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With the spread of smartphones and computer games, concerns have
escalated regarding the rising prevalence of gaming disorder. Patients often
display attentional biases, unconsciously turning their attention towards
gaming-related stimuli. However, attempts to discover and ameliorate
these attentional deficits have yielded inconsistent outcomes, potentially
due to the dynamic nature of attentional bias. This study investigated
neural mechanisms underlying attentional bias state by combining
neuroimaging (functional magnetic resonance imaging -fMRI) with an
approach-avoidance task tailored to an individual’s gaming preference.
We conducted a multivariate pattern analysis of endogenous brain activity
in 21 participants with probable gaming disorder. Our analyses revealed
that activity patterns in the insula tracked temporal attentional bias states
specific to gaming stimuli. A broad network of frontal and parietal
regions instead appeared to predict a general temporal attentional bias
state. Finally, we conducted a proof-of-concept study for ‘just-in-time’
attentional bias training through fMRI-decoded neurofeedback of insula
activity patterns, named decoded attentional bias training (DecABT).
Our preliminary results suggest that DecABT may help to decrease
the attractiveness of gaming stimuli via a insula- and precuneus-based
neural mechanism. This work provides new evidence for the insula as an
endogenous regulator of attentional bias states in gaming disorder and a
starting point to develop novel, individualized therapeutic approaches to
treat addiction.

This article is part of the theme issue ‘Neurofeedback: new territories
and neurocognitive mechanisms of endogenous neuromodulation’.

1. Introduction
Video and online games provide entertainment for millions of people.
However, maladaptive engagement can lead to functional impairments, a
phenomenon called ‘gaming disorder’ [1]. As a consequence, gaming disorder
has become problematic in today’s technologically advanced society [2] and
has been included as an official diagnosis in the International Classification of
Diseases 11th Revision [3]. Although recent reviews indicate a prevalence of
around 3% [1], which increased during the COVID-19 pandemic [4], effective
treatments are still underdeveloped [1].

A common problem with such addictions is attentional bias. Game players
often find playing online games satisfying, providing relief from negative
moods [5], which over time develops into an attentional bias towards
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game-related stimuli [6]. This unconscious bias towards addiction-related stimuli is a central factor for symptom prognosis
[7,8]. Furthermore, attentional bias has been proposed as a theranostic biomarker that can be modified via attentional bias
modification (ABM) [9]. In short, ABM helps reduce bias towards a stimulus by repeatedly encouraging participants to avoid
addiction-related stimuli, e.g. gaming, alcohol and drugs, etc., which helps to ameliorate symptoms [10,11].

Although attentional bias towards addictive stimuli has been considered an essential mechanism of gaming disorder,
previous reports on the direction of the bias, i.e. towards or away from relevant stimuli, have been inconsistent [12,13].
Moreover, although attempts at ABM were reported as effective, the effects varied among studies [14,15]. One reason for such
variability in study outcomes may be that attentional bias is unstable within each individual, fluctuating in time [16,17]. Recent
research suggested that traditional assumptions should be revisited and that therapeutic measures should consider attentional
bias as a dynamic process [18]. Such temporal changes in attentional bias may have affected previous results, and interventions
on attentional bias should consider this fluctuation [13,19]. Furthermore, attentional bias towards addiction-related stimuli is
only found in the presence of high craving, which is closely related to symptom onset [20]. Such attentional fluctuation is
thought to be related to endogenous brain activity [21,22]. Although temporal variation in attentional bias could be related to
brain states, its neural basis has yet to be well investigated, despite its clinical importance.

Here, we first attempted to clarify which brain regions are important for attentional bias states in gaming disorder, using an
approach–avoidance task that measures implicit biases. We focused our analysis on a key set of addiction disorder-related brain
regions, especially those associated with attentional bias, i.e. the ventral medial prefrontal cortex (vmPFC), insula, amygdala,
hippocampus, ventral striatum (VS), mesolimbic region and cerebellum [23–25]. We used multivariate pattern analysis (MVPA)
to classify patterns of voxels representing the attentional state (biased and unbiased). Our analysis targeted pre-stimulus brain
activity to consider endogenous neural fluctuation [26,27]. We selected MVPA because previous functional magnetic resonance
imaging (fMRI) studies on attentional bias have yielded inconsistent findings [27]. Indeed, complex dynamical spatial patterns
of brain activity, which are not well addressed by conventional univariate analysis, may represent attentional bias. Our MVPA
results suggest that gaming-related temporal attentional bias involves a constellation of brain regions implicated in attentional
switching and action preparation, with the insula playing a prominent role [28]. A control experiment based on general gaming
stimuli, instead of individualized ones, reinforced the specificity of this gaming addiction-related attention effect in the insular
cortex.

If neural mechanisms can be identified, revealed neural foundations could be next-generation therapeutic targets [29]. In
particular, decoded neurofeedback (DecNef) is a method of intervening in behaviour based on real-time brain activity [30].
While standard neurofeedback can only manipulate macro units, such as the average activity level of a specific brain region,
and the region to be manipulated must be determined by prior knowledge, DecNef allows interventions to be implemented
using brain activity patterns that represent specific behavioural and cognitive states [31]. As mentioned, because attentional bias
fluctuates in response to transitions in intrinsic neural activity, just-in-time interventions that capture the target state should
enhance the effect [32]. Applying DecNef makes it possible to present the intervention when the neural attentional bias is
maximal [33]. In addition, while a conventional ABM task is a series of simple behavioural trials that could evoke boredom, a
gamification approach in which the timing is unreadable by the participant could help to keep motivation and enhance their
engagement [34].

Here, we show preliminary results from a proof-of-concept approach that combines ABM with real-time fMRI decoding of
brain activity: decoded attentional bias training (DecABT). DecABT captures the attentional ‘peak’ of a participant based on
the brain decoder, which can produce stimuli to modify participants’ attention in a just-in-time manner. As the brain region
to construct the brain decoder for the training, we chose the insula because (i) it is associated with spontaneous craving in
addiction [35] and (ii) it reflects attention to game stimuli most sensitively in our region of interest (ROI)-based MVPA. To
evaluate the training’s efficacy, we analysed not only subjective and behavioural indexes but also brain functional changes
to examine whether DecABT could affect the function of the insular cortex or closely related brain regions. In line with
previous work, DecABT effects may be detectable as changes in brain function, even when not apparent at the subjective
or behavioural levels [36]. Our results suggest that DecABT can change brain activity related to cue reactivity and reward
processing in addiction. Optimizing closed-loop attentional intervention, by considering neural fluctuation, may ameliorate
underlying cognitive deficits and facilitate treating addiction.

