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Real-time functional magnetic resonance imaging (fMRI) neurofeedback is an experimental framework in which
fMRI signals are presented to participants in a real-time manner to change their behaviors. Changes in behaviors
after real-time fMRI neurofeedback are postulated to be caused by neural plasticity driven by the induction of
specific targeted activities at the neuronal level (targeted neural plasticity model). However, some research
groups argued that behavioral changes in conventional real-time fMRI neurofeedback studies are explained by
alternative accounts, including the placebo effect and physiological artifacts. Recently, decoded neurofeedback
(DecNef) has been developed as a result of adapting new technological advancements, including implicit neu-
rofeedback and fMRI multivariate analyses. DecNef provides strong evidence for the targeted neural plasticity
model while refuting the abovementioned alternative accounts. In this review, we first discuss how DecNef refutes
the alternative accounts. Second, we propose a model that shows how targeted neural plasticity occurs at the
neuronal level during DecNef training. Finally, we discuss computational and empirical evidence that supports the
model. Clarification of the neural mechanisms of DecNef would lead to the development of more advanced fMRI

neurofeedback methods that may serve as powerful tools for both basic and clinical research.

1. Introduction

Real-time functional magnetic resonance imaging (fMRI) neurofeed-
back refers to a tool that provides participants with real-time feedback
based on fMRI signals to modify participants’ behavior (Sitaram et al.,
2017). This article reviews findings obtained from the use of a new
real-time fMRI neurofeedback method, termed decoded neurofeedback
(DecNef) (Shibata et al., 2011), and discusses how DecNef modifies
neural mechanisms that subsequently result in behavioral changes.

DecNef has been developed by integrating recently advanced tech-
nologies of real-time fMRI neurofeedback, including implicit neuro-
feedback, and the introduction of an fMRI multivariate analysis to real-
time fMRI neurofeedback (Shibata et al., 2011; Watanabe et al., 2017).
In most conventional real-time fMRI neurofeedback studies, feedback is
based on the overall mean amplitude of fMRI signals within a target brain
region, and participants are provided with certain explicit strategies to
effectively regulate their brain activities (deCharms et al., 2004, 2005;
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Scharnowski et al., 2012; Scheinost et al., 2013). On the other hand,
DecNef induces specific fMRI signal patterns in a local and target brain
region and changes a specific behavior without participants’ awareness
of the purpose of the experiment (Amano et al., 2016; Cortese et al.,
2016, 2017; Koizumi et al., 2016; Shibata et al., 2011, 2016b; Tascher-
eau-Dumouchel et al., 2018). DecNef has been reported to change various
behaviors, including visual sensitivity (Shibata et al., 2011), color
perception (Amano et al., 2016), fear memory (Koizumi et al., 2016;
Taschereau-Dumouchel et al., 2018), perceptual confidence (Cortese
et al., 2016, 2017) and facial preference (Shibata et al., 2016b). Impor-
tantly, DecNef resulted in behavioral changes in a study using a
double-blind procedure (Taschereau-Dumouchel et al., 2018).

Despite these successful results, the underlying neural mechanisms of
DecNef remain unclear. For instance, some research groups argued that,
at least in conventional real-time fMRI neurofeedback studies, the effects
of neurofeedback training could be explained by the placebo effect or
physiological artifacts (Thibault et al., 2016, 2017b, 2017a). Thus, in an

Received 1 July 2018; Received in revised form 7 December 2018; Accepted 11 December 2018

Available online 17 December 2018

1053-8119/© 2018 Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International. Published by

Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ne-nd/4.0/).


mailto:kawato@atr.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.12.022&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.12.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2018.12.022
https://doi.org/10.1016/j.neuroimage.2018.12.022

K. Shibata et al.

attempt to obtain a comprehensive understanding of the neural mecha-
nisms of DecNef, discussions and examinations of whether the neural and
behavioral changes reported in the previous DecNef studies occurred due
to DecNef training itself or other factors, including the placebo effect and
physiological artifacts, are important. In this review, we propose the
“targeted neural plasticity model” in which DecNef leads to plasticity at
the neuronal level in a target brain region, which in turn causes behav-
ioral changes.

First, we describe how the results of DecNef support the targeted
neural plasticity model and refute alternative accounts, including the
placebo effect and physiological artifacts. Second, we explain computa-
tional aspects of the model. In particular, we discuss how specific ac-
tivities at the neuronal level are induced by neurofeedback signals that
are generated at the voxel (a spatial unit of fMRI signals) level. Third,
based on datasets obtained from previous DecNef studies (Amano et al.,
2016; Cortese et al., 2016; Koizumi et al., 2016; Shibata et al., 2011,
2016b), we provide empirical evidence to support the model. Finally, we
show the results of neural-network simulations based on the model and
indicate how DecNef may selectively enhance specific activities at the
neuronal level based on the feedback signal computed at the voxel level.
Clarification of these mechanisms would further advance fMRI neuro-
feedback techniques as powerful neuroscientific tools.

2. How DecNef results support the target plasticity model

We propose the targeted neural plasticity model, in which DecNef
induces specific target activities at the neuronal level in a target brain
region and repetitive inductions of these activities cause plasticity, which
in turn results in a specific behavioral change, to clarify how DecNef
sequentially alters neural mechanisms and behaviors (Fig. 1, red arrows).

We first outline the characteristics of DecNef and achievements of
studies using DecNef (Amano et al., 2016; Cortese et al., 2016, 2017;
Koizumi et al., 2016; Shibata et al., 2011, 2016b; Taschereau-Dumouchel
et al., 2018). Next, we indicate the validity of this model while refuting
alternative accounts.
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2.1. Outline of DecNef

DecNef has been developed as a result of the integration of recently
advanced technologies, including implicit neurofeedback and fMRI
multivariate analysis. In the following sections, we describe each of these
methodological aspects of DecNef.

2.1.1. Implicit neurofeedback

An implicit neurofeedback method provides participants with no
explicit instructions to achieve better neurofeedback performance during
fMRI neurofeedback training (Watanabe et al., 2017). This implicit
neurofeedback differs from conventional methods in which participants
are provided with guidance and/or certain explicit strategies to effec-
tively regulate their fMRI signals. At the end of each trial of a neuro-
feedback training session, participants are presented with a number or a
visual stimulus that reflects how well induced fMRI signals from the
target brain region reflect a predetermined criterion. In an implicit
neurofeedback method, participants are merely asked to make an effort
to achieve better scores, without being informed of the purpose of the
experiment, how the criterion has been determined or how to match
induced fMRI signals to the criterion. According to recent studies, the
implicit neurofeedback procedure works well and significant behavioral
changes have occurred as a result of training with implicit neurofeedback
(Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016;
Ramot et al., 2016; Sepulveda et al., 2016; Shibata et al., 2011, 2016b;
Taschereau-Dumouchel et al., 2018). One advantage of implicit neuro-
feedback is that this type of feedback reduces or eliminates the possibility
that a specific intention or explicit strategy influences changes in neural
activity related to the intention or strategy and participants’ behavior
(Watanabe et al., 2017).

2.1.2. Introduction of an fMRI multivariate analysis to neurofeedback
Real-time fMRI neurofeedback technologies have been greatly
advanced as a result of introducing an fMRI multivariate analysis to
neurofeedback. The fMRI multivariate analysis is a method to extract or
decode certain information from fMRI signal patterns (Haxby et al., 2001;
Haynes and Rees, 2005; Kamitani and Tong, 2005). For example, the

Fig. 1. Possible mechanisms by which DecNef
induces changes in a target behavior. In the
targeted neural plasticity model (red arrows), the
induction of specific target activities at the
neuronal level by DecNef drives neural plasticity
in a target region that is manifested as changes in
a target behavior. In alternative accounts (blue
arrows), various cognitive factors and physiolog-
ical artifacts lead to changes in neuronal activities
outside the target activities during fMRI neuro-
feedback training. In this case, changes in be-
haviors, if any, are not attributed merely to
neural plasticity driven by induction of the tar-
geted activities at the neuronal level in the target
region. See also Table 1 for a detailed list of these
alternative accounts.
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multivariate analysis enables researchers to identify an orientation that is
presented to a participant among different orientations based on fMRI
signal patterns in the visual cortex with high accuracy (Haynes and Rees,
2005; Kamitani and Tong, 2005). The introduction of the multivariate
analysis allows neurofeedback to obtain information about signal pat-
terns in a target region (deBettencourt et al., 2015; La Conte et al., 2007;
Shibata et al., 2011).

In a study by Shibata and colleagues (Shibata et al., 2011), neuro-
feedback training was conducted with feedback scores based on the
multivariate signals of activations induced by exposure to a specific
orientation. In the first stage, a decoder was constructed to classify an
fMRI signal pattern into one of three different orientations using the
multivariate method. Participants were exposed to each of the three
orientations in an MRI scanner and fMRI signal patterns in the early vi-
sual cortex were measured. Based on the measured fMRI signal patterns,
a machine-learning algorithm (Yamashita et al., 2008) computed a set of
decoder weights for voxels in the early visual cortex to classify the fMRI
signal patterns into one of the three orientations. In the second stage, one
of the three orientations was selected as a target orientation for neuro-
feedback training. An fMRI signal pattern corresponding to the target
orientation was defined as a target fMRI signal pattern. In the third stage,
participants underwent real-time neurofeedback training to learn to
achieve a larger feedback score. During this ‘induction’ stage, a measured
fMRI signal pattern in the early visual cortex was input into the decoder
in real time. Feedback scores reflected the output of the decoder that
represents likelihood of the target orientation. In this type of neuro-
feedback training, a disk was presented to participants, and a size of the
disk reflected feedback scores. Participants were instructed to increase
the size of the disk to the greatest extent possible. By doing so, partici-
pants obtained feedback information based on a neural pattern in the
target area, and repetitive feedback leads to plasticity related to the
neural pattern.

