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Abstract  

Can humans be trained to make strategic use of unconscious representations in their own brains? 

We investigated how one can derive reward-maximizing choices from latent high-dimensional 

information represented stochastically in neural activity. In a novel decision-making task, 

reinforcement learning contingencies were defined in real-time by fMRI multivoxel pattern analysis; 

optimal action policies thereby depended on multidimensional brain activity that took place below 

the threshold of consciousness. We found that subjects could solve the task, when their 

reinforcement learning processes were boosted by implicit metacognition to estimate the relevant 

brain states. With these results we identified a frontal-striatal mechanism by which the brain can 

untangle tasks of great dimensionality, and can do so much more flexibly than current artificial 

intelligence. 
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We consciously perceive our reality, yet much of ongoing brain activity is unconscious (1, 2). While 

such activity may contribute to behaviour, presumably it does so automatically and is not 

strategically utilized. Can humans be trained to make rational use of this rich, unconscious brain 

activity? From the outset, this problem is challenging because the relevant activity is often high 

dimensional; given so many unconscious dimensions, how can subjects know what to learn?  

Previous studies have shown that reinforcement learning (RL) can operate on external masked 

stimuli (3). In those studies, the relevant subliminal information was driven by a simple visual 

stimulus, which carried only a single bit of information. Here we address a somewhat more 

challenging question with a novel technique based on internal multivariate representations. 

Subjects have to learn a ‘hidden’ brain state with many dimensions generated stochastically within 

the brain.  

Using a machine learning classifier (a ‘decoder’), subjects’ brain activity (in prefrontal cortex - PFC, 

or visual cortex - VC1) determined in real-time the reward contingencies in a RL task (see figure 1, 

supplementary methods). Briefly, a decoder classified motion direction even though the stimulus 

presented had no coherent motion - essentially classifying stochastic brain activity based on its 

resemblance to left or right motion. While no motion information was presented, subjects had to 

make a perceptual discrimination (report rightward or leftward motion direction), and then rate their 

confidence in their choice. Afterwards, they had to gamble on two options (A or B) that could 

potentially lead to reward (30 ¥). Unbeknownst to the subjects, whether it was option A or B that 

was more likely to be rewarded (i.e. the optimal action) was determined by a multidimensional 

pattern of brain activity, that are known to be unconscious (1, 4, 5). That is, the decoded motion 

direction was used to determine reward contingencies.  

Given the unconscious nature of the critically relevant information, it may seem improbable that 

subjects can learn to perform advantageously in this task. However, previously we have proposed 

that such problems may be solved via the mechanism of metacognition (6, 7). We hypothesized 

that by creating low-dimensional representations in the prefrontal cortex (similar to the ‘chunking’ 

phenomenon in working memory (8)), metacognition may accelerate RL because operations occur 

in a reduced state-space rather than the original, multidimensional one. This interaction between 

RL and metacognition could depend on parallel loops linking frontal and striatal brain regions. 

As anticipated, we found that subjects could indeed learn to perform well in the gambling task, 

confirming our prediction.  

                                                
1 Subjects were assigned into two groups, which differed in the brain regions targeted by their decoder: visual 
cortex (VC, N=9) or prefrontal cortex (PFC, N=9). For all analyses, brain region was treated as a between-
subjects factor; unless this factor displayed a significant effect, results were reported without considering this 
factor, meaning subjects were effectively pooled into one cohort (N=18). 
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Figure 1: Design of the unconscious-brain-state reinforcement learning task. Prior to the learning task subjects 

engaged in a simple dot motion discrimination task in order to acquire fMRI data to construct their individual motion 

representation decoders (see supplementary figure 1 and methods). A, the learning task consisted of 3 consecutive 

days. On each day, decoding was performed with fMRI multivoxel patterns from either the visual cortex (VC) or prefrontal 
cortex (PFC), depending on the group to which a subject was assigned. On all days, the decoder output was used in 

real-time to determine the RL states "(i.e., unconscious representation of leftward or rightward motion)" on a trial-by-trial 

basis. In a given state, only one action was optimal, with high probability (0.8) of reward, while the other action had low 
reward probability (0.2). On the last day the decoder output likelihood was also used to proportionally define the motion 

direction (see supplementary methods). B, each trial started with a blank inter-trial interval (ITI, 6 sec). Random dot 

motion was then shown for 8 sec (Stimulus ON). On the first two days, the motion was entirely random, while on the 3rd 
day the last 2 sec of Stimulus ON had increasingly higher coherence, as determined by the decoder output likelihood. 