2. Research design and methods
(a) Participants
Twenty-three individuals (six females) with probable gaming disorder were recruited through advertisements in local univer-
sities and through an online research company (Macromill, Inc., https://monitor.macromill.com/). Inclusion criteria were as
follows: (i) a score ≥3 points on the Internet Gaming Disorder Scale (IGDS-J) [37,38] in screening. A total score ≥5 is defined
as full syndromal gaming disorder based on diagnostic criteria of the DSM-5 [38] and ≥3 is defined as subsyndromal gaming
disorder [39]. Therefore, in this study, a participant with a total score of IGDS ≥3 was defined as having probable gaming
disorder (details of the questionnaire are shown in electronic supplementary material, methods). (ii) Age between 18 and 60
years old; (iii) fluent Japanese speakers; and (iv) right-handed. Exclusion criteria were as follows: (i) visual dysfunction that
could not be corrected or adjusted and would prevent one from recognizing images on a monitor; (ii) positive diagnoses of
current or recent psychiatric disorders; (iii) any history of head trauma, presence of metal in the body or other contraindications
to fMRI scanning; (iv) with excessive head-motion during fMRI scanning; (v) task accuracy lower than 80%; and (vi) troubles
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that may distort data, e.g. sleep during the task in the scanner. We excluded two participants from the analysis: one’s accuracy
was lower than 80%, and one fell asleep in the scanner. Finally, we analysed 21 participants (mean age 29.0 yr; s.e.m. ± 2.2;
six females). Based on each individual availability and target decoder classification accuracy, seven participants (three females)
engaged in the proof-of-concept DecABT (average decoding accuracy: 63.5 ± 2.7%; see electronic supplementary material, table
S1 for individual decoding accuracies).
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Figure 1. Experimental paradigm and behavioural results. (a) Overview of the approach–avoidance task procedure. In each trial, participants had to pull the joystick
towards themselves, i.e. approach, if the frame colour of the stimulus was red, or push the joystick away, i.e. avoid, if the frame colour was green. They were
instructed to respond as quickly as possible when the stimulus appeared. Each block contained imbalanced stimuli (56 gaming and 24 neutral trials) to collect sufficient
responses in gaming stimuli for decoding. (b) Reaction time distributions in each direction (approach/avoidance). Figures were drawn using kernel-fitted distribution
(bandwidth: 0.025) for each direction (approach/avoidance). Individual reaction time data were pooled across participants within each condition. (c) Reaction time
distributions from two example participants. Histograms of reaction time differences between conditions (gaming/neutral approach and gaming/neutral avoidance)
from an example participant with a large difference and one with a small difference. In both (b) and (c), approach trials of gaming and neutral stimuli are coloured blue
and cyan, avoidance trials of gaming and neutral stimuli are coloured yellow and dark green.

3

royalsocietypublishing.org/journal/rstb 
Phil. Trans. R. Soc. B 379: 20230090

Downloaded from http://royalsocietypublishing.org/rstb/article-pdf/doi/10.1098/rstb.2023.0090/1282639/rstb.2023.0090.pdf
by ATR Computational Neuroscience Laboratory user
on 13 January 2026



Seven of the 21 participants from the main task and six additional participants took part in a control experiment (see §2c).
Of the six additional participants, one met the criteria for probable gaming disorder. The control experiment thus included eight
participants with probable gaming disorder and five healthy participants.

(b) Task materials
The gaming condition used game images prepared from the two game titles most played by each participant and were
collected from the internet. The neutral condition instead used neutral stimuli obtained from two image databases unrelated
to gaming [40,41] (for stimuli examples, see figure 1a). In the control experiment, game stimuli were ‘general’ stimuli (e.g.
Dungeons & Dragons) common to all participants and collected from the internet. The stimuli were displayed on a screen
inside the MRI scanner using a projector (DLA-HD10KHK) and a mirror system. Participants responded to the stimuli using an
MRI-compatible joystick (HHSC-JOY-5; Current Designs, Inc., PA, USA).

(c) Task to measure attentional bias
We assessed the attentional bias of each participant using an approach–avoidance task (figure 1a). Participants pushed or pulled
an MRI-compatible joystick in response to the frame colour of the cue (red or green). This task can assess implicit approach–
avoidance bias tendencies related to addictive stimuli with a high degree of ecological validity based on movement towards
or away from the images [42]. Trials were presented in at most six blocks (average: 5.6, s.e.m. = 0.2). Each block started with
a baseline period (21 s), followed by a pseudo-randomized sequence of 56 gaming and 24 neutral trials. This imbalanced ratio
was designed to collect sufficient responses in gaming stimuli to decode the attentional bias state. The task featured a zooming
function that increased/decreased the cue size as participants moved the joystick towards/away to maximize the similarity
between approach and avoidance [43].

(d) Data acquisition
The Psychophysics Toolbox for Matlab (http://psychtoolbox.org/) was used to conduct the experiments. A 3.0 T scanner (Prisma;
Siemens, Erlangen, Germany) with a 64-channel head coil was used to collect fMRI neuroimaging data. We scanned 76
interleaved axial slices that were 2.0 mm thick without gaps, parallel to the anterior–posterior commissure line, using a
T2*-weighted gradient-echo multiband echo-planar imaging (MB-EPI) sequence (repetition time (TR) = 1750 ms, echo time (TE)
= 30.0 ms, flip angle (FA) = 70°, field of view (FOV) = 200 × 200 mm2, resolution = 2 × 2 mm2, MB factor = 4, voxel size = 2 × 2
× 2 mm3). We obtained 348 volumes for the decoding session and 210 for DecABT for each run. Each run included additional
dummy scans at the beginning of scanning for signal stabilization. All individuals underwent a magnetization-prepared rapid
acquisition gradient echo technique to acquire high-resolution T1-weighted images of the entire brain for anatomical reference
(MPRAGE; TR = 2250 ms, TE = 3.06 ms, FA = 9°, FOV = 256 × 256 mm2, voxel size = 1 × 1 × 1 mm3). Participants operated a
joystick attached inside the MRI scanner with an adhesive sheet, positioned to their right-hand side to ensure natural push and
pull movements.

