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Can “hardwired” physiological fear responses (e.g., for spiders and
snakes) be reprogramed unconsciously in the human brain? Cur-
rently, exposure therapy is among the most effective treatments
for anxiety disorders, but this intervention is subjectively aversive
to patients, causing many to drop out of treatment prematurely.
Here we introduce a method to bypass the subjective unpleasant-
ness in conscious exposure, by directly pairing monetary reward
with unconscious occurrences of decoded representations of natu-
rally feared animals in the brain. To decode physiological fear rep-
resentations without triggering excessively aversive reactions, we
capitalize on recent advancements in functional magnetic resonance
imaging decoding techniques, and use a method called hyperalign-
ment to infer the relevant representations of feared animals for
a designated participant based on data from other “surrogate”
participants. In this way, the procedure completely bypasses
the need for a conscious encounter with feared animals. We dem-
onstrate that our method can lead to reliable reductions in phys-
iological fear responses, as measured by skin conductance as well
as amygdala hemodynamic activity. Not only do these results
raise the intriguing possibility that naturally occurring fear re-
sponses can be “reprogrammed” outside of conscious awareness,
importantly, they also create the rare opportunity to rigorously
test a psychological intervention of this nature in a double-blind,
placebo-controlled fashion. This may pave the way for a new
approach combining the appealing rationale and proven efficacy
of conventional psychotherapy with the rigor and leverage of
clinical neuroscience.

physiological fear response | real-time functional magnetic resonance
imaging | neural reinforcement

One of the most effective methods for the treatment of phobias
involves exposure, or repeated approaches toward feared

stimuli (1). Exposure-based therapies are effective in reducing
symptoms, but their success depends on the individual’s capacity
or willingness to consciously confront feared objects. The asso-
ciated distress can prevent patients from seeking treatment and
contributes to attrition from exposure once treatment begins. For
a variety of anxiety and trauma disorders, estimated overall
dropout rates generally range from 0 to 52% (mean, 15.6%;
median, 14.0%) (2); in some extreme cases, dropout rates as high
as 70% have been reported (3).
Here we propose a potential solution to this dropout problem.

Recent advancements in neuroimaging and machine learning
have made it possible for us to identify specific representations
of commonly and naturally feared animals in the human brain
(4–6). We tested the hypothesis that despite the supposed deep
evolutionary basis of these neural representations (7), we can
unconsciously reprogram their associations to reduce the rele-
vant physiological fear responses. Previously, using closed-loop
fMRI neural reinforcement, we have shown that physiological
fear responses can be reduced by pairing rewards with the un-
conscious occurrences of decoded object representations (8).

However, in that study, the artificial objects were feared only
because they had been experimentally conditioned with electric
shocks, and that procedure was itself conscious. Here we tested
whether our neural reinforcement method may apply to naturally
occurring fear in everyday stimuli (e.g., images of spiders or
snakes) entirely outside of participants’ awareness.
The standard method for building these object decoders involves

the presentation of relevant images to the subjects while fMRI
pattern activity is recorded. However, this kind of procedure would
lead us back to the problem of requiring subjects to consciously
encounter the feared objects. To decode fear representations
without triggering excessively aversive reactions, we capitalized
on recent advancements in fMRI decoding techniques and used a
method called hyperalignment (9, 10) to infer the relevant rep-
resentations of feared animals for a designated participant based
on data from other “surrogate” participants. In this way, the
procedure completely bypasses the need for conscious exposure.

Results
Study Outline. The first phase of this study involved an fMRI
session (which we call the decoder construction session) that
allowed us to determine the decoded animal representations to
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target during neural reinforcement. The second phase involved a
5-d neural reinforcement session as well as two brief fMRI ses-
sions conducted before and after neural reinforcement to assess
the efficacy of the intervention. The experiment was conducted
in six sessions carried out on different days: day 0, decoder
construction session; day 1, prereinforcement session and neural
reinforcement; days 2–4, neural reinforcement; day 5, neural
reinforcement and postreinforcement session.