2.2. Characteristics of DecNef
Here, we summarize the characteristics of DecNef.

2.2.1. Successful induction of fMRI signal patterns

Using DecNef, participants successfully learned to induce a target
fMRI signal pattern in a target region (Amano et al., 2016; Cortese et al.,
2016, 2017; Koizumi et al., 2016; Shibata et al., 2011, 2016b; Tascher-
eau-Dumouchel et al., 2018). For example, DecNef training significantly
increased the likelihood of the target orientation from fMRI patterns of
activation in early visual areas, which was the targeted area (Shibata
et al., 2011).

2.2.2. Locational specificity of induced fMRI signals

In DecNef studies, the induction of a target fMRI signal pattern is
mostly confined to the targeted local cortical region (Amano et al., 2016;
Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011,
2016b; Taschereau-Dumouchel et al., 2018). The location-specific in-
duction of the target fMRI signal pattern was tested using a method
termed leak analysis, which employs the logic described below. During
DecNef training, the size of a feedback disk is based on the similarity
between a current fMRI signal pattern and the target fMRI signal pattern
in the target region. However, this procedure alone does not ensure that
the induction of the target fMRI signal pattern is confined to the target
region. In concert with the successful induction of the target pattern in
the target region, fMRI signal patterns representing the induced infor-
mation may occur in some other regions outside the target region during
DecNef training. If the target pattern in the target region “leaked out” and
induced the patterns representing the induced information in other re-
gions, the fMRI signal patterns in those regions should be able to
reconstruct the information related to the target patterns in the target
region. In the aforementioned orientation DecNef study, the results of the
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leak analysis showed that fMRI signal patterns located outside the early
visual cortex during DecNef training were not informative to estimate the
likelihood of a target orientation computed from fMRI signal patterns
within the early visual cortex (Shibata et al., 2011). Based on this result,
orientation-related information did not leak from the early visual cortex
to other regions outside the early visual cortex during orientation DecNef
training.

Results of recent DecNef studies further supported this locational
specificity (Amano et al., 2016; Shibata et al., 2016b). In these studies,
significant information leakage from a target region to regions outside
the target region occurred when participants were presented with actual
visual stimuli (Amano et al., 2016) or asked to report their preferences to
presented face stimuli (Shibata et al., 2016b). Thus, the information leak
analysis possesses a sufficient power to sensitively detect information
leak from the target region to other regions. However, during DecNef
training, significant information leak to regions outside the target region
has not been observed (Amano et al., 2016; Shibata et al., 2016b). The
results of these two analyses further support the locational specificity
during DecNef training. However, the absence of significance during
DecNef training does not necessarily indicate an absence of the leak
during DecNef training. Thus, a direct statistical comparison between the
results of the two analyses will be necessary in future studies.

2.2.3. Specificity of behavioral changes

DecNef induces a specific behavioral change (Amano et al., 2016;
Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011,
2016b; Taschereau-Dumouchel et al., 2018). For instance, in the orien-
tation DecNef study, participants’ visual sensitivity was specifically
improved for the target orientation, but not for nontarget orientations
(Shibata et al., 2011). Since a specific pattern of behavior tends to be
subserved by a certain neural activity pattern(s), DecNef is likely to
induce specific activity pattern(s) at the neuronal level.

2.2.4. No awareness of the material to be learned

As mentioned above, during DecNef training, participants are largely
unaware of the purpose of experiments and what feedback scores
represent during DecNef training (Amano et al., 2016; Cortese et al.,
2016, 2017; Koizumi et al., 2016; Shibata et al., 2011, 2016b; Tascher-
eau-Dumouchel et al., 2018). This finding was confirmed by two obser-
vations. First, answers to the questionnaires administered after the entire
DecNef procedure have shown that the explicit strategies participants
thought they had employed during DecNef training generally were not
related to the purpose of the experiment. Only two of the total number of
90 participants in the previous DecNef studies reported that they occa-
sionally used a strategy related to a target stimulus during DecNef
training. Second, even after participants were informed about the general
purpose of the experiment, they were not able to specify exactly what
they learned. In the orientation DecNef study (Shibata et al., 2011), after
the end of the experiment, participants were informed of the general
purpose of the experiment but not in as much detail regarding what
orientation was supposed to be learned. Then, they were asked to choose
which one of three different orientations they thought was supposed to
be learned. The percentage of participants who chose the correct orien-
tation was not significantly different from chance. These results have also
been observed in other DecNef studies (Amano et al., 2016; Cortese et al.,
2016, 2017; Koizumi et al., 2016; Shibata et al., 2016b; Tascher-
eau-Dumouchel et al., 2018). Based on these findings, DecNef changes
participants' behavior in a targeted fashion without participants’
knowledge of the target material to be learned.

This implicit nature of DecNef is potentially suitable for avoiding the
aversive natures of conventional therapeutic methods, such as prolonged
exposure therapy that aims to reduce the mental distress from which a
patient suffers. A problem with exposure therapy is that the therapy re-
quires the patient to remember an incident associated with the distress,
causing a high rate of dropout from therapy (Schnurr et al., 2007).
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However, because the participants were unaware of the purpose of the
DecNef experiments, DecNef would be particularly effective on reducing
distress (Watanabe et al., 2017). For instance, DecNef induces a target
fMRI signal pattern that represents a certain visual stimulus related to
fearful experiences without evoking participants’ fear responses to the
aversive stimulus (Koizumi et al., 2016), at least partially because DecNef
did not present the aversive stimulus.

2.2.5. Replication of DecNef results using a double-blind procedure

The abovementioned reduction in fear responses by DecNef have
been replicated in another DecNef experiment that included a double-
blind procedure (Taschereau-Dumouchel et al, 2018). In a
double-blind procedure, neither participants nor experimenters were
informed of which condition or group a participant was assigned (Linden
and Turner, 2016; Thibault et al., 2017a, 2017b). This procedure ex-
cludes the possibility that observed fMRI signals and resulting behavioral
changes are attributed to the placebo effect and/or specific experimental
biases when participants guess the purpose of the experiment. Thus, the
replication of the reduction in fear responses with the double-blind
procedure indicates that the placebo effect and experimental biases are
unlikely to explain the reduction in fear responses.

Notably, the standard DecNef and double-blind DecNef techniques
utilize basically the same experimental procedure, except for the double-
blind procedure to ensure that both participants and experimenters were
unaware of the purpose of the experiment. Thus, this replication of the
reduction in fear responses through the double-blind DecNef experiment
suggests that the same or similar mechanisms underlie learning induced
with the standard DecNef and double-blind DecNef methods.

2.3. DecNef refutes alternative accounts to the targeted neural plasticity
model

The targeted neural plasticity model assumes that real-time fMRI
neurofeedback changes behaviors due to neural plasticity by inducing
specific activities at a neuronal level. However, a research group has
suggested that changes in fMRI signals and behaviors reported in con-
ventional fMRI neurofeedback studies are reflected by other mechanisms
than targeted neural plasticity (Thibault et al., 2016, 2017b, 2017a). In
conventional fMRI neurofeedback studies, participants were provided
with explicit cognitive strategies that enabled them to effectively regu-
late fMRI signals in a target region (deCharms et al., 2004, 2005;
Scharnowski et al., 2012; Scheinost et al., 2013). In addition, in most
cases, feedback signals reflected the overall fMRI amplitudes averaged
over voxels within a target brain region or a difference in the overall

Table 1
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amplitudes between the target and other regions (deCharms et al., 2004,
2005; Scharnowski et al., 2012; Scheinost et al., 2013; Sepulveda et al.,
2016; Weiskopf et al., 2003). Under such experimental settings, various
factors, including the placebo effect and physiological artifacts, may in-
fluence fMRI signals and behaviors (Table 1; see Thibault et al., 2017b for
a systematic review). In other words, behavioral changes observed in the
conventional fMRI neurofeedback studies might not be due to the in-
duction of neural activities that were targeted during neurofeedback
training (Fig. 1, blue arrows). This criticism has prompted alternative
accounts than the targeted neural plasticity model that have been pro-
posed to explain the results of conventional fMRI neurofeedback studies
(Thibault et al., 2017a, 2017b). In this section, we summarize each of
these accounts and conclude that none of these accounts applies to
DecNef.

2.3.1. Effects of conscious strategy

In conventional fMRI neurofeedback studies, participants are
instructed to use a certain explicit strategy in order to regulate fMRI
signals in a target region (deCharms et al., 2004, 2005; Scharnowski
et al., 2012; Scheinost et al., 2013). However, this procedure raises the
possibility that neural activities in the target region contain the activities
related to the strategy itself. Namely, if participants explicitly use a
specific strategy during fMRI neurofeedback training, it may activate
neurons outside and inside the target region. Neuronal activities outside
the target region might lead to behavioral changes.

However, this outcome is unlikely to occur with DecNef in which
implicit neurofeedback is used and participants remain unaware of the
purpose of the experiments during training (see Section 2.2.4 for details).

2.3.2. Cardiorespiratory artifact

Respiration influences fMRI signals (Thibault et al., 2017b). Cardio-
respiratory changes cause a global increase or decrease in fMRI signal
amplitudes (Abbott et al., 2005; Kastrup et al., 1999). Thus, one possi-
bility is that induced changes in fMRI signals are not due to changes in
neural activity but to cardiorespiratory regulation that participants
implicitly learned to induce during fMRI neurofeedback training.

However, the cardiorespiratory artifact is highly unlikely to account
for the results of DecNef. As discussed above (Section 2.2.1), DecNef
allows participants to induce a fine-grained fMRI signal pattern in a local
brain region. The induction of localized fMRI signal patterns is not caused
by cardiorespiratory regulation that leads to global changes in fMRI
signal amplitudes. Furthermore, cardiorespiratory artifacts are unlikely
to cause behavioral changes, including the increased sensitivity to a
specific target orientation (Shibata et al., 2011).

Real-time fMRI neurofeedback methods and possible accounts of results obtained by each of the methods. In con-
ventional fMRI neurofeedback methods, participants were provided with explicit cognitive strategies so that the
participants could effectively regulate fMRI signals in a target region. In addition, in most cases feedback signals re-
flected the overall fMRI amplitudes averaged over voxels within the target brain region or a difference in the overall
amplitudes between the target region and another control region. O: this account may explain results, /\: this account
unlikely explains results, x: this account is impossible to explain results.