(e) Data analysis

(i) Extracting trial-level attentional bias

After removing inappropriate trials (see electronic supplementary material, methods and figure S1a), we used a previously
published definition to compute trial-level attentional bias [40,44]. In short, the average reaction time on neutral trials
(approach/avoidance, respectively) in each block was used as the approach/avoidance baseline. This baseline is an empirical
reference to determine how the reaction time (RT) of each participant on each pulling or pushing gaming trial differed from
his/her neutral trials [40]. That is, if RTs for pushing gaming stimuli, i.e. avoidance, were slower than the avoidance baseline,
or RTs for trials pulling gaming stimuli, i.e. approach, were quicker than the approach baseline, they were labelled as ‘positive’,
meaning attentional state towards gaming stimuli. In the opposite case, they were labelled as ‘negative’, meaning attentional
state away from gaming stimuli (see figure 2a). The labelling is based on an existing theory of approach–avoidance behaviour
[41] and is supported by several studies that have used the approach–avoidance task (AAT) to investigate attentional biases
in various contexts [45,46]. Since the tendency to approach the target of dependence is thought to be related to problematic
behaviours and symptoms in addiction science [23], ‘positive’ indicates a biased state, while ‘negative’ indicates an unbiased
state. The split-half, within-participant reliability of the trial-wise attentional bias was high (positive: Spearman–Brown ρ = 0.88,
p < 0.001; negative: Spearman–Brown ρ = 0.90, p < 0.001; see figure 2b). Moreover, we also calculated differences between neutral
approach/avoidance trials from approach/avoidance baselines in a control MVPA analysis (fake trial-level index; see §2e(iv) for a
detailed explanation).

(ii) fMRI pre-processing for multivariate pattern analysis

Blood oxygen level dependence (BOLD) signals in native space were pre-processed in MATLAB (R2020b; MathWorks) using
SPM12 and in-house code. All functional images underwent three-dimensional motion correction. No spatial or temporal
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smoothing was applied. Rigid-body transformations aligned functional images with each participant’s structural image.
Region-of-interest (ROI) masks were used to extract relevant voxels. Time courses of BOLD signal intensities from each voxel
were shifted by 5.25 s (3 TRs) to account for the hemodynamic delay. We excluded voxels with exceptionally low BOLD signal
intensities (mean < 80) or those with considerable variance (s.d. > 8). A linear trend was removed from time courses, which
were further z-score-normalised for each voxel in each block to minimize baseline differences across blocks. Then, we generate
feature vectors by extracting the first TR (1750 ms) of the pre-stimulus period from each trial (see figure 1). We used only
the first TR of each trial for decoder construction to extract pre-stimulus brain activity alone, limiting as much as possible the
unwanted effect of stimulus presentation and response.

(iii) Whole-brain univariate analysis

We conducted a univariate analysis to check the effect of the direction of each gaming-neutral condition in the approach–
avoidance task. For pre-processing, images underwent motion correction, reorientation and realignment to the first volume.
Subsequently, T1-co-registered volumes were normalised using an MNI (Montreal Neurological Institute) template. Finally,
images were smoothed with an isotropic 8 mm FWHM three-dimensional Gaussian filter. A general linear model (GLM) was
used to identify the BOLD activation of different event types, for each voxel. Specifically, four regressors were generated for
gaming/neutral approach and gaming/neutral avoidance events. Onset was defined as the timing of each stimulus presentation,
and duration was based on the reaction time. Note that for this analysis, we extracted the stimulus onset and treated the
reaction time of each trial as durations, which differed from the MVPA. Additional parameters were incorporated as covariates
of no interest, including fixation, mean white matter and cerebrospinal fluid signal, global signal, six motion parameters and
framewise displacement. Then, we ran two group-level analyses. The first contrasted gaming approach > neutral approach, and
the second contrasted gaming avoidance > neutral avoidance. Avoidance conditions (push gaming/neutral) were considered
of no interest and regressed out in the comparison of approach condition (pull gaming/neutral) GLM and vice versa for the
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Figure 2. Behavioural labelling for MVPA and within-subject reliability of the trial-level attention bias state. (a) Defining trial-level attention bias state (positive/
negative). The average reaction time on neutral trials (in approach and avoidance, separately) in each block was used as the baseline (BLapp/avo). If reaction times for
trials pushing gaming stimuli (RTg) were slower than the baseline (RTg > BLavo) or reaction times for pulling gaming stimuli were quicker than the baseline (RTg <
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squares fit. Red asterisks represent pFDR (***<0.001).

5

royalsocietypublishing.org/journal/rstb 
Phil. Trans. R. Soc. B 379: 20230090

Downloaded from http://royalsocietypublishing.org/rstb/article-pdf/doi/10.1098/rstb.2023.0090/1282639/rstb.2023.0090.pdf
by ATR Computational Neuroscience Laboratory user
on 13 January 2026



comparison of avoidance condition GLM. Additionally, to check the effects of stimuli and direction themselves, we constructed
two contrasts (game versus neutral and approach versus avoidance).

(iv) Region of interest-based multivariate pattern analysis

Our primary ROI-based analysis targeted the vmPFC, insula, amygdala, hippocampus, VS, mesolimbic region (combined
substantia nigra (SN)/ventral tegmentum area (VTA)/VS) and the cerebellum. These ROIs were chosen based on previous
studies [47–50] concerning attentional bias in addiction and dopaminergic function, which is also associated with addiction [51].
We defined the bilateral amygdala, hippocampus, cerebellum and insula through the Automated Anatomical Labelling 3 atlas
(AAL3) [52], accessible via the Wake Forest University PickAtlas toolbox for SPM12. The VS was defined using a 12 mm radius,
centred at x = ± 12, y = 10, z = −6 [53]. The vmPFC was defined using an 8 mm radius, centred at x = 0, y = 46, z = −7 [54]. The
mesolimbic ROI was defined as the combination of three regions as follows: SN with a 3 mm radius at coordinates x = −10.1, y =
−18.9, z = −11.6 and x = 11.3, y = −18.7, z = −11.7 [55]; VTA with a 3 mm radius at coordinates x = −2.7, y = −15.9, z = −13.9 [55] and x
= 4.1, y = −15.9, z = −13.9; and VS as given above.