After a 1 sec delay, subjects had to report the direction of motion (the unconscious state), their confidence on the visual 

discrimination, and then gamble on one of two actions (A or B). Following action selection, the outcome for the current 
trial (reward: 30¥ [0.25$], or no reward: 0¥/$) was shown on the screen. Decoding was performed with 3 data points 

starting from the first TR of stimulus ON, and the three output likelihoods were then averaged to a single value. Because 

of the hemodynamic delay, this effectively amounted to using brain activity during the first 3 TRs of the ITI, ruling out 

possible confounds due to random dot motion viewing. The final averaged likelihood was input into a Heaviside step 

function to define the label of the current trial and therefore the contingency for the action-reward rule: 𝐿𝑎𝑏𝑒𝑙 =

𝐿		𝑓𝑜𝑟	𝑙𝑖𝑘𝑒𝑙 < 0.5 𝐿𝑎𝑏𝑒𝑙 = 𝑅		𝑓𝑜𝑟	𝑙𝑖𝑘𝑒𝑙 > 0.5. HR: hemodynamic response delay, L: left, R: right.  
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Learning to use unconscious information, behavioural and computational accounts 

Over the course of approximately two hundred trials, subjects showed evidence of learning, with 

above chance reward-maximizing action selection (all results report mean probability ± s.e.m., 

one-sided t-test, chance level 0.5; day 1: 0.524 ± 0.016 [t17 = 1.49, P = 0.077], day 2: 0.537 ± 0.012 

[t17 = 3.25, P = 0.0024],  figure 2A). This happened despite the fact that the unconscious brain 

states relevant for selecting the optimal action were not physically presented to the subjects, and 

that their perceptual discrimination was no better than chance (figure 2B). If subjects were actually 

conscious about the brain state taken as the output of the decoder, then this information should 

have been used for the perceptual decision and discrimination accuracy would have been better 

than chance. 

During these two days, subjects reported several strategies on their action selection, e.g., looking 

for patterns in the random dots. Nevertheless, with time they increasingly reported pairing action 

selection with leftward or rightward motion discrimination responses. To note, reward 

contingencies were defined based on the online decoder output, not discrimination choices. On the 

third day, visual stimuli explicitly carried direction information inferred from brain activity by the 

decoder (closed-loop feedback, see figure 1 and supplementary methods). The correct state could 

now be easily reported (discrimination of left/right motion, mean ± s.e.m. 0.90 ± 0.01 with chance 

level 0.5, figure 2B) and most subjects learned to select the optimal action (N = 18, 17 showing 

p(optimal action) higher than chance, binomial test P(X=17|N) < 10-3; one-sided t-test, chance level 

0.5, 0.712 ± 0.021 [t17 = 10.02, P < 10-7], figure 2A). Subjects also consciously reported the rule; 

e.g., stateleft → action B, stateright → action A: selecting B when motion was left, and A when motion 

was right (binomial test P(X=16|N) < 10-3).  

As a basic control test, we looked at whether an artificial neural network (ANN) trained on subjects’ 

multivoxel patterns could learn to choose the correct action (see supplementary methods). To 

avoid a trivial formulation, the ANN was trained either with subjects’ perceptual choices and 

several optimization runs; or with the real optimal action labels but with stochastic gradient descent 

on a single or few training run. Results from these simulations indicate that ANNs have difficulty 

solving even a small problem (e.g., using pre-selected voxels) if they are not allowed longer time-

scales (several sweeps through the trials) for training and optimization (see supplementary figure 

2). 

The above-chance gambling performance shown by subjects from the early stages indicate that 

RL happened to some degree. RL could have resulted from two (non-exclusive) processes: 1) a 

state-dependent RL process where the update rule depends on both state (decoded motion 

direction) and action (eq. 1 in supplementary methods); 2) a state-free RL process where the agent 

simply selects the action associated with the highest expected value (regardless of the state, eq. 2 
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in supplementary methods). The state-dependent model assumes that the agent performs an 

active inference / estimation of the unconscious brain state. The state-free model conversely is a 

relatively naive process, in which the agent merely tries to maximize gains considering the action 

outcomes, and would just follow any average bias of the multivoxel patterns to left or right motion 

representation. However, computational modelling analyses utilizing state-dependent and state-

free variants of a standard RL algorithm (9), suggest that state-dependent RL is better in capturing 

subjects behaviours. Increases in optimal action selection probabilities between day 1 and day 2 

significantly correlated only with improved fits of the state-dependent RL model (Pearson r = -0.73, 

P = 0.0007, supplementary figure 3A). Moreover, by using the individual estimated learning rates 

we computed the empirical contribution to above-chance gambling performance by each RL 

process (state-dependent vs. state-free). Results indicate that from day 2 optimal action selection 

was largely driven by a state-dependent RL policy (supplementary figure 3B). Thus, we can 

conclude that the brain can estimate its relevant but unconscious state and utilize it in RL to attain 

above-chance optimal action selection. But, this is a computationally formidable problem to search 

the low-dimensional state among very high-dimensional unconscious brain dynamics only by trial 

and error. How can this curse of dimensionality be resolved? 