Possible accounts

Physiological
Explicit artifacts
strategy (e.g.,

respiration)

Neural plasticity ~ Others (e.g., placebo,  Targeted
outside experimenter effect, neural
a target region unconscious strategy)  plasticity

Real-time Conventional O O
fMRI
neuro DecNef PN X
feedback
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2.3.3. Leakage of neuronal activities from a target region to other regions

Another possibility is that the induced neuronal activities would leak
out from the target region and activate specific neurons outside the target
region. If this possibility is true, then subsequent behavioral changes may
be interpreted as resulting from neural plasticity that occurred outside
the target region.

However, this possibility was refuted by a number of DecNef studies
(Amano et al., 2016; Cortese et al., 2016, 2017; Koizumi et al., 2016;
Shibata et al., 2011, 2016b; Taschereau-Dumouchel et al., 2018). First,
induced fMRI signal patterns are largely confined to a target region
(Section 2.2.2). Second, behavioral changes are highly correlated with
induced fMRI signal patterns in the target region (Section 2.2.3). These
results are consistent with our model that DecNef activates specific
neurons and induces neural plasticity in the target region.

2.3.4. Experimenter effect

An experimenter effect refers to an experimental artifact in which
participants consciously or unconsciously aim to produce the results that
meet their presumption of the experimenter's expectations (Kennedy and
Taddonio, 1976). In conventional fMRI neurofeedback studies, experi-
menters typically determine to which condition and/or experimental
group each participant is assigned. In this procedure, experimenter ef-
fects may occur; participants may try to employ specific strategies based
on what they think experimenters expect them to do.

However, DecNef results are highly unlikely to be contaminated by
the experimenter effect. Notably, in the DecNef studies, participants
remained unaware of the purpose of the experiment (Section 2.2.4) and
behavioral changes were still obtained in the DecNef experiment using
the double-blind procedure (Section 2.2.5). Under these experimental
conditions, participants would not have the opportunity to determine the
experimenter's expected results.

2.3.5. Use of a specific strategy without awareness

One may argue that participants use a specific strategy without being
aware of using the strategy. Without the instruction to use explicit stra-
tegies (Section 2.3.1), first, participants might somehow manage to
notice the true workings of fMRI neurofeedback training and develop a
strategy that closely matches the target behavior. Second, if participants
were unaware of the use of the strategy or forgot that they had used the
strategy during fMRI neurofeedback training, it may not be reported in a
postexperiment questionnaire. In this case, changes in behaviors might
occur due to the use of this type of unconscious strategy.

This account is also highly unlikely to explain the results of DecNef
studies. First, with an implicit neurofeedback method, participants would
not be likely to determine the true purpose of DecNef experiments and
therefore to develop an effective conscious or unconscious strategy for
DecNef training. Second, a recent DecNef study using the double-blind
procedure (Taschereau-Dumouchel et al., 2018) replicated the reduc-
tion in fear responses reported in a DecNef study that did not use the
double-blind procedure (Koizumi et al., 2016). The same result from the
double-blind experiment further reduces the probability that participants
used a specific strategy that led to the behavioral changes after DecNef
training. Third, the use of an effective strategy, if any, should lead to
better neurofeedback scores, and this successful experience of an asso-
ciation between the effective strategy and better neurofeedback scores
should be clearly remembered by participants. However, participants’
reports on their strategies were not related to the true workings of the
experiment (Section 2.2.4). Thus, it is unlikely that participants used a
specific strategy during DecNef training.

The five accounts mentioned above are highly unlikely to explain the
results of DecNef. Yet, DecNef leads to a specific change in a target
behavior, but not in nontarget behaviors (Section 2.2.3) (Amano et al.,
2016; Cortese et al., 2016, 2017; Koizumi et al., 2016; Shibata et al.,
2011, 2016b; Taschereau-Dumouchel et al., 2018). All of these findings
are consistent with the targeted neural plasticity model and refutes all of
the other accounts discussed above.
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3. Proposed mechanisms of targeted neural plasticity

How does targeted neural plasticity occur through DecNef? As dis-
cussed above, during DecNef training, the induction of specific target
activities at the neuronal level in a target region is likely to cause neural
plasticity that is manifested as changes in behavior.

In this section, we first introduce a prerequisite and an assumption by
which DecNef may critically achieve the target neural plasticity. The
proposed reinforcement learning characteristics necessitate a low
dimensionality of neuronal activities. Furthermore, a target neuronal
activity is included in the spontaneous neuronal activities of a target
region from the beginning of the induction stage. Next, we discuss the
computational plausibility of the prerequisite and assumption. Third, we
discuss how the target neural plasticity model built based on the pre-
requisite and assumption (Fig. 2) resolves possible computational issues
in DecNef.

3.1. Reinforcement learning based on feedback signals during DecNef

How does the brain learn to induce specific target activities at the
neuronal level based on feedback signals during DecNef training? Since
DecNef is a type of learning in the brain, it should follow at least one of
the three learning principles: unsupervised, supervised and reinforce-
ment learning (Doya, 1999). Unsupervised learning is driven by the
principle of an increased probability of previous activities based on
external sensory inputs, including visual stimuli. Supervised learning is
based on the principle that neural activities are modified toward exact
target activities as teaching signals. Reinforcement learning occurs by the
modification of neural activities such that specific neuronal activities
become more likely to occur when the activities are correlated with a
reward.

First, unsupervised learning does not match the DecNef procedures.
As described above, unsupervised learning is driven by external sensory
inputs including visual stimuli that are intended to be learned during
DecNef training. However, these external inputs are not presented to
participants during DecNef training. A feedback signal about the success
of DecNef induction, which is visually presented to participants in the
form of the size of a disk, is not designed to contain any information
related to the stimulus (e.g., orientation, color, or preference) to be
learned.

Second, supervised learning may not occur through DecNef either. As
described above, supervised learning requires target neuronal activities
that are presented to participants as teaching signals. A feedback signal
presented to participants during DecNef training represents a single
scalar value, not a target neural activity itself. Thus, the feedback does

fMRI signals at R
the voxel level ——T1—

=

) Decoding

N\

=i

Nearly one-to-one

correspondence Feedback

1

Reinforcement
Activities at the |

neuronal level

Fig. 2. Schematic of the proposed model of targeted neural plasticity
through DecNef.
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not work as a teaching signal for supervised learning.

While the two aforementioned types of learning principles are not
driving factors of DecNef, the principle of reinforcement learning seems
to fit well with DecNef. During DecNef experiments, a monetary reward
is given to participants in proportion to a feedback score based on an
fMRI signal pattern in a target region. Thus, the feedback score is
regarded as a reward and serves as a reinforcement factor (Fetz, 1969;
Haruno and Kawato, 2006; Haruno et al., 2004; Rosenfeld et al., 1969).
Reward-driven learning specifically enhances target neuronal activities
among other nontarget activities. Thus, a reasonable assumption is that
targeted neural plasticity induced by DecNef occurs through reinforce-
ment learning.

3.2. Low dimensionality of neuronal activities

One question is how the induction of target activities at the neuronal
level occurs based on feedback signals computed at the voxel level. Since
each voxel typically represents activity signals from millions of neurons,
logically, the same fMRI signal pattern measured at the voxel level can be
generated from a large number of different patterns of neuronal activ-
ities. Therefore, a one-to-many correspondence from an fMRI activity
pattern to neuronal activity patterns may exist. In addition, only a subset
of neuronal activities from the entire space of possible neuronal activities
may be related to a target behavior. This mapping issue has prompted
some researchers to postulate that the manipulation of fMRI signal pat-
terns at the voxel level does not induce a specific pattern of target ac-
tivities at the neuronal level (Huang, 2016).

However, this potential ill-posed problem caused by the one-to-many
correspondence is unlikely to occur in the processing of information by
the brain (Watanabe et al., 2017). Some principles of brain processing
have recently been shown to function as constraints to resolve or loosen
the one-to-many correspondence issue. Neuronal activities do not occur
randomly because of abundant synaptic connections among neurons
(Blumenfeld et al., 2006; Goldberg et al., 2004). Physiological studies
have shown that spontaneous activities of neurons in a brain subsystem
are strongly correlated and constrained on a particular low-dimensional
manifold (Berkes et al., 2011; Kenet et al., 2003; Luczak et al., 2009;
Mochol et al., 2015; Renart et al., 2010; Ringach, 2009; Sadtler et al.,
2014). If neuronal activities are constrained on a low-dimensional
manifold, fMRI signal patterns should also be constrained on a
low-dimensional manifold at the voxel level. These constraints would
make the ill-posed problem due to the one-to-many correspondence
unlikely.

3.3. Inclusion of target neuronal activities in spontaneous neuronal
activities

How are specific target activities induced at the neuronal level in a
target region during DecNef training? According to the procedure of the
decoder construction stage of DecNef experiments (see Section 2.1.2 for
details), target activities at the neuronal level should be determined
based on specific sensory stimuli or tasks in the decoder construction
stage. However, during DecNef training in the induction stage, partici-
pants are not presented with the stimuli or asked to perform the tasks.
Thus, the target activities must be induced without the stimuli or tasks. If
the target activities do not overlap with neuronal activities that initially
occur in the induction stage, the brain should not easily be able to in-
crease the contributions of the target neuronal activities in the target
region during DecNef training (Sadtler et al., 2014).

Importantly, the results of recent physiological studies suggest an
overlap between spontaneous neuronal activities and activities evoked
by the presentation of sensory stimuli or performance of certain tasks
(Luczak et al., 2009; Sadtler et al., 2014). Specifically, as shown in the
study by Sadtler et al., animals more effectively learn to induce target
activities of neurons when the target activities are included in a reper-
toire of activities of those neurons at the beginning of training.
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Thus, to enable efficient learning of induction of target neuronal ac-
tivities it is reasonable to assume that the target neuronal activities are
included in neuronal activities present at the beginning of DecNef
training.