As endogenous brain activity for decoding, we used the first TR (duration 1.75 s) fMRI signals within the inter-trial interval
immediately before stimulus presentation. We used iterative sparse logistic regression (iSLR) [56] to construct individual binary
classifiers (positive/negative). iSLR automatically selects relevant voxels in ROIs for MVPA with optimization using an iterative
approach. That is, selected voxels from pattern vectors are eliminated at each iteration, and only features with unassigned
weights are used for the subsequent iteration. Each test sample label is calculated as the multiplied probability across iterations,
before entering a logit function to obtain binary outputs. The iSLR was run over 10 iterations. Decoding accuracy was computed
using leave-one-run-out cross-validation, averaged over all cross-validation folds. Because there were different numbers of trials
in each class, we performed a simple bootstrap balancing procedure (see electronic supplementary material, figure S1b). In each
fold, the majority class was randomly downsampled 10 times to match the size of the minority class, and iSLR was performed
at each resampling. Final decoding accuracy for a given participant and ROI was taken as the average of 10 resampling runs.
Furthermore, we conducted three types of control MVPAs: training in gaming and testing in neutral indexes, i.e. fake trial-level
index defined as differences from each RT of neutral trial and baseline calculated by average neutral trials within a block
(gaming→neutral condition); training in neutral and tested in neutral indexes (neutral condition); and training in neutral and
tested in gaming indexes (neutral→gaming condition). We also conducted the same analyses using data from the control
experiment based on general gaming stimuli. Moreover, to check if the decoding performances might depend on particular trial
types (i.e. approach/avoidance), we further computed decoding accuracy in the held-out data separately for trials belonging to
approach and avoidance.

(v) Search-‘region of interest’ multivariate pattern analysis

Considering that the ROI analysis may have been too narrowly defined or that hemispheric asymmetries existed, we conducted
an exploratory search-ROI analysis over the whole brain [57]. For this purpose, we used a standard parcellation based on the
AAL3 [52] and selected all 166 regions of this brain atlas. We applied the same decoding process based on the gaming condition
with the above ROI-based analysis for each AAL3 region. The same process was done in gaming and neural conditions to
examine the difference between game and neutral conditions.

(vi) Statistical analysis

For behavioural analysis, we tested RT differences between conditions: game versus neutral, game approach versus neutral
approach and game avoidance versus neutral avoidance using t-tests with p < 0.05 corrected for the false discovery rate (FDR)
[50] after logarithmic transformation of individual RT data. Furthermore, we tested the difference between trial-level bias
(positive/negative) of gaming and neutral trials using t-tests with pFDR < 0.05.

In whole-brain univariate analysis, group-level activity maps were created using one-sample t-tests, thresholded at punc
= 0.001 at the peak voxel level and cluster size at pFDR < 0.05. In ROI-based MVPA, two-sided t-tests evaluated decoding
accuracies against the theoretical chance level (50%) or in direct comparison to other control MVPA results with pFDR < 0.05
across all ROIs and four conditions (gaming, gaming→neutral, neutral and neutral→gaming). For the exploratory search-ROI
MVPA, a t-test evaluated whether the decoding accuracy of each ROI was significantly higher than the theoretical chance level
(50%) with a strict threshold for exploration (pFDR < 0.001).

(f) Decoded attentional bias training

(i) Overall procedure

Once their targeted decoder was constructed from the decoding session (approach–avoidance task), selected participants
completed DecABT training over three consecutive days (figure 3). The first and last days included two blocks with approach–
avoidance tasks to assess their attentional bias, a resting-state scan, and up to five blocks of DecABT (first day: 3.4 ± 0.4, last
day: 3.4 ± 0.3). Specifically, resting-state fMRI scanning, two blocks of AAT and training were performed in order on day 1
and in reverse order on day 3. Additionally, participants answered a Problematic Online Gaming Questionnaire (POGQ) [59]
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to assess the change in gaming disorder severity from pre- to post-training (details of the questionnaire are shown in electronic
supplementary material, methods). In the approach–avoidance task, participants performed 80 trials (40 gaming/40 neutral
images) over two blocks. During the second day, participants completed up to nine blocks (8.4 ± 0.4) of DecABT to modify
approach bias to gaming stimuli. For this paradigm, we used the decoder constructed from activity patterns in the insula,
representing positive versus negative attentional states towards gaming stimuli. We chose the insula because (i) that region is
associated with spontaneous craving in addiction [60] and (ii) it reflected the most specific attention effect to game stimuli in
the ROI-based analysis (as opposed to other regions, which showed similar-sized non-specific effects to neutral stimuli, see §3).
Importantly, we used the whole dataset to train the decoder in the insula used for the DecABT experiment.

(ii) Attention bias modification through decoded fMRI neurofeedback

The basic instruction was the same as for the main approach–avoidance task. Participants pushed or pulled an MRI-compatible
joystick in response to the frame colour of a cue presented on the monitor. To avoid stimulus habituation, the task featured
different but equivalent cues, i.e. different pictures from the same game, used in the neurofeedback and approach–avoidance
task. First, participants were instructed to passively look at a fixation circle. During this fixation, the online decoder calculated
the probability of an attentional bias state from the multivoxel pattern of fMRI activity in the insula on each TR. The higher the
probability, the more the brain activity showed an implicit attentional bias state towards gaming. A stimulus appeared when
the probability was above 95% in order to provide intervention at the optimal time when the attentional bias state towards
gaming pictures was high. If the probability did not exceed the threshold within a fixed time window (15 TR), the stimulus
did not appear in the trial (NG trial; average of 1.2 times ± 0.2 within one block). Following a protocol reported previously
[61], gaming pictures were consistently associated with avoidance in our experiment, while neutral ones were consistently
associated with approach. Thus, participants were effectively trained to avoid gaming pictures based on their brain states. When
the insula neural decoder detected a biased state, stimuli were presented. These stimuli could be either gaming or neutral, with
a higher chance of gaming. Game images had a probability of appearance of 69.1 ± 0.2%. Importantly, participants were not
informed about the underlying rule determining the timing and nature of stimuli. Further details of the paradigm and materials
for this feasibility study are described in electronic supplementary material, DecABT methods and figure S2. We analysed
the differences in self-reported symptom severity of gaming disorder and behavioural indexes from pre- to post-training. In
addition, we analysed functional brain activation data during pre- and post-AAT to check whether neuroplastic changes might
have further underlied DecABT training.