Building Accurate Hyperalignment Decoders. To construct across-
subjects machine learning decoders for some of the most com-
monly feared animals, we designed an experiment (day 0, decoder
construction session) in which normal healthy participants viewed
3,600 images of 30 different animals and 10 inanimate objects (Fig.
1A). The multivoxel fMRI responses to these individual images
were recorded in the fMRI scanner and extracted at the single-trial
level, using conventional analytic procedures (SI Appendix).
We then capitalized on a novel method of across-subjects

multivoxel analysis known as hyperalignment, which allowed us
to compare and translate patterns of fMRI activity between
participants (10). Using this method, we exploited the data from
as many as 29 “surrogate” participants (who viewed the target
feared category) to construct the hyperalignment decoder for a

designated participant as if he or she was never exposed to the
target images (as would be ideal in a clinical setting) (Fig. 1B). To
do so, an abstract common space was derived from the voxel ac-
tivity in the ventral temporal cortex (fusiform, inferior temporal,
lingual/parahippocampal cortex) (10) of each participant based on
all image categories except the target category (e.g., snake). This
allowed us to infer the decoders for the designated participant
based on the decoders of surrogate participants (SI Appendix, Fig.
S1). Specifically, we trained a decoder to discriminate multivoxel
patterns for the target category from patterns for all of the other
nontarget categories in the surrogate participants (target vs.
nontarget), and through transformations via the common space,
we inferred what such a decoder would be for the designated
participant. We call this the hyperalignment decoder.
One may worry that such an indirect inference strategy may

provide only limited efficiency. However, for each designated
participant, this procedure can benefit from the data of as many
as 29 surrogate participants. As such, we harness the power of a
much larger amount of data to train the decoders than is used in
conventional (i.e., within-subject) fMRI decoding.
As in previous reports, here the hyperalignment decoders

displayed decoding accuracies (mean, 82.4 ± 1.73% SD) even
higher [t (39) = 9.55, P < 0.0001, two-sided t test; Wilcoxon
signed-rank test: z = 4.76, P < 0.0001] than accuracies obtained
with traditional within-subject decoders trained by presenting im-
ages to the participants themselves (mean, 71.7 ± 6.41% SD) (Fig.
2B). These results are also in accordance with previous data in-
dicating that the topography of voxel selectivity appears to be pre-
served by hyperalignment (10) (Fig. 2A and SI Appendix, Table S1).
Importantly, whether the designated participant presented a

similar fear profile (over all 40 categories of animals/objects) to
the average fear profile of all participants in the hyperalignment
did not modulate the accuracy of the hyperalignment decoder
(SI Appendix, Fig. S5). Furthermore, we explicitly determined
whether hyperalignment decoders built from “normal surrogate”
participants could generalize to patients diagnosed with specific
phobias, by recruiting patients to take part in our decoder con-
struction session. Here we recruited three patients who met the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition criteria for specific phobia for at least one animal in our
database and determined how their fear profiles affected the
accuracy of the hyperalignment decoders. Here hyperalignment
decoders constructed with our group of normal surrogate par-
ticipants had similar decoding accuracy levels for patients di-
agnosed with a specific phobia as those established within the
group of normal surrogates. This was specifically true for the
phobic category (all within ±1 STD; SI Appendix, Fig. S6). This
suggests that our method may be promising even for patients
with atypical fear profiles.

Decrease in Physiological Fear Response Following Neural Reinforcement.
We then conducted 5 d of our neural reinforcement procedure (Fig.
3A) using these hyperalignment decoders in 17 participants who
presented with high (subclinical) levels of fear for at least two animal
categories in our database. Details on the selection process are
provided in SI Appendix. For each participant, one of the feared
animal categories was selected at random by the computer to be the
target of the intervention, while the other of the feared animal
categories acted as a within-subject control to allow us to determine
the specificity of the intervention. Physiological fear response was
assessed before and after neural reinforcement sessions by present-
ing images of the two feared categories (target and control) and
images of a neutral category (baseline condition) while measuring
skin conductance response and amygdala hemodynamic response.
In each trial during the neural reinforcement procedure (Fig.