3.4. Mechanisms of targeted neural plasticity

The abovementioned prerequisite and characteristics delineate
possible mechanisms of targeted neural plasticity as described below.
First, the induction of target activities at the neuronal level in a target
region occurs without performance of a task or presentation of sensory
stimuli that evoke the target activities because spontaneous activities
already include target activities (Section 3.3). Second, the low dimen-
sionality of activities at the neuronal level in a target region (Section 3.2)
enables the induction of target activities at the neuronal level based on
feedback signals computed at the voxel level. Third, due to reinforcement
learning (Section 3.1), repetitive pairing of the induction of the target
neuronal activities and monetary reward (i.e., larger feedback score)
drives neural plasticity in the region. These plastic changes at the
neuronal level eventually manifest as changes in a target behavior.

3.5. Resolution of the curse of dimensionality

The proposed mechanisms of the model may lead to the resolution of
the potential computational problem in DecNef training. While a feed-
back score presented during DecNef training is one-dimensional scalar
value (i.e., the size of a disk), a target region typically contains several
hundred or more voxels that would result in a huge number of possible
fMRI signal patterns. This large voxel space could pose a problem called
the curse of dimensionality in the context of reinforcement learning; the
number of potential fMRI signal patterns would be too large for partici-
pants to complete a search for inducing a target fMRI signal pattern
within a period of DecNef training (Huang, 2016). However, in the
DecNef studies, participants often showed significant induction learning
within a few hundred trials (Amano et al., 2016; Shibata et al., 2011,
2016b), indicating that the curse of dimensionality does not realistically
apply to DecNef.

How does DecNef circumvent the curse of dimensionality? Based on
the prerequisite we identified, fMRI signal patterns should be constrained
on a low-dimensional manifold due to the low dimensionality of neuronal
activities. Then, the curse of dimensionality should not be a problem
since the number of possible fMRI signal patterns is substantially reduced
(Watanabe et al., 2017).

In addition to the low dimensionality of fMRI signal patterns, another
reason why the curse of dimensionality should not apply to DecNef has
been identified (Watanabe et al., 2017). Functions used as decoders in
the DecNef studies are either pseudolinear (Amano et al., 2016; Cortese
et al., 2016, 2017; Koizumi et al., 2016; Shibata et al., 2011; Tascher-
eau-Dumouchel et al., 2018) or linear (Shibata et al., 2016b) and
monotonically increasing functions. In this case, it is possible to calculate
an error signal for each voxel within a target region (see Appendix A for
details). Thus, using these decoders, reinforcement learning to induce a
specific fMRI signal pattern is simplified to learning that induces a certain
fMRI signal amplitude in each voxel. In other words, using linear func-
tions as decoders, the search for inducing the specific pattern is no longer
required (Watanabe et al., 2017).

4. Empirical support for the proposed model

In this section, we introduce experimental support for the charac-
teristics, prerequisite, major prediction, and assumption of the targeted
plasticity model. For this purpose, we reanalyzed fMRI datasets obtained
from five previous DecNef studies (Amano et al., 2016; Cortese et al.,
2016; Koizumi et al., 2016; Shibata et al., 2011, 2016b). First, we show
the results of the reanalyses that support the main characteristics, pre-
requisite and assumption: reinforcement learning, low dimensionality of
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neuronal activities and inclusion of target neuronal activities in sponta-
neous neuronal activities in a target region (Section 4.1-4.3). Then, we
show that changes in fMRI signal patterns as a result of DecNef training
are consistent with the major prediction of the model (see Section 4.4).

4.1. Experimental support for the reinforcement learning characteristics

In this section, we provide experimental support for the reinforce-
ment learning characteristics (see Section 3.1 for details).

4.1.1. Responses of reward-related brain regions to feedback scores during
DecNef training

If targeted neural plasticity through DecNef occurs based on rein-
forcement learning, neural circuits that have been implicated in reward
processing should be activated by feedback signals during DecNef
training. In particular, fMRI signal amplitudes in reward-related regions,
including the ventral striatum and putamen (Haruno and Kawato, 2006),
should be correlated with the size of feedback signals.

We conducted a standard general linear model (GLM) analysis (Pau-
lesu et al., 1995; see Appendix B for details) on a combined dataset from
73 participants in the five DecNef studies to test this hypothesis (Amano
et al., 2016; Cortese et al., 2016; Koizumi et al., 2016; Shibata et al.,
2011, 2016b). Notably, the datasets from 17 participants in a recent
DecNef study (Taschereau-Dumouchel et al., 2018) were not included in
this analysis since this study had not been published when we started the
analysis. According to the results of the GLM analysis, the size of the
feedback disk was significantly correlated with fMRI amplitudes in
response to the presentation of the disk in the ventral striatum, putamen
and medial prefrontal cortex (Fig. 3A; two-tailed one-sample t-test,
P <0.05 after Bonferroni correction for multiple comparisons across
voxels), all of which have been suggested to be related to reward-related
processing (Behrens et al., 2007; Haruno and Kawato, 2006). This result
is consistent with the hypothesis.

4.1.2. Overlaps among brain networks of conventional fMRI neurofeedback,
DecNef and brain-machine interfaces

It has been suggested that reinforcement learning also plays a role in
the training on conventional fMRI neurofeedback and brain-machine
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interfaces (Emmert et al., 2016; Kasahara et al., 2015; Papageorgiou
et al., 2013; Sitaram et al., 2017). During training on conventional fMRI
neurofeedback, brain-machine interfaces and DecNef, participants are
required to learn to induce target neural activities based on feedback
signals. If reinforcement learning is a common principle for conventional
fMRI neurofeedback, brain-machine interfaces and DecNef, overlaps are
predicted to occur between brain networks involved in DecNef training
and networks that have been suggested to be involved in conventional
fMRI neurofeedback and brain-machine interfaces. We conducted the
GLM analysis to specify regions that are activated during the induction
period in which participants were asked to regulate their brain activities
to test this prediction.

Significant increases in fMRI signal amplitudes were observed in the
insular, cerebellum, supplementary motor area, posterior parietal cortex
and dorsal striatum during the induction period (Fig. 3B; two-tailed one-
sample t-test, P < 0.05 after Bonferroni correction for multiple compar-
isons across voxels). Importantly, different target regions (early visual,
cingulate, parietal and frontal cortices) were used across the five DecNef
studies. Thus, the abovementioned regions were significantly activated,
regardless of which brain region was selected as a target region during
DecNef training. In addition, these regions are included in the network
that has been suggested to be involved in neurofeedback and brain-
machine interfaces (Emmert et al., 2016; Kasahara et al., 2015; Papa-
georgiou et al., 2013; Sitaram et al., 2017). Based on these results, the
induction of neural activities through DecNef shares a common neural
basis with the learning of conventional neurofeedback and
brain-machine interfaces.

4.2. Experimental support for the low dimensionality prerequisite

The low dimensionality prerequisite (see Section 3.2 for details) in-
dicates that activities at the neuronal level in a target region are con-
strained to a low-dimensional manifold due to abundant synaptic
connections among neurons. As described in Section 3.2, the low
dimensionality of neuronal activities also constrains fMRI signal patterns
at the voxel level on a low-dimensional manifold. This low dimension-
ality is the prerequisite for efficient reinforcement learning (see Section
3.5). Thus, according to the low dimensionality prerequisite, the fMRI

Fig. 3. Results of the GLM analysis of
datasets obtained from DecNef studies.
(A) Responses to the feedback disk during
DecNef training. In the colored voxels, fMRI
signal amplitudes in response to the disk
were significantly correlated with the size of
the disk (two-tailed one-sample t-test,
P<0.05 after Bonferroni correction; see
Appendix B for details of the analysis). (B)
Activation observed during the induction
period in which participants were asked to
regulate brain activation. The colored voxels
showed significant increases in the fMRI
signal amplitude during the induction period
(two-tailed one-sample t-test, P < 0.05 after
Bonferroni correction).
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signal patterns in target regions are not random, but highly structured,
and therefore, low-dimensional.

We reanalyzed fMRI signal patterns in the target regions in each of the
five DecNef studies to test this hypothesis (Amano et al., 2016; Cortese
et al., 2016; Koizumi et al., 2016; Shibata et al., 2011, 2016b) using the
principal component analysis (PCA). PCA quantifies the components of
fMRI signal patterns (Behroozi et al., 2011; Shibata et al., 2016a) (see
Appendix C for examples of PCA results for individual participants). In
particular, we used a proportion of principal components (PCs) that ac-
count for 80% of the data variance (PCgqq,) (Mazzucato et al., 2016) as an
estimate of dimensionality of fMRI signal patterns. This threshold of 80%
has frequently been employed in other studies using PCA (Varmuza and
Filzmoser, 2009; Zuur et al., 2007). If 80% of PCs is necessary to account
for 80% of the variance in fMRI signal patterns, we predict that fMRI
signal patterns are close to random, and therefore, high-dimensional. If
the proportion of PCs accounting for 80% of data variance is significantly
less than 80%, we presume that fMRI signal patterns are not random, but
low-dimensional.

First, PCA was applied to fMRI signal patterns measured in the in-
duction stages of each DecNef experiment. In the orientation DecNef
study, for instance, (Shibata et al., 2011), PCggy, was significantly less
than 80% in the induction stage (two-tailed one-sample t-test, P < 10~°;
Fig. 4A, red bar). The same pattern of statistical results was obtained in
the other four DecNef studies (Fig. 4B-E, red bars). Thus, fMRI signal
patterns in the target regions during DecNef training were not random,
but well structured, and thus low-dimensional.

Second, PCA was applied to fMRI signal patterns obtained from the
decoder construction (DC) stage in the same way as described above. In
the orientation DecNef study (Shibata et al., 2011), PCgoy was also
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significantly less than 80% in the DC stage (two-tailed one-sample t-test,
P<1078 Fig. 4A, blue bars). Basically the same pattern of statistical
results was obtained in the other four DecNef studies (Fig. 4B-E, blue
bars). These results satisfy the prerequisite that f{MRI signal patterns in a
target region of DecNef are constrained to a low-dimensional manifold.