3. Results
(a) Behavioural results
Reaction time distributions in the approach–avoidance task are shown in figure 1 (see electronic supplementary material,
figures S3 and S4 for individual participants’ results). At the group level, there were only small or no differences between
overall gaming and neutral stimuli (t(8049) = −1.25, pFDR = 0.26, dz = 0.09), gaming approach and neutral approach (t(4012) =
−2.31, pFDR = 0.05, dz = −0.07, i.e. neutral trials were slower than gaming trials), gaming avoidance and neutral avoidance (t(4035)
= 0.49, pFDR = 0.62, dz = 0.02) and a difference in trial-level ‘positive’ attentional bias states between gaming and fake index
from neutral stimuli (t(5140) = 1.29, pFDR = 0.26, dz = 0.04). There was, however, a significant difference in trial-level ‘negative’
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Figure 3. Results of MVPA. (a) Classification accuracy in each pre-selected ROI. Results of decoding accuracy in each ROI, which represent how each brain region
classified the attentional bias state (positive/negative). The colour intensity of each bar reflects its significance compared to the theoretical chance level (50%; full
opacity: pFDR < 0.001, mid-opacity: pFDR < 0.05, high transparency: not significant). Red asterisks represent pFDR (* < 0.05, ** < 0.01, *** < 0.001) in comparisons
across conditions. vmPFC, ventral medial prefrontal cortex; amyg, amygdala; VS, ventral striatum; mesolim, mesolibic region including substantia nigra, ventral
tegmental area and VS; hipp, hippocampus; cerebe,cerebellum; insula, insula. (b) Brain map of a group-level search-ROI analysis. The colour bar represents decoding
accuracy (%). Warm colours indicate better prediction, i.e. red–orange regions, whereas colder colours indicate prediction close to chance level (blue regions). Table 1
displays all significant results. Visualization based on BrainNet viewer [58].
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Table 1. Results of the whole-brain search-ROI analysis. Results include regions significant at pFDR < 0.001. Labels of each region are based on AAL3 [52].

region statistical values region statistical values

accuracy s.e.m. t stat Cohen’s d accuracy s.e.m. t stat Cohen’s d

Precentral_L 65.12 1.66 9.112 2.148 Fusiform_R 55.11 0.98 5.231 1.233

Precentral_R 62.02 1.80 6.668 1.572 Parietal_Inf_L 65.58 1.67 9.326 2.198

Frontal_Sup_2_L 62.53 1.74 7.198 1.697 Parietal_Inf_R 62.52 1.81 6.914 1.630

Frontal_Sup_2_R 60.90 1.98 5.502 1.297 SupraMarginal_L 61.86 1.77 6.697 1.578

Frontal_Mid_2_L 61.49 1.69 6.777 1.597 SupraMarginal_R 62.27 1.86 6.604 1.557

Frontal_Mid_2_R 59.67 1.87 5.176 1.220 Angular_L 59.67 1.44 6.716 1.583

Frontal_Inf_Oper_L 58.85 1.46 6.062 1.429 Angular_R 60.93 1.96 5.567 1.312

Frontal_Inf_Oper_R 60.19 1.47 6.917 1.630 Precuneus_L 62.93 1.43 9.048 2.133

Frontal_Inf_Tri_L 60.41 1.86 5.587 1.317 Precuneus_R 62.37 1.87 6.629 1.562

Frontal_Inf_Tri_R 58.51 1.57 5.405 1.274 Paracentral_Lobule_L 59.60 1.76 5.464 1.288

Frontal_Inf_Orb_2_L 56.73 1.29 5.205 1.227 Paracentral_Lobule_R 60.36 1.56 6.661 1.570

Supp_Motor_Area_L 59.03 1.70 5.312 1.252 Pallidum_R 54.81 1.11 4.324 1.019

Supp_Motor_Area_R 59.85 1.70 5.796 1.366 Temporal_Sup_L 59.41 1.54 6.117 1.442

Frontal_Sup_Medial_L 60.52 1.72 6.104 1.439 Temporal_Sup_R 59.83 1.55 6.356 1.498

Frontal_Sup_Medial_R 59.46 1.81 5.228 1.232 Temporal_Pole_Sup_L 61.64 1.65 7.062 1.664