2C), the hyperalignment decoder was applied to fMRI images in
real time to determine the likelihood that the pattern of activity
corresponding to the target category was represented in the brain

Report  
Category change
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Fig. 1. Hyperalignment decoder construction. (A) An example sequence of
events in the hyperalignment decoder construction session. (B) To mimic the
situation wherein patients are not exposed to target images (to avoid ex-
cessive fear), the construction of hyperalignment decoders was based on the
data from surrogate participants. To do so, we hyperaligned voxels in the
ventral temporal area between a designated participant and surrogates into
a “common space,” using the representations for the 39 nontarget cate-
gories. (C) Through this space, we created a hyperalignment decoder for a
target category in the designated participant based on the surrogates’
representations for that target category.
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(SI Appendix, Fig. S2). This information was visually fed back to
participants by varying the size of a disk image from trial to trial,
which was directly proportional to the amount of money that the
subject would earn on a trial. Following previous decoded neuro-
feedback (DecNef) procedures (8, 11–17), participants were ex-
plicitly informed of the association between disk size and monetary
reward but received no instructions as to what brain activity pat-
terns were necessary to maximize the size of the disk. Despite this,
participants were able to learn to activate the target representation
with statistical consistency above chance (SI Appendix, Fig. S2A
and SI Discussion). This process was thus conducted in a double-
blinded fashion, as neither the participants nor the experimenters
were aware of the identity of the target category.
Confirming our hypothesis, we found a specific reduction of

physiological fear response for the target category after neural
reinforcement (Fig. 3 B and C): Amygdala response decreased for
the target condition [t (16) = 2.41; P = 0.028] but remained un-
changed for the control condition [t (16) = 0.40; P = 0.69], and
showed a significant time-by-condition interaction [F(1,16) = 5.57;
P = 0.031]. We likewise observed a significant decrease in skin
conductance response for the target condition [t(122) = −2.48; P =
0.014], but not for the control condition [t(122) = 0.016; P = 0.99],
with a significant time-by-condition interaction [F(1,244) = 2.13;
P = 0.033]. The effect sizes were considered of medium size for
both the amygdala (Cohen’s d = 0.62) and the skin conductance
response (Cohen’s d = 0.55) (corrected for dependence between
the means) (18) and are similar to effect sizes of exposure therapy
(Cohen’s d = 0.42–0.68) (19).
Importantly, at the end of the procedure, participants were

unable to guess the identity of the target category (47% accuracy
in a two-alternative forced-choice question), and reported strate-
gies for maximizing rewards that were generally unrelated to the
target and purpose of the procedure. (SI Appendix, Table S2 pre-
sents induction strategies reported by participants.) This confirms

that our treatment effects can be obtained outside of participants’
conscious awareness (SI Appendix, Figs. S3 and S8).
What are the possible mechanisms underlying these results? To

better understand the nature of neural reinforcement, we con-
ducted information transmission analyses (8, 12, 14) to investigate
whether multivoxel patterns in other brain regions can predict, on
a trial-by-trial basis, the likelihood of target representation in the
ventral temporal cortex. These analyses indicated that during
neural reinforcement, the voxels tracking the likelihood of target
representation were contained primarily in the fusiform, inferior
temporal, and lingual cortices (Fig. 4). These results were com-
pared with normal conscious viewing of target images (day 0,
decoder construction session), wherein the voxels tracking the
decoders’ likelihood were distributed more broadly in the fusiform
and lingual regions, as well as outside of the ventral temporal
cortex in areas such as the amygdala (SI Appendix, Fig. S4),
cuneus, and parietal and occipital regions (Fig. 4). Overall, these
observations are consistent with our previous report showing that
during neural reinforcement, the induced target representations
were relatively localized and disconnected from the rest of the
fear-related circuitry. Such a disconnect may be an important as-
pect of our fear reduction procedure (8).