The conceptual model introduced earlier (6) postulates that metacognition is instrumental for the 

rapid discovery of relevant RL states. Specifically, confidence in the perceptual discrimination 

could reflect the degree to which unconscious brain states are uncovered. Furthermore, 

confidence has been previously associated with RL in the context of perceptual decisions (10, 11). 

Hence, we hypothesized that there would be a correlation between confidence and RL measures, 

increasing across days even before the relevant motion information was explicitly presented. 
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Figure 2: Analyses of behaviour: learning to use unconscious brain states and the contribution of 

metacognition. Subjects learned to associate unconscious brain states with specific actions that were more likely to 

lead to a reward. A, proportion of trials in which the subjects chose the optimal action, i.e. the one more likely to be 

rewarded, given the brain state representing motion direction. Although on day 2 the relevant brain state was still ‘hidden’ 
(unreflected by the visual stimulus), subjects showed significant learning nonetheless. B, perceptual (state) 

discrimination accuracy, as leftward vs rightward motion discrimination. The correctness of the response was based on 

the output of the decoder. The multivariate internal signal was effectively unconscious on both days 1 and 2 (chance 
level accuracy) C, across-subject correlation between sum of rewards obtained on day 1 and 2, and individual 

metacognitive ability (i.e. how well one’s confidence tracks visual discrimination accuracy, computed with independent 

behavioural data from the decoder construction session prior to Day 1; see supplementary methods). D, proportion of 
optimal actions plotted by confidence level. From day 2, confidence (in the visual discrimination task) became predictive 

of selection of optimal action. Colored dots (light/dark green) represent single subjects, blue bars the mean, error bars 

the s.e.m. † p<0.08, * p<0.05, *** p<0.005.  

To test this, we quantified metacognitive ability, computed as meta-d’ (12) and independently 

assessed on data from the previous decoder construction stage (see supplementary methods). 

Roughly, this measures the trial by trial correspondence between confidence judgements and the 

accuracy in perceptual choices. We hypothesized (6) that this could predict RL performance over 

sessions. Indeed, we found that meta-d’ correlated with the normalized sum of rewards obtained in 

the first two days when no coherent motion was present in the dot motion stimuli (permutation test, 

Pearson r = 0.48, P = 0.02, figure 2C). Furthermore, the probabilities of optimal action selection 

increased with higher decision confidence (linear mixed-effects [LME] model, data from all days, 
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interaction between fixed effects ‘day’ and ‘confidence’ β = 0.041, P = 0.0017; data restricted to 

day 2, ANOVA marginal tests factor ‘confidence’: F1,62 = 8.5, P = 0.0049, day 3: F1,68 = 31.05, P < 

10-5, figure 2D). This result was further supported by confidence differences in perceptual 

discrimination and to the extent that subject-level strength of confidence being predictive of action 

selection correlated with that of perceptual discrimination (see supplementary figure 4). 

One possible concern is that this pattern of findings may simply arise randomly. However, a yoked 

control experiment in which new naive subjects received trial sequences from the main experiment 

did not reproduce the same results (supplementary figure 5).  

Beyond these findings, we assessed the effect of metacognition on state-dependent RL (eq. 1 in 

supplementary methods) in greater detail with further computational analyses. To this end, we 

estimated trial-by-trial reward prediction error (RPE), which reflects the degree of learning in the 

gambling task. To note, the main assumption for this analysis is that the RL process (at least until 

day 3) is unconscious. But if the brain has to learn some form of mapping between states (patterns 

of activity) and actions, then it should also store an approximation of the expected value of RL 

state-actions pairs (defined by the decoder output [state], and action [choosing A or B]). Therefore, 

we computed RPE explicitly, as if the unconscious RL processes were already set up to estimate 

action values separately depending on unconscious motion direction. The trial-by-trial magnitude 

of RPE (unsigned RPE [|RPE|]) was log-transformed and binned by the confidence level reported 

on each trial (figure 3); data were then analysed with LME models (full LME models’ specification 

in supplementary methods). Significant coupling between |RPE| and confidence emerged from day 

2, with high confidence associated with low |RPE| and vice-versa low confidence with higher |RPE| 

(data from all days, significant interactions between fixed effects ‘day’ and ‘confidence’: β = -0.054, 

P = 0.002; data restricted to day 2, ANOVA marginal tests factor ‘confidence’: F1,2312 = 4.01, P = 

0.045). This effect of confidence emerged in parallel with above chance gambling performance 