Rectus_L 58.19 1.57 5.226 1.232 Temporal_Pole_Sup_R 60.58 1.78 5.954 1.403

Rectus_R 57.45 1.54 4.823 1.137 Temporal_Mid_L 64.94 1.44 10.386 2.448

OFCmed_R 59.00 1.12 8.001 1.886 Temporal_Mid_R 64.14 1.79 7.907 1.864

OFCant_L 56.42 1.46 4.402 1.038 Temporal_Inf_R 55.71 1.13 5.070 1.195

OFCpost_L 58.32 1.57 5.291 1.247 Cerebellum_Crus1_L 61.64 1.37 8.490 2.001

OFCpost_R 60.50 1.57 6.697 1.579 Cerebellum_Crus1_R 59.57 1.23 7.777 1.833

OFClat_L 56.77 1.32 5.143 1.212 Cerebellum_Crus2_L 62.45 1.58 7.860 1.853

Insula_L 58.55 1.61 5.310 1.252 Cerebellum_Crus2_R 63.57 1.84 7.370 1.737

Insula_R 59.29 1.79 5.200 1.226 Cerebellum_4_5_L 57.34 1.46 5.025 1.185

Cingulate_Mid_L 62.74 1.73 7.348 1.732 Cerebellum_6_L 53.54 0.73 4.839 1.141

Cingulate_Mid_R 62.72 1.86 6.843 1.613 Cerebellum_7b_L 62.68 1.61 7.870 1.855

Hippocampus_L 60.84 1.36 7.963 1.877 Cerebellum_7b_R 58.84 1.64 5.402 1.273

Hippocampus_R 60.86 1.79 6.061 1.429 Cerebellum_8_L 62.18 1.73 7.023 1.655

ParaHippocampal_L 55.86 1.36 4.309 1.016 Cerebellum_8_R 61.05 1.70 6.484 1.528

Amygdala_R 57.49 1.57 4.758 1.122 Cerebellum_9_L 58.59 1.80 4.770 1.124

Calcarine_L 61.98 1.56 7.662 1.806 Cerebellum_9_R 59.69 1.47 6.577 1.550

Calcarine_R 62.47 1.51 8.274 1.950 Cerebellum_10_L 58.91 1.65 5.401 1.273

Cuneus_L 55.66 1.11 5.097 1.202 Cerebellum_10_R 58.26 1.31 6.309 1.487

Cuneus_R 59.02 1.33 6.794 1.602 Vermis_4_5 60.86 1.66 6.540 1.541

Lingual_L 60.68 1.51 7.059 1.664 Vermis_8 59.90 1.23 8.033 1.893

Lingual_R 60.43 1.63 6.413 1.512 Vermis_9 55.26 0.95 5.565 1.312

Occipital_Sup_L 59.24 1.50 6.146 1.449 Thal_LGN_R 55.11 1.10 4.625 1.090

Occipital_Sup_R 59.70 1.47 6.618 1.560 Thal_MGN_R 54.21 0.87 4.847 1.142

Occipital_Mid_L 62.33 1.56 7.898 1.862 Thal_PuI_R 54.02 0.88 4.582 1.080

Occipital_Mid_R 62.94 1.71 7.573 1.785 Thal_PuM_L 53.47 0.78 4.464 1.052

Postcentral_L 64.79 1.70 8.696 2.050 ACC_pre_L 57.02 1.51 4.636 1.093

Postcentral_R 62.81 1.78 7.190 1.695 ACC_pre_R 56.75 1.53 4.419 1.042

Parietal_Sup_L 63.32 1.68 7.927 1.869 ACC_sup_L 58.56 1.80 4.768 1.124

Parietal_Sup_R 60.86 1.78 6.101 1.438 ACC_sup_R 57.16 1.61 4.447 1.048
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attentional bias states between gaming and fake index from neutral stimuli, which may indicate less away from gaming stimuli
compared to neutral stimuli when considering the subtraction from the baseline (t(3593) = −8.38, pFDR < 0.001, dz = 0.32).

(b) Univariate analyses
The contrast gaming approach > neutral approach showed a significant cluster of activity centred in the right angular gyrus
(pFDR = 0.026, z = 3.83, MNI coordinates: (28 −56 46), cluster size: 218) and in the left pregenual anterior cingulate cortex (pFDR
= 0.026, z = 3.53, MNI coordinates: (−6 44 −4), cluster size: 191). Instead, the contrast gaming avoidance > neutral avoidance
showed a significant cluster centred in the right lingual gyrus (pFDR = 0.040, z = 4.09, MNI coordinates: (8 −38 −6), cluster size:
156; see details in electronic supplementary material, table S2 and figure S5). These results are consistent with previous fMRI
studies on attentional bias, such as biased attention towards foods in obesity and craving in gaming disorder [62,63]. The results
of gaming versus neural and approach versus avoidance are shown in electronic supplementary material, table S2 and figure S5.

(c) Multivariate pattern analysis

(i) Region of interest-based multivariate pattern analysis results

Average decoding accuracies for classifying positive versus negative attentional bias states in the gaming condition were
significantly higher than chance in the mesolimbic region, hippocampus, cerebellum and insula. However, results of control
analyses (in which other conditions were used to predict gaming classes or vice versa) also showed significant decodability
from activity patterns in the mesolimbic region, hippocampus and cerebellum (figure 3a). These results indicate that the decoder
from the mesolimbic region, hippocampus and cerebellum may not be able to separate gaming-related bias and simple response
variability. The hippocampus, cerebellum and insula showed a significant difference in the gaming condition versus the
cross-decoding condition (in which the model learned from neutral trials and was tested in gaming trials; hippocampus: t(20) =
3.92, pFDR = 0.002, dz = 0.86; cerebellum: t(20) = 5.28, pFDR < 0.001, dz = 1.15; insula: t(20) = 4.22, pFDR = 0.001, dz = 0.92). However,
only the cerebellum and the insula showed an additional significant difference in gaming versus neutral conditions (in which
the model was trained and tested on trials in the same condition cerebellum: t(20) = 3.29, pFDR = 0.007, dz = 0.71; insula: t(20)
= 2.55, pFDR = 0.033, dz = 0.56). We also tested whether there was a difference in decoding performance by direction (approach/
avoidance) in each decoding condition. There were significantly higher accuracies in avoidance in some ROIs/decoding types.
In the gaming-only decoding condition, there were significant differences in the amygdala, VS and mesolimbic region. In
the neutral-only condition, there was a significant difference in the hippocampus. In the cross-decoding condition, the model
learned from neutral trials and was tested in gaming trials, there were also significant differences in the hippocampus and
insula (see electronic supplementary material, figure S6). There was no significant difference in all conditions from the control
experiment (see electronic supplementary material, figure S7). A control analysis did not reproduce these results, i.e. control
experiment with general gaming stimuli instead of participant-specific gaming stimuli (electronic supplementary material,
figure S8a), which indicates that insular activity reflects a personalized gaming-specific effect. Moreover, control experiment
results were consistent in subgroup analyses separating healthy participants and those with gaming disorder (electronic
supplementary material, figure S8b,c). However, since the sample size of the control experiment (n = 13) was smaller than the
main experiments (n = 21), we performed bootstrap resampling (1 00 000 times) to extract n = 13 from 21 participants in the main
experiment and test whether the main experiment results would hold even after balancing the sample size. The results showed
significant differences between the main and control results in the insula (p = 0.03) but not in the cerebellum (p = 0.85; also see
electronic supplementary material, figure S9), indicating the effect was robust to sample size variation. To further validate that
the insula effect is specific to personalized gaming stimuli in probable gaming disorder, we also tested the interaction between
condition (gaming versus neutral) and experiment (main versus control) on the insula decoding accuracy. We used a linear
mixed-effect model with a random intercept (‘accuracy ∼ condition * experiment + (1|participants)’, in Wilkinson notation).
While the effect was in the expected direction, the interaction was not significant (p = 0.11).