Discussion
Using our neural reinforcement method, we have shown that
training participants to activate the neural representations of a
feared animal can lead to a decrease in the relevant physiological
fear response. This intervention appears to have a specific effect
on the targeted animal, as the physiological fear response to a
feared control animal remained relatively unchanged.
The fact that this procedure can be achieved unconsciously

provides some significant advantages. First, our procedure can
be achieved without triggering conscious aversive reactions,
which might help decrease physiological fear reactivity in indi-
viduals who are unwilling to enroll in conventional treatment or
those who dropped out of treatment because of the aversive
nature of the intervention. In the present study, because the

A

B C

Fig. 3. Decrease in physiological fear responses following neural reinforce-
ment. (A) To assess changes in physiological fear responses, on days 1 and 5,
participants viewed images of two animal categories that they feared (target
and control) and one animal that they did not fear (baseline). (B) The results
indicate a significant decrease in amygdala response for the target condition
while the control condition remained unchanged by the procedure. (C) Like-
wise, the results indicate a significant decrease in skin conductance response
in the target condition and no decrease in the control condition. BOLD,
blood oxygen level-dependent; SCR, skin conductance response. Error bars
represent ±1 SEM. *P < 0.05.
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Fig. 2. Classification accuracies and neural reinforcement procedure. (A)
Voxels contributing to the hyperalignment decoders. Plotted are the t values
of the voxels’ weights, which are consistent with a lateral-to-medial animacy
continuum (10, 22) (critical t value = 3.4 for P < 0.001, uncorrected). (B)
Hyperalignment decoders built using 29 surrogate participants had better
accuracy than conventional within-subject methods. Error bars represent ±SD.
(C) During neural reinforcement, online decoding was used to reinforce oc-
currences of the target (but not the control) multivoxel representation. The
feedback was proportional to the likelihood of the target being represented,
and to monetary gain. Crucially, both participants and experimenters were
unaware of the identity of the target category throughout the experiment.
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purpose is one of proof of concept, participants in fact saw the
images of the feared animals during the decoder construction
session, which helped demonstrate high performance in the ac-
tual accuracy of the hyperalignment decoders. However, we
found that these trials are not necessary for decoder construction
if we apply the hyperalignment procedure, meaning that future
interventions could be conducted completely without presenting
these aversive images. One may worry whether these decoders
could be sufficiently general to be relevant to actual everyday
encounters with the target animals, given that they are con-
structed based on a specific set of images (90 per category);
however, numerous lines of evidence suggest that voxel patterns
in the ventral temporal cortex identified in similar fashion rep-
resent generic object category information not specific to par-
ticular images or viewpoints (10, 20–22). In the context of neural
reinforcement, the mechanisms for the generalizability of these
effects have been discussed in a recent review (17). Second, the
fact that the participants are unaware of the nature of the pro-
cedure could help prevent the use of conscious “safety signals” or
“safety behaviors” during exposure, which are known to interfere
with the efficacy of exposure-based therapies (23).
Perhaps most importantly, our procedure was conducted in a

double-blinded fashion, which in itself is a methodological ad-
vancement, since conventional psychological and neurofeedback
interventions can rarely be conducted at this level of experimental
rigor. In general, many psychotherapeutic treatments are known
to be effective (19), but conducting double-blind placebo controls to
assess the effectiveness of such treatments is challenging, owing to
the very nature of therapy. The current experimental approach may
be extended to other psychotherapeutic methods, to allow more
complete integration of clinical psychology with standard medicine.
Despite these advantages of our “unconscious” intervention, it

has also been suggested that this kind of procedure may impact
only the physiological reactivity to feared stimuli, not necessarily

the behavioral outcomes and subjective experiences (24). Strictly
speaking, such physiological responses may be more correctly
identified as “threat”-related rather than reflective of the sub-
jective experience of fear per se (25). Our results are exactly in
accordance with this prediction. Nonetheless, it is worth noting
that the present study is one of an experimental demonstration,
an investigation of basic mechanisms. In implementing the
double-blinded procedure, we aimed to ensure that the pro-
cedure was fully unconscious; as such, we did not inform the
participants about the purpose of the experiment. In contrast,
had our purpose been merely to pass standard placebo-control
requirements, it would have been sufficient to inform the sub-
jects that there was a 50-50 chance of receiving placebo in-
tervention or of receiving a specific intervention, i.e., fear
reduction for a particular target object. In that scenario, perhaps
the level of partial awareness with uncertainty may be sufficient
to bring the underlying physiological changes to a conscious
level. Ultimately, for the method to be applied in the clinic,
patients will be fully aware of the purpose of the procedure while
they are receiving treatment as well. While these considerations
do not undermine the validity and intended scope of the current
study, it would be advantageous and interesting for future studies
to test how our intervention procedure may be combined with
conventional (conscious) psychotherapeutic treatments to pro-
duce synergistic and long-lasting effects on clinical outcomes as
well as on conscious experiences. As in studies of other mental
illnesses, one finding is that combining different methods
sometimes leads to the best overall outcomes. Such is the case in
depression, where the combination of medication (i.e., serotonin
reuptake inhibitors) and cognitive-behavioral therapy has been
shown to be advantageous (26). As such, neural reinforcement
may benefit from concurring cognitive restructuring treatments
as well (27). In such a scenario, the self-monitoring of changes in
physiological fear reactivity might be a key aspect to emphasize