4.3. Experimental support for the target neuronal activities included in
neuronal activities existing at the beginning of DecNef training

In this section, we provide experimental support for the model
characteristic that target neuronal activities are already included in
neuronal activities existing at the beginning of DecNef training (see
Section 3.3 for details). If this prerequisite is satisfied in DecNef training,
the inclusion of the target activities in activities recorded during DecNef
training should be reflected in relationships between fMRI signal patterns
in the DC and induction stages of DecNef experiments. In particular, we
tested two predictions derived from this prerequisite, as detailed below.

4.3.1. FMRI signal patterns in the induction stage contain subcomponents of
fMRI signal patterns in the DC stage

In DecNef experiments, a target fMRI signal pattern in a target brain
region in the induction stage is determined by a decoder while utilizing
fMRI signal patterns measured in the DC stage (Section 2.1.2). In the
subsequent induction stage, the target fMRI signal pattern is induced.
Thus, it is expected that fMRI signal patterns in the induction stage as a
whole contain subcomponents of fMRI signal patterns in the DC stage.

We tested this core assertion of the target neural plasticity model by
performing the analysis described below. First, PCs and transformation
loadings were computed based on fMRI signal patterns recorded in the

Fig. 4. PCA results. (A) Results from an
analysis of the data reported by Shibata
et al.,, in 2011 in which the early visual cor-
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oizumi et al. S from an analysis of the data reported by
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“, e by Shibata et al., in 2016 in which the

= . cingulate cortex was targeted. (E) Results

from an analysis of the data reported by
Cortese et al., in 2016 in which the parietal
and frontal cortices were targeted. (F) Sum-
mary of the five studies. The red and blue
bars represent the results of the induction
and decoder construction (DC) stages,
respectively. The magenta bars show the re-
sults of the PCA in which transformation
loadings were computed from fMRI data in
the DC stage and proportions of PCs ac-
counting for 80% of the variance (PCggo)
were calculated from fMRI data obtained
from the entire period of the induction stage
(DC — Induction PCA). The results of the DC
— Induction PCA indicate that if PCggo, is
significantly less than 80%, fMRI signal pat-
terns in the Induction stage contain sub-
components of fMRI signal patterns in the DC
stage. In all PCAs for each study, PCggo, Was
significantly less than 80% (two-tailed one-
sample t-test, P < 10~%). Black lines in the
box plots represent median values. Areas
with darker colors indicate 95% confidence
intervals and areas with lighter colors indi-
cate 1 SD. Gray dots show individual data
points.
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DC stage. Second, the transformation loadings were applied to fMRI
signal patterns obtained from all training days during the induction stage.
We call this method the DC — Induction PCA. If less than 80% of PCs in
the DC stage is necessary to account for 80% of the variance in fMRI
signal patterns measured in the induction stage, we assert that fMRI
signal patterns in the induction stage contain subcomponents of fMRI
signal patterns in the DC stage.

For the orientation DecNef study, PCggy, was significantly less than
80% (two-tailed one-sample t-test, P < 10’4; Fig. 4A, magenta bar). The
same statistical tendencies of results of the DC — Induction PCA were also
obtained for the other four studies (Fig. 4B-E, magenta bars). These re-
sults are consistent with the major assertion of the target neural plasticity
model.

4.3.2. A target pattern is contained in fMRI signal patterns in the induction
stage from the beginning of DecNef training

The results obtained in the above sections support the major assertion
that target neuronal activities are induced in neuronal activities recorded
over the entire course of DecNef training. However, we have not yet
determined whether a target fMRI pattern is included in fMRI signal
patterns from the beginning in the induction stage. If the answer is no,
the aforementioned results would indicate that the target pattern was
newly generated by DecNef training during the induction period.

We conducted another analysis to clarify whether a target fMRI
pattern occurs from the beginning in fMRI signal patterns in the induc-
tion stage. First, PCs and the transformation loadings were computed
based on fMRI signal patterns recorded on each day of the induction
stage. Second, the transformation loadings were applied to fMRI signal
patterns in the DC stage. We call this method the day-by-day Induction —
DC PCA. This day-by-day Induction — DC PCA represents the extent to
which the PCs in each day of the induction stage account for the variance
in the fMRI data in the DC stage. If DecNef training newly generated the
target fMRI signal pattern that was not contained in the fMRI signal
patterns at the beginning in the induction stage, this newly generated
pattern should result in changes in a PC space that in turn lead to sig-
nificant decrease in the proportion of PCs of day-by-day induction stage
that account for 80% of the data variance in the DC stage.

We applied the day-by-day Induction — DC PCA to fMRI data
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obtained in the orientation DecNef study (Shibata et al., 2011). Since this
study utilized the longest training period (10 days) among the previous
DecNef studies, we should be able to detect any potential changes in
PCgq, that occurred during the 10 days of the induction stage. However,
we did not observe significant changes in PCg(y, between Day 1 and Day
10 (Fig. 5A). This result contrasts the alternative possibility that the
target pattern was newly generated by DecNef training. Thus, a target
fMRI pattern is already included in fMRI signal patterns existing from the
beginning of the induction stage. Collectively, these results are consistent
with the characteristics of the model in which target neuronal activities
are included in neuronal activities present at the beginning of DecNef
training.

4.4. Experimental support for the major prediction of the model

As described in Section 3.4, the results of DecNef experiments are
explainable by the mechanisms of the targeted neural plasticity model.
Namely, repetitive inductions of specific target neuronal activities in a
target region drive neural plasticity, which in turn leads to behavioral
changes. If so, it can be hypothesized that DecNef renders changes in
fMRI signal patterns in the induction stage closer to a target fMRI signal
pattern. In other words, fMRI signal patterns in a target region should
contribute to the target pattern during DecNef training to a greater
extent. We again focused on the orientation DecNef study (Shibata et al.,
2011) that employed the longest training period (10 days) among the
previous DecNef studies to test this major prediction of the model.

We tested this prediction using two steps (Steps 1 and 2). In Step 1, we
tested whether fMRI signal patterns observed in the induction stage
contained more subcomponents of fMRI signal patterns recorded in the
DC stage after DecNef training compared to the beginning of DecNef
training. In Step 2, we tested if the increased subcomponents are related
to orientation information.

For Step 1, we conducted the DC — Induction PCA (see Section 4.3.1
for details) on a daily basis. The transformation loadings computed based
on fMRI data in the DC stage were applied to fMRI signal patterns ob-
tained on each of the 10 days in the induction stage. PCggq, reflects the
proportion of PCs in the DC stage that is necessary to account for 80% of
the variance in fMRI signal patterns on each day of the induction stage.

Fig. 5. PCA results across the 10 training
days. (A) The results of the Induction —
decoder construction (DC) PCA for each of
the 10 days during DecNef training in the
study by Shibata et al. published in 2011.
Transformation loadings were computed
based on fMRI data obtained from each of
the 10 days during the induction stage, and
the transformation loadings were applied to
fMRI data in the DC stage. No significant
change in the proportions of PCs accounting
for 80% of the variance (PCgqy) was found.
(B) The results of the DC — Induction PCA. A
trend toward a decrease in PCgqo, on Day 10
was observed compared to Day 1 (one-tailed
paired t-test, P=0.056). (C) An additional
analysis of data shown in (B). The PCs
included in PCggy, were classified into top
and bottom halves according to contribu-
tions to orientation decoding (see the text for
details). A significant increase in the vari-
ance accounted for (VAF) by the top-half PCs
was observed on Day 10 compared to Day 1
(green; one-tailed paired t-test, P=0.037).
The exact opposite change was observed in
VAF by the bottom-half PCs (black). This
opposite change occurred because a total
VAF by the top- and bottom-half PCs should
always be 80%. Shaded areas represent SEM.
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Thus, a significant decrease in PCgg, during the induction stage would
indicate that fMRI signal patterns in the induction stage contain more
subcomponents of fMRI signal patterns in the DC stage as a result of
DecNef training. The results of the day-by-day DC — Induction PCA
showed a decrease in PCggy, on Day 10 compared to Day 1, with a
probability close to a significance threshold (one-tailed paired t-test,
P =0.056; Fig. 5B).

In Step 2, we tested whether the decrease in PCggy, is explained by
changes in PCs that contain orientation information about visual stimuli
and contribute to the decoding of orientations. As mentioned above, the
orientation DecNef study was aimed at enhancing the orientation pro-
cessing of a target orientation in the target region (the early visual cor-
tex). The results of Step 1 are consistent with the prediction that fMRI
signal patterns in the induction stage became closer to an fMRI signal
pattern that represent the target orientation. We divided the PCs included
in PCggy, (Fig. 5B) into the top and bottom halves according to the extent
to which each PC contributed to orientation decoding to further test this
prediction. The contribution of each PC was quantified by calculating the
absolute value of the inner product between the transformation loading
vector and the weights of the decoder on voxels in the target region for
each participant. If the changes in fMRI signal patterns in the induction
stage are specifically due to changes in the orientation-related PCs, the
variance accounted for (VAF) by the top-half PCs should specifically in-
crease during the induction period. As predicted, the VAF by the top-half
PCs was significantly greater on Day 10 than on Day 1 (Fig. 5C, green;
one-tailed paired t-test, P = 0.037).

These results are consistent with the major prediction of the model
that as participants learn during DecNef training, fMRI signal patterns in
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a target region change in a manner approaching a target fMRI signal
pattern to a greater degree.

4.5. Complementary analyses

While the PCA results shown above are consistent with the charac-
teristics, prerequisite, major prediction, and assumption of the model,
some researchers may wonder about the robustness and validity of the
results, depending on specific details of the analysis methods (PCggo)
shown in Sections 4.2-4.4. Thus, we conducted new analyses that are
complementary to PCggy. First, the results of PCA were replicated with a
different method (Figs. 6 and 7). Second, we excluded the possibility that
the differences in the results of the DC — Induction PCA and Induction —
DC PCA (Fig. 5A, B, 7A and 7B) were due to differences in fMRI signal
qualities between the DC and induction stages.