(see figure 2A) and confidence becoming predictive of optimal action selection (see figure 2D). As 

with action selection, on day 3 the effect of confidence on RPE was at its strongest (data restricted 

to day 3, ANOVA marginal tests factor ‘confidence’: F1,2241 = 50.63, P < 10-10). In terms of RL, the 

problem in this task is not for an agent to figure out directly the association per se (which would be 

rather trivial), but rather have a closer estimate of the real RL state itself (defined by a multivoxel 

pattern of activity). We interpret these results as indicating that metacognition may be able to 

access richer unconscious information about the RL state, because it is needed for reward 

accumulation.  
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Figure 3: Computational modelling of behaviour: metacognition helps fast state-dependent reinforcement 

learning (RL). We computed reward prediction error (RPE) based on the state-dependent version of a standard RL 

algorithm (9) 𝑄(𝑠, 𝑎) 	← 	𝑄(𝑠, 𝑎) 	+ 	𝛼	(𝑟	 − 	𝑄(𝑠, 𝑎)), which reflects the degree of learning in the reward action selection 

task. In this equation, s and a represent the decoder output (state) and the subject’s action, respectively. |RPE| data 

were log-transformed prior to LME model(s) fitting. The magnitude of RPE was modulated by confidence from day 2: 
Higher confidence in the visual discrimination task was associated with smaller absolute RPE, meaning that a high 

confidence choice has lower probability to result in an unexpected outcome. Coloured circles represent the mean across 

all subjects pooled, light/dark grey circles represent the mean across subjects pooled from VC and PFC groups, 
respectively; error bars the s.e.m. * p<0.05, *** p<0.005 

 

Neural mechanisms 

At the onset of RL, cortico-basal ganglia loops are predicted to be uniformly activated in a parallel 

search for the relevant (unconscious) states (6, 13), alongside the basal ganglia (14). Thus, we 

should observe RL (RPE) -related activity in many areas of the cerebral cortex. As RL progresses, 

automatic selection of few, relevant loops should progress too. Because neural activity within these 

loops reflects the unconscious RL state, RPE-related activity in cerebral cortex and basal ganglia 

will shrink to few, concentrated, regional hubs. Supporting this view, recent evidence has shown 

that RPE correlates dynamically change over time (13, 15). The present results indicate that 

through RPE, the brain undergoes a global search initially spanning occipital and parietal cortices, 

anterior insula, several PFC subregions as well as anterior cingulate cortex, basal ganglia (day 2, 

figure 4A), that eventually converges to reward and belief processing hubs such as the basal 

ganglia, posterior parietal cortex and anterior lateral prefrontal cortex (day 3, figure 4A). Activity in 

the anterior cingulate cortex on day 2 is likely linked to the intensive action-selection search and 

model updating underpinning learning (16). 
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Recent co-activation of two brain areas and acquisition of knowledge or skills are believed to 

change resting state functional connectivity (17–19). Given that in our experimental setup, RL 

states are defined by a unique set of voxels in a predefined region (VC or PFC), one likely effect of 

learning is the strengthening of connections between specific brain regions and the basal ganglia 

that encodes and learns RPEs. Resting-state scans were collected each day, prior to the learning 

task (see supplementary methods); the seed region for the analysis was defined by the voxels in 

the basal ganglia found to be significantly correlated with RPE on day 3 (data independent of all 

resting-state scans, small inset in figure 4B). Clusters of voxels in the dlPFC and frontal poles 

showed increasingly higher correlation with activity fluctuations in the seed basal ganglia region 

after the first two-day RL sessions (figure 4B). Furthermore, bilateral anterior hippocampus also 

showed increased connectivity with basal ganglia. In line with these results, the above-mentioned 

regions have been recently linked to the construction of abstract representations (20, 21). 

Increased connectivity was found within basal ganglia as well as with thalamus and cerebellum 

subregions (figure 4, supplementary figure 6) possibly reflecting the autonomic nature of the 

learning process. Finally, notwithstanding the fact that each subject had a unique set of voxels 

utilized for the online decoding, subtle group-specific changes in functional connectivity could be 

detected (supplementary figure 6). Connectivity between basal ganglia and dlPFC clusters were 

enhanced in the dlPFC group, while the connectivity between basal ganglia and a cluster in the 

occipital cortex was strengthened in the VC group.   

 

Figure 4: Neural correlates of parallel RL-state search. A, RPE correlates across the whole brain. Statistical 

parametric maps were generated with a general linear model with RPE as parametric regressor. View: x = -6 (top right), 

28 (bottom right), y = 2, z = -8. Maps plotted at p < 0.005 (t ≷ 2.9, uncorrected). B, functional connectivity analysis. The 

seed region in the basal ganglia was defined from the RPE analysis of day 3 - independent data, collected after the last 

resting-state scan. View: x = 11, y = -58 (top left), -5 (top centre), z = -18 (bottom left), 2 (bottom centre), 40 (bottom 

right). Statistical parametric maps plotted at p < 0.005 (t ≷ 2.9, uncorrected) and cluster threshold k > 30. Maps were 
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created by applying an F-test with contrast [-1 0 1] over the 3 resting-state scans, one-sided to test for increases (yellow) 

or decreases (light blue) in connectivity. 

