented by the model. Low frequency mode corresponds to dimension reduction such as principal component

analysis (PCA) and high temperature in annealing. High frequency mode corresponds to feature selection such as L1-norm regularization or

automatic relevance determination, and low temperature in annealing. Real or simulated annealing takes long time but brains cannot afford that.

There exists no external control of temperature in the proposed interaction between different modes; nonlinear brain dynamics directly implements

simulated annealing. With low signal to noise ratio, a common issue in most learning problems, first an optimal low-frequency mode is activated

because it contains many areas, neurons and connections. This increases the chances of correlation computations surviving high noise

conditions. Then, high-frequency modes contained in it are generally activated, and correlations can be more reliably computed by constrained

domains and general excitatory inputs to them. The selection of the optimal high-frequency mode can be executed more robustly. This interaction

between low and high-frequency modes roughly implements annealing. The key difference with annealing though is that activation and inhibition of

all loops start simultaneously in the brain. But convergence starts from large dimension and low abstraction (top left, black dot on top arrow) and

proceeds to small dimension and high abstraction (bottom right). This is analogous to simulated annealing (direction of oblique arrow).
track to which states are relevant or irrelevant in rein-

forcement learning, by virtue of metacognition self-mon-

itoring properties [33]. Finally, consciousness itself may

lead learning to the highest level of abstraction. Con-

scious representation of the relevant states or decision

policies can be interpreted as a maximally abstract sum-

mary, a tensor with very low dimensionality that never-

theless carries all the fundamental information [39�].
These meta-representation vectors are extremely useful

for generalization because they can be easily applied to

new, previously unexperienced, problems.
Current Opinion in Neurobiology 2019, 55:133–141 
Conclusions
Fruitful interactions between neuroscience and AI have

opened up a new exciting era beyond DNN, which

require huge training samples. Brains utilize higher

cognitive functions such as attention, memory, concept

formation, and metacognition to transform seemingly

intractable supervised learning problems with astro-

nomical degrees-of-freedom state spaces and small

samples, into reasonable reinforcement learning pro-

blems within a low-dimension meta-representation

manifold.
www.sciencedirect.com
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We postulated that the neuronal mechanism implement-

ing this transformation of computational problems is

likely comprises parallel search of low-dimensional

meta-representations via synchronization of multiple

loops formed by the cerebral cortex, HPC and basal

ganglia. Brain connectivity and nonlinear neural dynam-

ics provide harmonic modes spanning from low to high

spatiotemporal frequencies. Interactions between differ-

ent modes may provide dimension reduction and feature

selection analogous to simulated annealing, albeit much

faster. That is, low frequency mode could allow for

dimension reduction analogous to high temperature in

annealing, while high frequency modes could select a

small number of features analogous to low temperature.

Furthermore, real-time interactions between high and

low frequency modes may enable fast parallel searches

to quickly determine the reinforcement learning search

domain. Attention and episodic memory are presumed

mechanisms operating feature selection, while conceptu-

alization mainly takes the form of dimension reduction.

Discovery of relevant hidden states may be greatly accel-

erated by metacognition through synchronization of

meta-representations.

Taken together these cognitive modules, acquired over

millions of years by natural selection, might inspire a new

generation of AI architectures that will take us one step

closer to human level intelligence.
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