Fig. 4. (A) Information transmission analyses during
normal conscious perception (decoder construction)
and during neural reinforcement (unconscious oc-
currences of target). (B) In a searchlight procedure
(39), sparse linear regression was used to predict the
linearized likelihood of target representation in the
ventral temporal cortex from multivoxel patterns
within each sphere. Plotted in the MNI space are
the mean Fisher-transformed correlation coefficients
representing the accuracy of this prediction. The
maximums of data scales were adjusted to reflect
significant voxels determined using a permutation
test. Overall transmission was lower during neural
reinforcement than in normal conscious viewing.
ACC, anterior cingulate cortex; C, cuneus; dmPFC,
dorsomedial prefrontal; F, fusiform; lOFC, lateral
orbitofrontal; IP, inferior parietal; IT, inferior tem-
poral; LO, lateral occipital; PH, parahippocampal; PO,
pars orbitalis; SM, supramarginal; SM, supramarginal
gyrus; SP, superior parietal; TP, temporal pole.
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to potentiate the effect of neural reinforcement to bring such
changes to the level of conscious awareness.
In conclusion, we have exploited an opportunity to apply re-

cent advances in fMRI decoding to move one step closer to our
ultimate goal of creating a method for an unconscious brain-
based psychotherapy for anxiety disorders. This study provides
the first evidence that physiological fear responses to specific,
subclinical, naturally occurring fears can be reduced uncon-
sciously with hyperalignment decoders, completely outside of the
awareness of human subjects. The staggering progress of current
neuroimaging decoding technology (4–6), combined with in-
scanner virtual reality experiments (28, 29), may mean that we
can eventually extend our approach to other forms of fear, such
as acrophobia, anxiety induced by public speaking, fear associ-
ated with specific persons or episodic memories, and so on.
Future studies should rigorously test whether the current neural
reinforcement approach may generalize to different forms of
anxiety-related illnesses. In particular, for posttraumatic stress
disorder, it has been estimated that as few as 2% of patients
receive sufficient treatment in the form of traditional exposure
(30–32). Our unconscious brain-based method may eventually
alleviate this challenging and critical problem of patient attrition
and pave the way for a novel approach combining the appealing
rationale and proven efficacy of conventional psychotherapy with
the rigor and leverage of clinical neuroscience.

Methods
Participants. Thirty participants (eight females, mean age 24.0 ± 3.97 years)
took part in a decoder construction session and were included in the hyper-
alignment procedure. Seventeen participants (five females, mean age 21.92 ±
1.54 years) also took part in the neural reinforcement experiment. Participants
in the neural reinforcement experiment first participated in the decoder con-
struction session and were selected for neural reinforcement if they reported,
on a 7-point Likert scale, “high” or “very high” fears of at least two animals
included in the database. We predetermined the number of participants based
on a previous study (8). The experiment was conducted in a double-blinded
fashion; i.e., neither the participants nor the experimenters were aware of the
target category of the neural reinforcement procedure. All participants pro-
vided written informed consent, and the study was approved by the In-
stitutional Review Board of Advanced Telecommunications Research Institute
International, Japan.