Results have so far indicated that metacognition interacts with RL, and that PFC and basal ganglia 

could be a potential neural substrate for this interaction. The metacognitive process over 

unconscious representations could use RPE to evaluate how close an estimated RL state is to a 

real RL state (6). From this viewpoint, if learning progresses, neural representations of confidence, 

RL state and RPE should become more synchronized. 

We found that confidence ratings correlated with the trial-by-trial fMRI multi-voxel distance of the 

brain state from the decoder boundary defining the RL task states (figure 5A). Importantly, this 

correlation measure increased towards the end of random dot presentation, before perceptual 

decisions. Confidence seems to track the amount of information available in favour of one or the 

other state: the further the distance from the decoder’s decision boundary, the more the evidence 

for a given state. Metacognition essentially could provide a means of accessing the low-

dimensional manifold where task goals are defined.  

Finally, given that at the computational level confidence and RPE become correlated with learning, 

their representations should follow the same course. To test this model prediction, we constructed 

a decoder for low vs. high confidence in the PFC, and a decoder for low vs. high |RPE| in the basal 

ganglia (see supplementary methods). By tabulating the outputs of the two decoders, χ2 statistics 

can be computed to quantify the degree of association between confidence and RPE. One 

thousand bootstrapped runs were calculated for each RL session: the distributions show a marked 

shift towards higher χ2 values from day 1 to day 3 (figure 5B). This implies that the independence 

of the decoders’ outputs decreased with learning. That is, since these decoders base their 

predictions on patterns of voxels activities, confidence and RPE representations became more 

coupled at the multivoxel level. This effect is specific for the pairs of interests (low confidence - 

high |RPE| and high confidence - low |RPE|, figure 5C).  
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Figure 5: Synchronization between confidence, unconscious state and reward-prediction error. A, confidence 
judgements correlate with the activation patterns of the unique voxels used by the decoder to define the RL states. That 

is, reflecting the role of metacognition in the learning progression, confidence correlates with the implicit amount of RL-

state evidence. Data points were shifted leftward by 6 sec to account for hemodynamic delay. Spearman correlation was 
computed for each subject between trial-by-trial confidence judgements and the TR-by-TR dot product between decoder 

weights and voxels activities. Correlation coefficients were Fisher-transformed to compute statistics. Y-axis: 𝜌, line is the 

group mean, shaded areas represent s.e.m., circles represent mean data points that are significantly different from zero, 

after correction for multiple comparisons (Holm-Bonferroni). B, multivoxel pattern association between basal ganglia and 
prefrontal cortex supporting confidence - RPE correlation. A decoder for confidence was built from multivoxel patterns in 

the PFC, while a decoder for |RPE| was constructed in the basal ganglia. For each day, the original data were randomly 

resampled 1000 times at the subject level and then pooled over the population to create 𝜒2 distributions (plotted as 

histograms and as shaded areas from a standard generalized extreme value fit) to indicate the degree of association 

between confidence and RPE. C, the histogram plots display the distributions over 1000 resampling runs (same as 

above), all subjects pooled, of the sum of the occurrences of predicted confidence pairing with predicted |RPE|. Target 
(gold coloured) is the sum of the occurrences where predicted high confidence paired with predicted low |RPE| (or 

predicted low confidence with predicted high |RPE|). Opposite (blue coloured) is the sum of occurrences where predicted 

high confidence paired with predicted high |RPE| (or predicted low confidence with predicted low |RPE|). The increased 
dependency between multivoxel patterns was specific such that, from the 2nd day, the target distribution of sums 

became greater than the opposite category.  
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Discussion 

Two main questions were addressed in this study: Can human subjects learn to make strategic 

use of high-dimensional unconscious brain states? What is the putative mechanism and neural 

substrate of this ability?  

The novel closed-loop neurofeedback design adopted here granted a unique opportunity to 

demonstrate the ability of the human brain to learn to use high-dimensional unconscious 

representations. We show that such a problem can be learned within a limited number of samples, 

without explicit presentation of the relevant knowledge (not even in masked form), nor the 

presence of relevant prior hard-wired information. The data reported here support a possible 

solution implemented by the brain. We suggest that metacognition can access unconscious states 

and form higher-order abstract representations, when necessary to drive efficient RL. The ability to 

learn hidden features in high dimensional spaces is supported by an initially activated, distributed, 

and parallel neural circuitry that involves the basal ganglia and PFC. Such circuitry provides the 

neuroanatomical basis for the interaction between metacognitive and RL modules. Previous 

studies have highlighted the functional relevance of parallel cortico-basal loops in terms of RL and 

cognition (22, 23), as well as the role played by metacognition in RL (10, 24). 