4.5.1. PCA based on VAF by the top 10% of PCs

In the aforementioned PCA, we used a proportion of PCs that accounts
for 80% of the data variance (PCgoy,) as an estimate of the dimensionality
of fMRI signal patterns since this metric was used in a previous study
(Mazzucato et al., 2016). However, this method may exhibit potential
bias, since the proportions of PCs vary across participants.

We conducted an additional PCA based on a complementary method,
which used the same proportion of PCs (10%, arbitrary determined)
across participants, to test the robustness of the original PCA results. In
this method, we calculated VAF by the top 10% of PCs. If VAF by the top
10% of PCs only accounted for approximately 10% of the variance in
fMRI signal patterns, we would predict that fMRI signal patterns are close

C Fig. 6. The results of the PCA based on the
complementary method (VAF by the top

e 10% of PCs). (A) Results from an analysis of

80 X = the data reported by Shibata et al., in 2011 in

which the early visual cortex (V1 and V2)
. was targeted. (B) Results from an analysis of
the data reported by Amano et al., in 2016 in
which the early visual cortex (V1 and V2)
was targeted. (C) Results from an analysis of
the data reported by Koizumi et al., in 2016
in which the early visual cortex (V1 and V2)
V1&V2 * was targeted. (D) Results from an analysis of
Koizumi et al. N=17 the data reported by Shibata et al., in 2016 in
20 which the cingulate cortex was targeted. (E)
Results from an analysis of the data reported
F by Cortese et al., in 2016 in which the pari-
. etal and frontal cortices were targeted. (F)

o o Summary of the five studies. The red and
80 blue bars represent the results of the induc-
tion and decoder construction (DC) stages,
respectively. The magenta bars show the re-
sults of the PCA in which transformation
loadings were computed from fMRI data in
the DC stage and VAF by the top 10% of PCs
was calculated from fMRI data obtained from
the entire period of the induction stage (DC
5 studies oo e — Indtnlction PFIA).. The rest.llts of the DC —
20 Induction PCA indicate that if the VAF by the
top 10% of PCs is significantly greater than
10%, fMRI signal patterns in the Induction
stage contain subcomponents of fMRI signal
patterns in the DC stage. In all PCAs for each
study, VAF by the top 10% of PCs was
significantly greater than 10% (two-tailed
one-sample t-test, P < 107%). Black lines in
the box plots represent median values. Areas
with darker colors indicate 95% confidence
intervals and areas with lighter colors indi-
cate 1 SD. Gray dots show individual data
points.
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to random, and therefore, high-dimensional. If VAF by the top 10% of
PCs was significantly greater than 10% of the variance, we would predict
that fMRI signal patterns are not random and low-dimensional. Other
aspects of PCA were identical to those of the original method using
PCggos, as described in Sections 4.2-4.4.

As shown in Figs. 6 and 7, the results of the PCA based on the com-
plementary method were highly consistent with those based on the
original method. First, for both the DC and induction stages, VAF by the
top 10% of PCs was significantly greater than 10% (Fig. 6, red and blue
bars). Second, the results of the DC — Induction PCA showed that the top
10% of PCs in the DC stage accounted for more than 10% of the variance
of fMRI signal patterns measured in the induction stage (Fig. 6, magenta
bars). Third, the results of the day-by-day Induction — DC PCA on the
orientation DecNef study showed no significant changes in VAF by the
top 10% of PCs (Fig. 7A). Fourth, the results of the day-by-day DC —
Induction PCA on the orientation DecNef study showed that VAF by
orientation-related PCs was significantly greater on Day 10 than on Day 1
(Fig. 7B and C). Based on these results, the characteristics, prerequisite,
major prediction, and assumption of the targeted plasticity model are
supported by the results of both the original and complementary PCA
methods.

4.5.2. Comparison of fMRI signal qualities between the DC and induction
stages

Based on the differences between the results of the day-by-day In-
duction — DC PCA (Figs. 5A and 7A) and day-by-day DC — induction
PCA (Fig. 5B, C, 7B and 7C), we argue that fMRI signal patterns in the
early visual cortex contained orientation-related components at the
beginning of the induction stage and that these components became
stronger after DecNef training. However, the differences might have been
derived from other factors, such as differences in fMRI signal qualities
between the induction and DC stages.

We compared fMRI signal amplitudes of each of voxels within the
early visual cortex between the induction and DC stages (Fig. 8) to test
whether the overall amplitudes were different between the two stages. In
the induction stage, fMRI signal amplitudes during the induction period
were z-score-normalized in each fMRI run and averaged over all runs for
each voxel. In the DC stage, fMRI responses to orientation stimuli were
also z-score-normalized in each fMRI run and averaged over all runs for

Change in VAF by half PCs (%) O
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Fig. 7. PCA results calculated across 10
training days based on the complemen-
tary method (VAF by the top 10% of PCs).
(A) The results of the Induction — decoder
construction (DC) PCA for each of the 10
days during DecNef training in the study by
Shibata et al. reported in 2011. Trans-
formation loadings were computed based on
fMRI data obtained from each of 10 days
during the induction stage, and the trans-
formation loadings were applied to fMRI
data in the DC stage. No significant change in
VAF by the top 10% of PCs was observed. (B)
The results of the DC — Induction PCA. A
trend toward an increase in VAF by the top
10% of PCs was observed on Day 10
compared to Day 1 (one-tailed paired t-test,
P =0.055). (C) An additional analysis of the
data shown in (B). The top 10% of PCs were
classified into top and bottom halves ac-
cording to contributions to orientation
decoding (see text for details). A significant
increase in VAF by the top-half PCs was
observed on Day 10 compared to Day 1
(green; one-tailed paired t-test, P=0.033).
No significant change in VAF by the bottom-
half PCs (black) was identified. Shaded areas
represent SEM.
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Fig. 8. Comparison of fMRI signal qualities. (A) Mean absolute z-scores
across voxels for the induction and decoder construction (DC) stages. No sig-
nificant difference was observed between values (two-tailed paired t-test,
P =0.662). Black lines in the box plots represent median values. Areas with
darker colors indicate 95% confidence intervals and areas with lighter colors
indicate 1 SD. Gray dots show individual data points. (B). Mean absolute z-
scores across voxels on each day of the induction stage. No significant difference
was observed between Day 1 and Day 10 (two-tailed paired t-test, P = 0.638).
Shaded areas represent SEM.

each voxel. Namely, we compared overall mean absolute values of the z-
scores across the voxels between the two stages. A significant difference
between these values was not observed (Fig. 8A; two-tailed paired t-test,
P =0.662). We also tested if the mean absolute z-scores recorded during
the 10-day induction stage were consistent between Day 1 and Day 10. A
significant change in the mean z-scores between Day 10 and Day 1 was
not observed (Fig. 8B; two-tailed paired t-test, P = 0.638). These results
are inconsistent with the possibility that the differences in the results
between the Induction — DC and DC — Induction PCA are due to dif-
ferences in fMRI signal qualities between the two stages.

5. Neural network simulation of the proposed model

Can we pragmatically induce target activities at the neuronal level
with the characteristics, prerequisite and assumption of the model, such
as reinforcement learning, low dimensionality of neural activities and
inclusion of target neuronal activities in spontaneous neuronal activities
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in a target region? To further examine computational plausibility of the
principles, we tested whether target activities are efficiently induced by
DecNef at the neuronal level by performing a biologically plausible
neural network simulation that includes the characteristics, prerequisite
and assumption. We used the simulation to test whether target activities
at the neuronal level are induced in the neural network simulation under
a computational environment that mimicked DecNef experiments.

A computational simulation with reinforcement learning replicates
the results of the orientation DecNef study (Oblak et al., 2017). However,
this study simulated learning only at the voxel level, without addressing
the correspondence between activities at the neuronal level and fMRI
signal patterns at the voxel level. Computations both at neuronal and
voxel levels and their interactions must be included to clarify the neural
mechanisms of DecNef since we assume that DecNef causes neural
plasticity at the neuronal level.

This simulation focused on plasticity in the early visual cortex
because half of the DecNef studies have targeted the early visual cortex
(Amano et al., 2016; Koizumi et al., 2016; Shibata et al., 2011). In
particular, we conducted the simulation based on the results of the
orientation DecNef study (Shibata et al., 2011) since a well-established
neural network model of orientation processing in the early visual cor-
tex exists (Blumenfeld et al., 2006; Goldberg et al., 2004). We tested
whether orientation processing at the neuronal level is modified by
feedback based on voxel-level activities during DecNef training.

5.1. Structure of the simulation

The model used in the simulation consisted of neuronal-level and
voxel-level layers (Fig. 9; see Appendix D for details).

We applied a well-established neural network to the neuronal-level
layer (Blumenfeld et al., 2006; Goldberg et al., 2004). This network is
composed of a number of neurons that were interconnected with each
other through synapses. Each neuron has unique orientation selectivity,
analogous to neurons in the early visual cortex (Hubel et al., 1978). In
this network, neurons that have similar orientation selectivities share
strong bidirectionally connected positive synaptic weights while synaptic
weights between neurons with different types of orientation selectivity
are weakly positive or negative (Blumenfeld et al., 2006; Goldberg et al.,
2004). Due to this synaptic weight pattern, neuronal activities are con-
strained on a low-dimensional manifold, termed a ring attractor (Blu-
menfeld et al., 2006; Goldberg et al., 2004). After initial random
activities are assigned to the neurons, an activity pattern of the neurons
converges to one of the points on a ring-shaped manifold composed of
activity patterns evoked by orientation stimuli.