Decoder Construction Session and Hyperalignment. Hyperalignment decoders
were trained to discriminate the brain representation of a feared animal from
those of other animals and objects. To do so, each participant underwent a
1-h fMRI decoder construction session duringwhich theywere presentedwith
images of various animals and objects. We aimed to present images from
40 categories because previous studies have shown that similar numbers of
object/animal categories can be decoded from fMRI patterns (21, 33). For this
decoding to be robust, each category requires a reasonably high number of
samples. By presenting images for 0.98 s each, it was possible to present
a total of 3,600 images within an imaging session of typical duration (ap-
proximately 1 h). To optimize the tradeoff between the number of different
categories sampled and the number of trials in each category, we chose to
present 90 different images per category and to include 30 animal cate-
gories and 10 object categories (SI Appendix, Fig. S7 and SI Methods).

We constructed the target decoders for a designated participant from the
data of 29 surrogate participants. This method was chosen to determine how
effective this procedure could be if participants were never exposed to the
target category during the decoder construction session, as would be ideal in
a clinical setting. To do so, we iteratively performed a new hyperalignment
for each category and for each participant.

We conducted this procedure on the voxels of the ventral temporal cortex
(fusiform, lingual/parahippocampal, and inferior temporal cortex), as described
in more detail in SI Appendix. We first set aside, for each designated partici-
pant, the multivoxel patterns elicited by the target category plus an equal
number (90 trials) of randomly selected patterns associated with the remaining
nontarget categories. This was done to prevent circularity (34), as the set-aside
data for the designated participant was later used to test the accuracy of the
hyperalignment decoders. The remaining data from all participants were used
to carry out hyperalignment and to develop the abstract common decoder
space. This procedure involved determining a set of geometric transformations

(rotation, translation, and scaling) that brought data from the native space of
each participant (where individual voxels are dimensions) into a common
space where brain representations could be optimally aligned between par-
ticipants. Importantly, this transformation can be reversed such that data from
the common space can be projected back into the native space of participants.
Another important feature of hyperalignment is that new data can be
transformed into the common space even if they were previously withheld
from hyperalignment. We capitalized on both of these features to build our
training dataset; we brought all of the data from all participants (which in-
cluded the target category previously set aside) back into the native space of
the designated participant by first transforming it into the common space. This
allowed us to construct the hyperalignment decoder in the native space of the
designated participant. The decoder was trained to discriminate target trials
from nontarget trials using the data of 29 surrogate participants and was
tested on the data of the target participant (Fig. 1). Based on previous pro-
cedures (10), hyperalignment was conducted in pyMVPA 2.4 (www.pymvpa.
org) in the NeuroDebian environment (35).

We used sparse logistic regression (36, 37) to select the most discriminant
voxels for the target category (average of 141.9 voxels; SEM ±4.0) and to
identify a linear hyperplane that would maximally separate voxel patterns
associated with the target category from those associated with the randomly
selected nontarget images. We trained these decoders on the data from the
surrogate participants averaged within runs (six runs) and categories. Thus, the
training dataset consisted of 348 multivoxel patterns distributed over 1,000
ventral temporal voxels. The performance of the hyperalignment decoders
was then tested using the multivoxel patterns of the designated participant
that had been held out from hyperalignment and decoder construction (i.e.,
the 90 trials of the target category and 90 trials selected at random from the
nontarget categories). Fig. 2A shows the contrast of the sparse logistic re-
gression weights on each voxel between animal vs. object categories (SI Ap-
pendix, SI Methods). Fig. 2B shows the accuracies of the hyperalignment
decoders constructed iteratively with 29 surrogate participants and averaged
over the 30 participants and the 40 object categories.

Prereinforcement and Postreinforcement Sessions. To assess changes in
physiological fear responses, we used brief visual presentations of animals
from two feared categories (i.e., target and control categories), before and
after the neural reinforcement sessions. Each session included the pre-
sentation of 30 images divided in two short blocks: 10 images of the target
condition, 10 images of the control condition, 5 images of a neutral animal
(determined on a 7-point Likert scale), and 5 images of a neutral object. These
presentations were carried out in the MRI scanner while electrodermal ac-
tivity (i.e., skin conductance response) and fMRI images were acquired. The
images presented during prereinforcement and postreinforcement were
never presented during the hyperalignment procedure and were created
following the same procedure (SI Appendix, SI Methods). Each trial included
the presentation of a fixation cross for 3–7 s (mean, 5 ± 2 s), presentation of
the image for 6 s, and then a blank screen for 4–12 s (mean, 8 ± 3 s). Each
block started with 20 s of rest, followed by the presentation of the image of
a neutral object (e.g., a chair). The next two images were randomly set to be
from the target or control category, and their order was counterbalanced
between blocks. The remaining images were then presented randomly
during the rest of the block. To estimate physiological fear responses, we
built on previous methodologies (8, 38), and calculated skin conductance
and amygdala responses during the first two trials of the two feared cate-
gories within each block. These mean responses were then baseline-corrected
by subtracting the mean responses to the neutral animal category. More de-
tails are provided in SI Appendix.