Understanding how the brain can access, modulate and use its own latent representations can be 

instrumental in devising new learning or rehabilitation protocols, even bypassing conscious 

strategies. 

One important question concern whether metacognition is causally related to reward learning, or 

whether the interaction between confidence judgements and RL processes is bidirectional. Our 

results seem to indicate that confidence has a direct role in allowing RL to operate in a reduced 

state-space (see figures 2C-D and 3). Yet, action outcome / RPE also influence future confidence 

ratings. Interestingly, this effect may arise earlier in the course of learning than that of confidence 

on RPE (see supplementary figure 7). This implies that as is the case with attention (25) and 

memory (26), metacognition and reinforcement learning processes probably interact repeatedly in 

time, with specific directionalities.  

One may argue that, because the closed-loop RL task involved presentation of random dot-motion 

and a discrimination choice, subjects’ attention was already directed towards the unconscious 

state. Furthermore, if sensory inference is the result of combining what we see with priors we have 

for interpreting information, then it could be possible that the subjective experience when looking at 

random motion could have indexed the RL state. That is, since no information on the state is given, 

the prior could take over and more strongly influence what is subjectively perceived; since the prior 

also drives which "probability of reward" scenario applies, it may be a possible explanation for how 

humans learn to gamble and make judgements during the task. Nevertheless, these seem unlikely 
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in the light of decoding of unconscious representations taking place before the beginning of 

random dot presentation (accounting for hemodynamic delay), and perceptual discrimination being 

not different from chance on both day 1 and 2. Even if there were implicit prior knowledge that a 

representation of motion direction is the relevant state, it would be unlikely for the brain to have 

priors on the spatial localization (PFC or VC) and sparse selection of about 100 voxels used in the 

RL sessions.  

Besides the importance of demonstrating that human subjects can learn to use hidden, 

unconscious task-relevant information, the question asked here can be extended to consider the 

significant problem of dimensionality. In statistical learning theory the generalization error follows 

the relation 𝑒	 ∝ 	𝑑/(2𝑛)(27), where 𝑑 is the number of dimensions and 𝑛 the sample size. 

Successful artificial neural networks (28–30) decrease the effective number of dimensions through 

regularization and dropout, but still require exceedingly large training samples, particularly when 

states are hidden and uncertain. Because the stream of incoming perceptual information and the 

representational space itself (in the brain) are both high dimensional, in order to learn quickly the 

brain has to operate not at the feature level, but at a rather more abstract level (31). Together with 

metacognition, other cognitive functions such as episodic memory or attention may participate in 

this process: select few, relevant features to allow faster RL processes (6, 25, 32, 33). 

Exploiting unconscious states and reducing the dimensionality of the search space should thus be 

intimately linked. In the brain, synchronization of neurons through electrical coupling or 

synchronization between brain areas via higher order cognitive functions have been proposed as 

neural mechanisms controlling degrees-of-freedom in learning (6, 34, 35). Metacognition and 

consciousness could thus have a clear computational role in adaptive behaviour and learning (31, 

36), a point that is particularly interesting given the current success in developing artificial agents. 

Notably, Dehaene et al. (36) discussed these aspects precisely from the viewpoint of their 

significance for artificial intelligence (AI) - consciousness would allow information to be flexibly 

broadcasted to distant nodes while metacognition could represent error- or reality-monitoring, as 

well as the degree of certainty in current beliefs. Our study indicates converging computational 

roles: higher order, low-dimensional representations that can be flexibly used by RL. 

Finally, how do these findings integrate within the bigger picture of AI and neuroscience? It is 

beyond the current scope to provide an explicit implementation of how metacognition and RL may 

interact at the neural level. Nevertheless, this is the first step in a direction we envision to be of 

some importance. In particular, work towards endowing artificial agents with self-monitoring 

capacities or the ability to operate at different representational levels (feature level, concept level, 

etc) may bridge the still large gap between human and AI performances in real-world scenarios, 

beyond pattern-recognition problems. Neuroscience-based principles such as the ones elucidated 
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here can provide the necessary seeds to develop cognitively-inspired AI algorithms (37) and is 

going to be a core aspect of work in neuroscience and machine learning.  
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Materials and Methods 

Subjects 

22 subjects (23.6 ± 4.0 y.o.; 5 females) with normal or corrected-to-normal vision participated in 

stage 1 (motion decoder construction). One subject was removed because of corrupted data; one 

subject withdrew from the experiment after stage 1. We initially selected 20 subjects, of which one 

was removed after the first day of RL (RL) training due to a technical issue (scanner misalignment 

between stage 1 and new sessions), while a second subject was removed due to a bias issue with 

online decoding (all outputs were of the same class). Thus, 18 subjects (23.4 ± 3.3 y.o., 5 females) 

attended all neurofeedback RL sessions. All results presented are from the 18 subjects that 

completed the whole experimental timeline, with a total of 72 scanning sessions. 