(ii) Search-‘region of interest’ multivariate pattern analysis results

As in the standard ROI-based MVPA, this exploratory search-ROI analysis focused on classifying positive versus negative
attentional bias state in the gaming condition (in which the model learned from gaming trials and was tested in gaming
trials). We found broad regions, including several fronto-parietal and temporal areas, to be predictive of attentional bias state.
Search-ROI analysis results were consistent with selected a priori ROI MVPA results. Other regions whose accuracies were
equal to or higher than the insular cortex in the selected ROI-based analysis were in the frontal, occipital and parietal lobes. In
particular, decoding accuracies based on the left precentral gyrus and the left inferior parietal gyrus were the highest (>60%).
These are regions related to attentional bias in gaming disorder [64]. Decoding accuracies from these regions were higher than
those from the control analysis using trials with neutral stimuli. However, there were no significant results after adjusting for
multiple comparisons (FDR; see electronic supplementary material, figure S10 and table S3).

(d) Decoded attentional bias modification: preliminary results
Comparing pre- and post-brain activities based on AAT, there was significant deactivation within clusters centred in the
cerebellum vermis (pFDR = 0.006, z = 4.30, MNI coordinates: (−2 −66 −2), cluster size: 143), the right precuneus (pFDR = 0.036,
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z = 4.39, MNI coordinates: (−12 −62 28), cluster size: 80) and the left cuneus (pFDR = 0.036, z = 4.30, MNI coordinates: (12 −56
28), cluster size: 105) based on the contrast gaming avoidance > neutral avoidance (table 2 and figure 4c). There were, however,
only qualitative changes in behavioural indexes related to trial-level attentional bias (figure 4d). In addition, there were no
changes in the number of triggers across blocks during training (see electronic supplementary material, figure S11) and in the
subjective questionnaire (see electronic supplementary material, figure S12). As a post-hoc explanatory analysis, we tested the
correlation between the peak value of each ROI and changes in trial-level attentional bias. There was a strong relationship
between improvement in attentional bias and precuneus reduction in activity to gaming approach (figure 4e; Spearman–Brown
rho = 0.75, punc = 0.07). Moreover, though the effect was weaker than in the precuneus, the degree of correlation was moderate in
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Figure 4. Overview of the experimental procedure, DecABT and its results. (a) Experimental procedure. On day 0, participants conducted six runs of AAT in an MRI
scanner for the decoder construction. The dotted line arrows connecting day 0 to day 1 indicate the variable time between the two sessions (average 5 days; s.e.m.
= 0.7). On day 1, after participants answered a self-reported POGQ, they took part in a resting-state scan, two runs of AAT and DecABT. On day 2, they only took part
in DecABT. Day 3 was conducted in the reverse order of day 1. As indicated by the arrow at the bottom, each day’s experiments were conducted in order from left
to right. Anatomical, T1-weighted structural MRI; AAT, approach–avoidance task; DecABT, decoded attentional bias training. (b) Scheme of DecABT. First, participants
lie in the scanner and see a fixation cross. During this period, the brain decoder calculates the neural attentional state of participants. The algorithm produces a
stimulus if the decoder captures an attentional ‘peak’ (high probability of biased attention state). This procedure was designed to modify participants’ attention
to avoid addiction-related stimuli or approach neutral stimuli in a just-in-time manner. (c) Results from whole-brain voxel-wise GLM analyses reveal the difference
between pre- and post-DecABT. The coloured bar represents t-statistics and coloured pixels in the brain represent peak values of significant voxels (punc < 0.001,
for visualization). (d) Change in the number of trials towards gaming stimuli. The plot represents the change in the number of ‘positive’ trials, corresponding to
the tendency towards gaming stimuli. A decrease in the number of trials represents a reduction of the tendency towards gaming stimuli. (e) Scatterplots between
the change of the number of positive trials in gaming conditions and each participant’s peak value of changes in the precuneus. The scatterplot shows a correlation
between the decrease in positive trials between pre- and post-Dec ABT and peak values of change in precuneus. The grey line represents the least squares fit.

Table 2. Results of the comparison of pre- and post-brain activities based on AAT. Labels of each region are based on AAL3 [52].

conditions region peak pFDR values cluster size

X Y Z z

gaming avoidance versus neutral avoidance Vermis_4_5 −2 −66 −2 4.30 0.006 143

Precuneus_R −12 −62 28 4.39 0.036 80

Cuneus_L 12 −56 28 4.19 0.016 105
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the cuneus (Spearman–Brown rho = 0.61, punc = 0.17; electronic supplementary material, figure S13a). A similar relationship was
not found with the cerebellar vermis (Spearman–Brown rho = 0.25, punc = 0.59; electronic supplementary material, figure S13b).

4. Discussion
In this study, we used MVPA of fMRI data captured during an approach–avoidance task to reveal the neural basis of temporal
attentional bias towards game-related cues in gaming disorder. Our results indicate that the attentional bias state can be
decoded from pre-stimulus neural activity in regions related to reward processing and attentional switching, particularly so in
the bilateral insula. In addition, we conducted a proof-of-concept feasibility study of decoded attentional training for gaming
disorder based on bilateral insula activity. We show preliminary results of qualitatively diminished attentional bias towards
gaming stimuli and changes in brain activity in areas related to cue-reactivity and reward anticipation in behavioural addictions
(precuneus and cerebellum).

MVPA classification of attentional bias state in the mesolimbic region, cerebellum, hippocampus and insula was significantly
higher than chance levels across participants. However, results of control analyses thought to reflect general behavioural RT
fluctuation based on neutral trials were also significant, with the notable exception of the insula. This similarity in decoding
results across regions suggests that their activity patterns may not be necessarily related to gaming-specific attentional bias
alone, but also to ordinary response time or general attention fluctuation. In contrast, the insular cortex underlies abnor-
mal decision-making in addiction [65,66], and its pre-stimulus neural activity impacts perceptual and risk-taking valuation
processes [67,68]. The insula has been suggested to regulate attention switching and working memory resources [69]. Moreover,
previous work reported that deprivation from video gaming resulted in increased activation of the left insular activity when
observing video gaming cues relative to neutral ones [49]. Though further research with a larger sample size is necessary to
explore the interaction between types of gaming stimuli (personalised vs general) and conditions (gaming vs neutral), our
findings could add to the evidence of temporal attentional bias state-switching for gaming depending on the insular activity in
gaming disorder.