Orientation
decoder

Voxel
activity

Reinforcement
by feedback

Neural
activity

R
0 180

Orientation

Fig. 9. Schematic of the structure of the neural network simulation. See
the text and Appendix D for details.
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Feedback scores were computed based on fMRI signal patterns at the
voxel-level layer (Fig. 9). We specifically employed the model reported
by Kamitani and Tong that describes how fMRI signal patterns occur
based on activities of neurons in the early visual cortex (Kamitani and
Tong, 2005). In this model, each voxel in the early visual cortex has a
weak orientation selectivity that presumably reflects a nonuniform dis-
tribution of orientation columns in the voxel. Using this model, we
computed fMRI signal patterns at the voxel-level layer based on the ac-
tivities of neurons in the neuronal-level layer.

In the simulation, we first constructed an orientation decoder based
on fMRI signal patterns obtained from the voxel-level layer. As in the
decoder construction stage of the orientation DecNef experiment (Shi-
bata et al., 2011), we trained a decoder using fMRI signal patterns evoked
by the presentations of actual orientation stimuli.

Next, the induction stage of the simulation was conducted with the
same procedure as the orientation DecNef experiment (Shibata et al.,
2011). Feedback scores reflected the likelihood of a target orientation
computed at the voxel-level layer. Based on the feedback scores, synaptic
weights among the neurons at the neuronal-level layer were updated.
This update followed the Hebbian rule modulated by reinforcement
signals driven by the feedback (see Appendix D for details). We tested
whether under this learning framework, the dynamics of activities of
neurons at the neuronal-level layer changes such that these neuronal
activities will be more likely to converge to activities related to a target
orientation through DecNef.

5.2. Results of the simulation

Based on the results of the simulation, after DecNef training, activities
at the neuronal-level layer became more converged to the activities
corresponding to a target orientation than other nontarget orientations.
Fig. 10 shows the distributions of the likelihood that activities with
random initial values converged to activities corresponding to different
orientations. Before DecNef training, the distribution was close to uni-
form, indicating that an activity pattern with random initial values
converged equally likely to each of different orientations (Fig. 10, blue).
After DecNef training, the distribution became bell-shaped around the
target orientation (Fig. 10, red). The probability of the target orientation

3
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Fig. 10. The results of the neural network simulation. Each line shows a
probability distribution of the likelihood that the activities of neurons in the
neuronal-level layer with random initial values converged to activities corre-
sponding to different orientations before (blue) and after (red) DecNef training.
The simulation was repeated 10 times with slightly different initial parameters
to account for the diversity of 10 participants in the original study (Shibata
et al., 2011). Shaded areas represent SEM. See Appendix D.4 for details.
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was significantly higher after training than before training (two-tailed
paired t-test, P =0.003). Thus, DecNef-specific orientation-related ac-
tivities at the neuronal-level layer are efficiently enhanced by feedback
based on activities at the voxel-level layer within a reasonable number of
neurofeedback trials (1800 trials; see Appendix D for details).

5.3. Implications of the generalizability of the simulation

Does the proposed model account for the results of other DecNef
studies examining functions or features other than orientation? Although
the current simulation focused on orientation processing in the early
visual cortex, a similar computational simulation should work for other
brain regions where the activities of neurons are constrained on a low-
dimensional manifold. As discussed in Section 3.2, previous physiolog-
ical studies have reported these types of low-dimensional manifolds in
the visual, auditory, motor, and prefrontal cortices (Berkes et al., 2011;
Kenet et al., 2003; Luczak et al., 2009; Mochol et al., 2015; Renart et al.,
2010; Ringach, 2009). Our PCA on fMRI signal patterns of DecNef studies
described in the previous section also indicates low dimensionality. Thus,
the proposed model is likely applicable to neuronal dynamics in various
cortical regions. Indeed, recent DecNef studies have shown that induc-
tion learning occurs in regions outside the early visual cortex (Cortese
et al., 2016, 2017; Shibata et al., 2016b; Taschereau-Dumouchel et al.,
2018).

6. Limitations

While the results of our analyses and simulations provide empirical
and computational support for the targeted neural plasticity model, these
analyses and simulations have certain limitations. We discuss these
limitations below.

First, some of the PCA results (Figs. 5 and 7) were based on fMRI data
obtained only from the orientation DecNef study (Shibata et al., 2011).
The reason for analyzing this limited dataset was that this study had the
longest training period (10 days) among the previous DecNef studies,
allowing us to examine the temporal characteristics of changes in fMRI
signal patterns during DecNef training. Many other studies used three
days of DecNef training. Since other DecNef studies focused on other
types of processing, such as color, preference, fear memory and confi-
dence, we were unable to clearly determine whether these PCA results
would be generalized to types of processing other than orientation.

Second, the purpose of the simulations was to show that the principles
of DecNef that we presume enable to circumvent the potential compu-
tational problems due to the one-to-many correspondence from fMRI
activity patterns to neuronal activity patterns and the curse of dimen-
sionality. Thus, we did not plan or intend that the simulations would
quantitatively explain every aspect of the experimental data reported in
the DecNef studies.

Some researchers may question whether a discrepancy indeed exists
between the simulation and experimental data. We found one instance of
results that were inconsistent with the results of the simulations. The
results of the simulations showed that after DecNef training, the activities
of neurons in the neuronal-level layer with random initial values became
more converged to the activities corresponding to a target orientation
than other nontarget orientations (Fig. 10). Based on the results, we
predicted that after DecNef training, fMRI signal patterns, even those
recorded in the baseline period of the induction stage, became closer to
fMRI signal patterns that represent the target orientation, regardless of
whether participants were asked to regulate their brain activities. We
conducted the DC — Induction PCA on fMRI data obtained from a
baseline period during which participants were merely asked to fixate on
the center of a display at the beginning of each fMRI run to test this
hypothesis. If the prediction was correct, a proportion of PCs that account
for 80% of the data variance during the baseline period (PCggo,) should
be significantly smaller on Day 10 than on Day 1. However, we did not
detect a significant change in PCggy, (Fig. 11; one-tailed paired t-test,
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Fig. 11. Results of the DC — Induction PCA on fMRI data obtained from a
baseline period. No significant difference in the proportions of PCs accounting
for 80% of the variance was observed between Day 1 and Day 10 (one-tailed
paired t-test, P = 0.149). Shaded areas represent SEM.

P =0.149). Thus, a more complex model will be necessary to completely
explain every aspect of the experimental data reported in the DecNef
studies.

Third, researchers may refute our assumption that the low dimen-
sionality of fMRI signals (Figs. 4 and 6) indicates a low dimensionality of
neuronal activities. The low dimensionality of the fMRI signals might
merely be determined by the physiological mechanisms by which fMRI
signal are measured that do not depend on the dimensionality of the
underlying neuronal activities. Since a causal relationship between di-
mensionalities at the neuronal and fMRI voxel levels is still being
debated, we only presume that a low dimensionality of fMRI signals in-
dicates a low dimensionality of the neuronal activities. However, the
assumption is likely to be valid for the following reasons. First, the
relationship between neural activities and fMRI signals has been exten-
sively investigated (Logothetis et al., 2001; Logothetis and Wandell,
2004). The relationship is almost linear, at least under a certain envi-
ronment. Second, as discussed in Section 3.2, a growing number of
studies has reported the low dimensionality of neuronal activities in
various cortical areas, including the sensory and prefrontal cortices
(Berkes et al., 2011; Kenet et al., 2003; Luczak et al., 2009; Mochol et al.,
2015; Renart et al., 2010; Ringach, 2009; Sadtler et al., 2014). Third, the
dimensionality of fMRI signal patterns is modulated by a task and context
(Diedrichsen et al., 2013). This context- and task-dependent modulation
of dimensionality should not occur if the dimensionality of fMRI signals is
only determined by the physiological mechanisms for fMRI measure-
ments. These findings collectively support the validity of the assumption
that the dimensionality of fMRI signals reflects the dimensionality of
neuronal activities.

7. Conclusions

In this review, we discussed possible neural mechanisms of DecNef
that alter a target behavior. First, we have proposed and introduced
experimental support for the targeted neural plasticity model in which
DecNef changes specific neural activities, leading to a certain behavior
change, and refuted other proposed accounts for the behavioral changes.
Second, we have proposed reinforcement learning with a low dimen-
sionality of activities at the neuronal level in a target region as major



K. Shibata et al.

mechanism of the model. Third, we have shown that both the results of
the reanalyses of fMRI data and neural network simulation are consistent
with the characteristics, prerequisite, major prediction, and assumption
of the model. This global framework will prompt new investigations that
directly measure DecNef-induced changes in neuronal activity in an an-
imal brain.

Declaration of interest

A potential financial conflict of interest exists; the authors are the
inventors of patents related to the decoded neurofeedback method dis-
cussed in this article, while the original assignee of the patents is ATR,
with which the authors are affiliated.

Funding sources

This research was conducted as part of the “Application of DecNef for

Appendices.

A. Details of avoiding the curse of dimensionality for linear decoders

Neurolmage 188 (2019) 539-556

development of diagnostic and cure system for mental disorders and
construction of clinical application bases” of the Strategic Research
Program for Brain Sciences from Japan Agency for Medical Research and
development (AMED) and also supported by AMED under Grant Number
JP18dm0307008. TW is also partially supported by NIH grants
RO1EY019466 and EY027841, YS by NSF grant BCS 1539717, KS by
JSPS KAKENHI Grant Number 17H04789 and MK by the ImPACT Pro-
gram of Council for Science, Technology and Innovation (Cabinet Office,
Government of Japan).

Acknowledgements

We thank Dr. Kaoru Amano and Dr. Ai Koizumi for providing the fMRI
data used in the meta-analysis.

In this section, we describe how reinforcement learning to induce a target fMRI signal pattern is transformed into quasi-supervised learning that
induces a certain fMRI signal amplitude in each voxel within a target region using a linear or pseudolinear decoder during DecNef training (see Section
3.5). This principle can be applied to both regression and classification problems, regardless of the numbers of classes.