All experiments and data analyses were conducted at the Advanced Telecommunications 

Research Institute International (ATR). The study was approved by the Institutional Review Board 

of ATR. All subjects gave written informed consent. 

 

Stage 1 (day 0): Behavioural task  

The initial decoder construction took place within a single session. Subjects engaged in a simple 

perceptual decision making task (4): upon presentation of a random dot motion (RDM) stimulus 

they were asked to make a choice on the direction of motion and then rate their confidence about 

their decision (supplementary figure 1). The choice could be either right or left, and confidence was 

rated on a 4-point scale (from 1 to 4), with 1 being the lowest level - pure guess, and 4 the highest 

level - full certainty. The task itself was identical to that used in a previous study, see (4) for 

reference. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2019. ; https://doi.org/10.1101/548941doi: bioRxiv preprint 

https://doi.org/10.1101/548941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

The coherence level of the RDM stimuli was defined as the percentage of dots moving in a 

specified direction (left or right). Half of the trials had high motion coherence (50%). The latter half 

had threshold coherence (between 5-10%). On those threshold trials, coherence was individually 

adjusted to maintain the task accuracy at perceptual threshold, ~75% correct.  

The entire stage 1 session consisted of 10 blocks. A 1-minute rest period was provided between 

each block upon subject’s request. Each block consisted of 20 task trials, with a 6 sec fixation 

period before the first trial and a 6 sec delay at the end of the block (1 run = 292 sec). Throughout 

the task, subjects were asked to fixate on a white cross (size 0.5 deg) presented at the centre of 

the display. Each trial started with an RDM stimulus presented for 2 sec, followed by a delay period 

of 4 sec. Three sec were then allotted for behavioural responses (direction discrimination 1.5 sec, 

confidence rating 1.5 sec). Lastly, a trial ended with an intertrial interval (ITI) of variable length 

(between 3 and 6 sec); see supplementary fig. 1. 

Because subjects were in the MR scanner while performing the behavioural task, they were 

instructed to use their dominant hand to press buttons on a diamond-shaped response pad. 

Concordance between responses and buttons was indicated on the display and, importantly, 

randomly changed across trials to avoid motor preparation confounds (i.e., associating a given 

response with a specific button press). 

fMRI scans: acquisition and protocol 

The purpose of the fMRI scans in stage 1 was to obtain fMRI signals corresponding to viewed 

direction of motion (e.g., rightward and leftward motion) to compute the parameters for the 

decoders used in stage 2, the online RL training. All scanning sessions took place in a 3T MR 

scanner (Siemens, Prisma) with a 64-channel head coil in the ATR Brain Activation Imaging 

Centre. Gradient T2*-weighted EPI (echoplanar) functional images with blood-oxygen-level-

dependent (BOLD) sensitive contrast and multi-band acceleration factor 6 were acquired. Imaging 

parameters: 72 contiguous slices (TR = 1 sec, TE = 30 ms, flip angle = 60 deg, voxel size = 2×2×2 

mm3, 0 mm slice gap) oriented parallel to the AC-PC plane were acquired, covering the entire 

brain. T1-weighted images (MP-RAGE; 256 slices, TR = 2 s, TE = 26 ms, flip angle = 80 deg, voxel 

size = 1×1×1 mm3, 0 mm slice gap) were also acquired at the end of stage 1. The scanner was 

realigned to subjects’ head orientations with the same parameters on all days.  

fMRI scans: preprocessing for decoding 

(BOLD) signals were thus obtained for all behavioural measures associated with the task. The 

fMRI data for the initial 6 sec of each run were discarded due to possible unsaturated T1 effects. 

The fMRI signals in native space were preprocessed in MATLAB Version 7.13 (R2011b) 

(MathWorks) with the mrVista software package for MATLAB 
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(http://vistalab.stanford.edu/software/). The mrVista package uses functions from the SPM suite 

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/). All functional images underwent 3D motion correction. 