Beyond a priori regions of interest, our whole-brain search-ROI MVPA results found several regions in which accuracies were
significantly higher than the chance level in attention bias decodability, of particular interest limbic and paralimbic cortices
(consistent with ROI-based results), but also frontal and parietal lobes. Considering differences from control search-ROI results,
these areas showed significantly higher decodability than the control condition, based on neutral trials. Since frontal regions
track static attentional bias (calculated as an average signal across a whole session) in addiction [27] and action inhibition and
preparation [70,71], frontal lobes may also relate to their interaction, i.e. the dynamics of attentional bias states. In addition,
parietal regions appear to provide a priority map relating to preferential responses to previously rewarded stimuli [72].
Considering the possibility that value drives attention [73], the state of the priority map could be affected by activity fluctua-
tions in this region, resulting in indirect changes to the temporal attentional bias state. Our results with control analyses, based
only on neutral stimuli, suggest the specificity of regions related to addictive stimuli, i.e. gaming trials. Moreover, some brain
regions obtained from whole-brain univariate analysis, e.g. the right angular gyrus, survived multiple comparison corrections in
the search-ROI analysis. This overlap suggests that the brain regions involved in game-specific approach–avoidance movements
are also related to attentional bias fluctuation based on endogenous neural activity.

Our preliminary investigation of DecABT indicates the possibility of brain activity modification even in the absence of clear
changes in subjective gaming disorder assessment. This result is not necessarily surprising, given that previous DecNef studies
have confirmed that even in the presence of physiological changes, changes in subjective awareness are not (immediately)
apparent [57,74,75]. The task-based fMRI analysis showed reduced activation in the precuneus, cuneus and cerebellum vermis
when pushing gaming images. The precuneus is important for cue reactivity in addiction, including behavioural addiction
[76], and connectivity between this region and the insula is associated with craving in addiction [77]. Our results suggest that
DecABT could change the neural substrate associated with the insula, which is essential for reactivity to addictive stimuli.
Moreover, activity centred in the cerebellum vermis was also reduced (though displaying no clear relationship with behavioural
changes). Recent studies suggest that the cerebellum is significantly involved in gaming disorder [35]. In particular, because
the vermis is reportedly essential for reward anticipation [78], reduced activity when avoiding gaming stimuli suggests that
the training could lead participants to control their reward processing. However, the stronger correlation between the peak
of changes in precuneus activity and behavioural changes could indicate the importance of the precuneus as a marker of
training effects. Further work is definitely needed to answer these questions, as the current sample size in the proof-of-concept
manipulation was small and precludes conclusive arguments.

This novel method provides several advantages compared to previous interventions using (decoded) neurofeedback. First,
although traditional neurofeedback uses external rewards, i.e. money, to reinforce specific brain states connected to the target
behaviour [79], DecABT provides just-in-time intervention to change the behaviour. Considering the impracticality of using
external rewards in actual clinical applications, developing protocols that can lead to brain and behaviour change without
relying on external rewards is essential. Second, our approach reduces the burden on participants compared to past attempts. In
previous studies that attempted to train sustained attention and change attentional bias in depression [80,81], participants had
to continue manipulating their brain states to maintain appropriate attentional states during the experiment. In DecABT, it is
not necessary to directly control one’s brain states, and participants only need to respond to tasks (trials, problems, questions,
etc.) that appear at a specific time. Thus, the re-association between brain activity and a specific behavioural response may occur
without participant awareness. Reducing participant burden is essential to sustain motivation and prevent drop-out, especially
in addiction disorders [82].
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There are several considerations to our study. In this study, we used personalised stimuli, meaning that picture features
were not controlled across participants in terms of valence or low-level visual information. While future studies should consider
controlling stimuli of specific addictive games, the present results indicate that temporal attentional bias state is associated
with specific brain regions common across subjects, even if the title and type of game differ. The method to detect temporal
attentional bias should also be considered. Although we used an established baseline based on neutral averaged RT [40] and
trial-level attentional biases, which had strong within-participant reliability, this may include confounders such as ordinary
response time fluctuation and order effects. Moreover, the MVPA performance differed significantly by direction (approach/
avoidance) in some ROIs and conditions. This result suggests attentional bias states may be influenced by specific factors,
in particular, related to the type of avoidance response, i.e. pushing. Since the pulling and pushing responses have different
accompanying characteristics, calculating a single value from the reaction times of separate actions might be problematic
[83]. Future studies should consider different methods to detect attentional bias states, such as using a running average of
neutral RT or modelling approaches [84,85]. In addition, both MVPA and DecABT had relatively small sample sizes, limiting
the strength of inference. Because we did not include potential control conditions in the DecABT, it is difficult to definitely
rule out other possible influences, such as pseudo-learning effects from repeated exposure to gaming stimuli. However, our
triggering design based on decoded brain activity patterns should decrease such confounding effects because it is a prospective
prediction (predicting future recurrence probability of attention bias towards gaming). Finally, related to the DecABT training,
self-reported symptoms did not change immediately after the experiment. It is possible that modulation of attentional bias
could sequentially ameliorate symptoms later, i.e. on a scale of weeks or months [23]. Future studies, informed by our prelimi-
nary findings, should follow-up participants over multiple time points post-training.

In summary, we found that the attentional bias state in gaming disorder can be inferred from multivoxel patterns of insular
endogenous activity. While other brain areas also track attentional states, the insula appears to be doing so specifically in
relation to gaming-related cues. Moreover, although this is a preliminary pilot test with several limitations, ABM using a form
of real-time decoding of brain activity patterns (DecABT) suggests that it could be an effective intervention for gaming disorder.
This method could provide just-in-time training based on neural states reflecting a participant’s ongoing level of attentional
bias. More importantly, at this stage, it can also help to understand better the causal relationship between attentional bias, its
variability in time, and symptoms. This approach may allow novel experimental design as well as tailor-made treatment of
gaming disorder, other addiction disorders and broader attention deficit disorders.
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