First, let us focus on the simplest case: a linear regression. A reward value r reflects a feedback score computed as a linear weighted sum of fMRI
signal amplitudes across N voxels in a target region. Thus, r is obtained from the equation

r:iWiAier

i=1

Here, A; represents the fMRI signal amplitude of ith voxel. W; indicates a linear weight for the ith voxel; b corresponds to a constant value. In rein-
forcement learning, an efficient change in A; is calculated to increase the reward by a small amount Ar

AAiaﬂAr = wAr
dA.

i

Thus, in the case of the linear regression, learning can occur separately for each of the voxels in the target region.
Second, we focus on the case of a binary classification, such as logistic regression. r is obtained with the equation

N
r_f<ZW,-A,-+b>
i=1

where f represents a sigmoid function, which is pseudolinear and monotonically increasing function. In this case, a change in A; is described by

AAiaﬂAraw,-Ar
dA;

Thus, an fMRI signal amplitude can be updated separately for each of the voxels.
Third, let us consider a case of a classification with M classes. The value for r is obtained with the equation

. Efvzl WirA; + br
r=f M N
Zj:lZi:l Wr.’fAi + bj

Here, T corresponds to a target class during DecNef training. Again, f represents a sigmoid function. As in the second case, a change in A; is described by

d
AAimd% Arocw;rAr

i

Thus, the same learning rule can be used for the multiclass case.
B. Details of GLM analysis

A standard GLM analysis (Paulesu et al., 1995) was conducted. We analyzed five fMRI datasets obtained from experiments in which participants
underwent training with DecNef (Amano et al., 2016; Cortese et al., 2016; Koizumi et al., 2016; Shibata et al., 2011, 2016b). All analyses were con-
ducted using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Before preprocessing and statistical analyses, we discarded the first 15 fMRI
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volumes in each fMRI run. Preprocessing of fMRI data was conducted as described below. First, motion correction was conducted for each fMRI run. In
the motion correction step, all fMRI volumes in the run were aligned to a mean volume of the run. Second, slice timing correction was conducted. Third,
the motion-corrected fMRI volumes were spatially normalized to MNI space using a transformation matrix obtained from the normalization of the mean
fMRI volume to the EPI template in SPM8. Finally, the normalized volumes were spatially smoothed with an isotropic Gaussian kernel of 8 mm
(full-width at half-maximum).

The GLM analysis consisted of first- and second-level analyses. In the first-level analysis, we modeled all types of events that occurred in each trial of
DecNef training for each study (Fig. Al; see original articles for details of time-courses and events for a trial). Six head motion parameters were also
included in the model as nuisance regressors. We specifically focused on the following contrasts: induction period vs. fixation period and the correlation
between activation amplitudes in a feedback period and neurofeedback scores. The induction period refers to the period in which participants were
asked to regulate their neuronal activities. The feedback period is the period in which neurofeedback scores were presented to participants.

In the second-level analysis, contrast maps from all five studies and all participants were combined for each of the two contrasts mentioned above.
We used the t-test to determine whether the mean contrast value was significantly greater than zero for each voxel. P-values were corrected using
Bonferroni correction for multiple comparisons across voxels.

A Induction  Fixation  Feedback Il
L
%
6 sec 6 sec 2 sec 6sec Time
B Induction Fixation Feedback ITI
6 sec 7 sec 1sec 6sec Time
C Face Induction Fixation Feedback ITI
a
_ A%
0.5 sec 6 sec 6 sec 2 sec 5.5 sec > Time
Induction & motion stimulus Fixation Feedback ITI
6 sec 6 sec 2 sec 6sec .
» Time

Fig. A.1. Representative time course of a trial during DecNef training. In the induction period, participants were asked to regulate their brain activities. During
the fixation period and intertrial interval (ITI), participants were asked to fixate on the center of the display. In the feedback period, participants were presented with a
feedback disk. See the original articles for detailed descriptions of the experiments. (A) Representative time course used in the study by Shibata et al., in 2011. (B)
Representative time course used in the studies by Amano et al., in 2016 and Koizumi et al., in 2016. (C) Representative time course employed in the 2016 study by
Shibata et al. (D) Representative time course employed in the study by Cortese et al., in 2016.1

C. Representative PCA results

Here, we present representative PCA results for individual participants in the study by Shibata et al., in 2011 in which the early visual cortex was
used as a target region for DecNef.



K. Shibata et al. Neurolmage 188 (2019) 539-556

100
50
0 Participant 1 Participant 2 Participant 3 Participant 4

100 200 100 2000 100200 O 100 200

g
%)
O
a
z
« 100
L
R
2 50
c
>
8 0 Participant 5 Participant 6 Participant 7 Participant 8
(&
$ 100 200 O 100 200 100 200 O 100 200
2 Number of PCs
& 100
S
50 = Induction
0 Participant 9 Participant 10 — DC
0O 40 80 O 90 180 —— DC = Induction
Number of PCs

Fig. A.2. Relationships between variance accounted for (VAF) and numbers of principal components (PCs) for individual participants in Shibata et al.
(2011). Each panel represents one participant. Red and blue lines represent results from the PCA in the induction and decoder construction (DC) stages, respectively.
Magenta lines show results from the PCA in which transformation loadings were computed from fMRI data in the DC stage and VAF was calculated from fMRI data
obtained from the entire period of the induction stage (DC — Induction PCA).2

D. Details of the simulation

Codes for the simulation are available at our webpage (https://bicr.atr.jp/decnefpro/?page_id=222).

D.1. Neuronal-level layer

The neuronal-level layer consisted of the well-established neural network model (Blumenfeld et al., 2006). Synaptic weights among neurons are
defined as follows:

W = L, cos(ﬂx - Hy) +Jo

where for a given neuron i, 9; represents a preferred orientation of the neuron and r; measures the degree to which the response of neuron i is modulated
by the orientation of the stimulus (i.e., selectivity). The parameter J, > 0 is a global scaling factor of this term, and the parameter J, represents global
excitation (if Jo > 0) or global inhibition (if Jy < 0). We maintained all the parameters described in the original paper (Blumenfeld et al., 2006), except
for the data-driven variables. Specifically, we computed the preferred orientation @ by training a self-organizing map (SOM, or Kohonen map) with a size
of 42 x 17 on a set of orientation stimuli (Gabor patches). The 20 x 20 stimuli could adopt one of six different orientations (i.e., 30, 60, 90, ..., 180 deg)
and one of eight different signal-to-noise ratios (SNRs) (i.e., 0.2, 0.3, ..., 0.9). For each combination of an orientation and SNR, 50 samples were
generated, for a total of 2400 orientation stimuli to train the SOM. Therefore, the weights of the SOM represented the preferred orientation §. According
to the original paper, J» = 5 and Jy = —2 were used, and for simplicity we kept a constant selectivity of r; = 1.
The evolution of the neuronal activity m; at a given neuron i is described by the standard rate equation:

X = —m; + [+ 17 — 7],

where Xl- is the derivative of m;, Ii** is the input to neuron i due to recurrent connections, Ifﬁ is the afferent input, 7 = 10 is a time constant, T = 1 is the

firing threshold and [, represents the ramp gain function ([y], =y if y > 0 and [y], = 0 if y < 0). The recurrent input I* is computed using the
following equation:

rec 1
I :K/dyWX}.m y

where the integral is calculated over the whole neuronal region and A = 11.7 mm? represents the area of that region.

The model formulated above exhibits spontaneous activity when the afferent input is constant and exceeds a threshold (i.e., I“ff Cand C > T).
After a short transient, this activity converges toward one of the available orientation patterns, according to a uniform distribution. Otherwise, if the
input is structured according to a specific orientation stimulus, the evoked activity of the recurrent network will always converge toward the pattern of
that specific orientation. Given a desired orientation ¢, the afferent input is computed as follows:

I?ﬂ _ C(l + er; COS(H;‘ - ¢zg[f))

where ¢ = 0.1 is the modulation of the orientation encoding term.
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D.2 Voxel-level layer and decoder construction

The voxel-level layer was modeled according to the technique proposed in a previous study (Kamitani and Tong, 2005). The position of the 714 (i.e.,
42 x 17) neurons was randomly permuted and arranged on a one-dimensional column. Then, this column was partitioned into 50 blocks, representing
the 50 voxels. The activity of the neurons within a partition was averaged to represent the voxel intensity. The partitioning was jittered on each trial
according to a Gaussian distribution with an SD of 20% of the voxel size to simulate head motions during fMRI measurements. Moreover, random
Gaussian noise was added to the activity at SNR sufficient to achieve an average decoding accuracy of 80%, as described in the next paragraph.

A voxel-level sparse logistic regression decoder (Yamashita et al., 2008) was trained to classify a voxel intensity pattern into one of three different
orientations (10, 70, and 130 deg). For this purpose, the evoked activity at the neuronal-level layer was simulated, followed by a projection to the
voxel-level layer. This procedure was performed 100 times for each orientation to create a training set, and another 100 times to create a test set. As
explained above, the parameters in the voxel-level layer were tuned to achieve an average test decoding accuracy (i.e., average sensitivity) of 80%.

D.3. DecNef induction and synaptic plasticity

During the DecNef simulation, synaptic weights among neurons at the neuronal-level layer were updated according to the Hebbian rule. In each
simulated trial, the network spontaneously converged toward one of the orientation patterns, and it was rewarded if the pattern was congruent with the
target orientation pattern. The reward was computed by applying the decoder to voxel intensities. Specifically, the synaptic weights at the neuronal-

level layer were updated, depending on whether the decoded angle @ corresponded to the target angle 9:

Wiln+1] = Wyln] + R & Xi[n]Xj[n]

R=0if 0£0

where Wj;[n + 1] is the synaptic weight between neuron i and j at iteration n+ 1, £ is the learning rate, and X;[n] is the activation of neuron i at iteration

n.

D.4. DecNef simulation

We accounted for the diversity of participants by creating different conditions for the simulation. For a given condition, a new SOM at the neuronal-
level layer and W were constructed and a synaptic learning rate & was assigned. We created 10 different conditions in which the learning rate & varied on
an evenly spaced set of 10 values over the interval [0.00004, 0.0001]. For each condition of the simulation, the DecNef induction was repeated 1800
times (i.e., trials), as described in the original paper (Shibata et al., 2011).
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