Neural Reinforcement Session. The aim of the neural reinforcement sessions
was to allow participants to associate a reward with the activation of the
neural representation of a feared animal in the ventral temporal cortex
(target category). To select participants for neural reinforcement, we chose
individuals who self-reported “high” or “very high” fear of at least two
animals in our database. One of these two animal categories was randomly
selected (by a computer) to be the target of the intervention and the other
was selected to be the control condition. This within-subject control condi-
tion allowed for a double-blinded procedure, since neither the experi-
menters nor the participants were aware of the target of the intervention
during the procedure. Since participants frequently reported high fears of
more than two categories (average of 4.8 feared categories; SEM ±0.86), we
selected within the “high” and “very high” fear categories the two cate-
gories presenting the hyperalignment decoders with the highest accuracies.
For two participants, the multivoxel representations of these two categories
were also correlated with one another (r > 0.25 both within subjects and in
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the hyperalignment data of surrogate participants). In these situations, we
selected (i) the feared category with the highest accuracy and (ii) the next
feared category in terms of accuracy that was not correlated with the first
category selected (r < 0.25).

Online neural reinforcement was conducted across five sessions on five
different days. Following previous procedures (8, 12–15), each trial began with
an induction period (6 s), during which participants were instructed to “acti-
vate a pattern in their brain” to maximize the size of a subsequently presented
feedback disk (i.e., the diameter of the inner gray circle) (Fig. 2C). Online
decoding was achieved using the hyperalignment decoder for the target
category, while the decoder for the control category was never used for re-
inforcement. The diameter of the circle during the feedback period was a
function of the “activation likelihood” of the target category, i.e., the likeli-
hood that the hyperalignment decoder predicted the target category from the
multivoxel pattern in ventral temporal cortex. Participants were informed that
their monetary gain would be a function of the overall success in correctly
activating brain patterns (i.e., activation likelihood) during each session, but—
critically—they were not told what the target multivoxel pattern represented.

Information Transmission Analyses. The hyperalignment decoder likelihood
computed based on voxels in the ventral temporal region could be associated
with the transmission of information to other brain regions. This process
could occur both during the actual presentation of the target category during
decoder construction as well as during pattern induction in the neural re-
inforcement sessions. To compare the flow of information in the brain be-
tween the decoder construction and induction phases, we used information
transmission analysis (8, 12–14). This analysis uses a searchlight approach (39)
in which a sphere (radius, 15 mm; mean, 266 voxels) is iteratively centered
around each voxel of the gray matter mask in the native space of each
participant. Within each sphere, sparse linear regression machine learning
classification is used to determine if it is possible to use the activity of the

voxels within the sphere to predict, on a trial-by-trial basis, the linearized
induction likelihood for the target category predicted by the hyperalign-
ment decoder constructed in the ventral temporal cortex. The predicted
values are then correlated with the true linearized likelihood of the ventral
temporal decoders. The correlation coefficients for each sphere are then
Fisher-transformed and assigned to the central voxel of the sphere. The
coefficients were then projected in the MNI space and smoothed using a
Gaussian filter (FWHM = 6 mm). The results of the information transmission
analysis are presented on the MNI brain during decoder construction (Fig.
4A) and during neural reinforcement (Fig. 4B). PyCortex (40) was used for
data presentation in Fig. 4. More information is provided in SI Appendix.

Data supporting the findings of this study, along with the custom code
used to generate these data, are available from the corresponding authors.
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