No spatial or temporal smoothing was applied. Rigid-body transformations were performed to align 

the functional images to the structural image for each subject. A grey-matter mask was used to 

extract fMRI data only from grey-matter voxels for further analyses. Regions of interest (ROIs) 

were anatomically defined through cortical reconstruction and volumetric segmentation using the 

Freesurfer software, which is documented and freely available for download online 

(http://surfer.nmr.mgh.harvard.edu/). Furthermore, visual cortex (VC) subregions V1, V2, and V3 

were also automatically defined based on a new probabilistic map atlas (38). Once ROIs were 

individually identified, time-courses of BOLD signal intensities were extracted from each voxel in 

each ROI and shifted by 6 sec to account for the hemodynamic delay using the MATLAB software. 

A linear trend was removed from the time-courses, and further z-score normalized for each voxel 

in each block to minimize baseline differences across blocks. The data samples for computing the 

motion (and confidence) decoders were created by averaging the BOLD signal intensities of each 

voxel for 6 volumes, corresponding to the 6 sec from stimulus onset to response onset 

(supplementary fig. 1).  

Decoding: multivoxel pattern analysis (MVPA) 

All MVP analyses followed the same procedure. We used sparse logistic regression (SLR) (39), 

which automatically selects the most relevant voxels for the classification problem, to construct 

binary decoders (motion: leftward vs. rightward motion; confidence: high vs. low; |RPE|: high vs. 

low). 

K-fold cross-validation was used for each MVPA by repeatedly subdividing the dataset into a 

“training set” and a “test set” in order to evaluate the predictive power of the trained (fitted) model. 

The number of folds was automatically adjusted between k = 9 and k = 11 in order to be a (close) 

divisor of the number of samples in each dataset. Furthermore, SLR classification was optimized 

by using an iterative approach: in each fold of the cross-validation, the feature-selection process 

was repeated 10 times. On each iteration, the selected features (voxels) were removed from the 

pattern vectors, and only features with unassigned weights were used for the next iteration. At the 

end of the k-fold cross-validation, the test accuracies were averaged for each iteration across 

folds, in order to evaluate the accuracy at each iteration. The number of iterations yielding the 

highest classification accuracy was then used for the final computation, using the entire dataset to 

train the decoder that would be used in the closed-loop RL stage. Thus, each decoder resulted in a 

set of weights assigned to the selected voxels; these weights can be used to classify any new data 

sample. 
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Data from stage 1 (day 0) was used to train motion decoders. Pilot analyses indicated that the 

highest classification accuracies in PFC were attained by using high motion coherence trials alone 

(100 trials, 50 samples per class). Motion decoders were constructed with fMRI data from two 

brain regions: prefrontal cortex (PFC) and VC. These data were time-course extracted from the 6 

sec from stimulus onset to response onset. Subjects were assigned to either the VC or PFC group 

so as to minimize the difference in overall cross-validated decoding accuracy between the two 

groups (see supplementary table 1 for subject-specific subregions). The mean (± s.e.m) number of 

voxels available for decoding was 3222 ± 309 for VC, and 4443 ± 782 for PFC. The decoders 

selected on average 80 ± 15 voxels in VC, and 63 ± 18 in PFC. The cross-validated test decoding 

accuracy (mean ± s.e.m.) for classifying leftward vs. rightward motion was 70.44 ± 2.63 % for VC, 

and 65.51 ± 1.35 % for PFC (two-sample t-test, t16 = 1.67, P = 0.11). 

For confidence decoders, trials from stage 1 (day 0) with threshold coherence were used (100 

trials), this in order to avoid potential confounds due to large differences in stimulus intensity. 

Because confidence judgements were given on a scale from 1 to 4, trials were first binarized into 

high and low confidence ratings, as described previously (4). Confidence decoders were 

constructed with fMRI data from dorsolateral prefrontal cortex (dlPFC, which included the inferior 

frontal gyrus, middle frontal gyrus and middle frontal sulcus), and time-course extracted from the 6 

sec from stimulus onset to response onset. The mean (± s.e.m) number of voxels available for 

decoding was 6641 ± 183, and the decoders selected on average 40 ± 8 voxels. The cross-

validated test decoding accuracy (mean ± s.e.m.) for classifying high vs. low confidence was 68.77 

± 1.53 %. 

For RPE magnitude (unsigned RPE) decoders, fMRI data from stage 2 was used (see sections 

Stage 2 (day 1, 2, 3): online reinforcement learning training and Reinforcement learning modelling 

for a description on the task, timing, and computation of trial-by-trial RPE). All trials from day 3 

were used and, similar to confidence decoders, trials were labelled according to a median split of 

the unsigned RPE. If |RPE| was larger than the median, the associated trial was labelled as high 

RPE, and vice versa. |RPE| decoders were constructed with fMRI data from basal ganglia (which 

included bilateral caudate, putamen and pallidum), and time-course extracted from the 2 sec from 

monetary outcome presentation. The mean (± s.e.m) number of voxels available for decoding was 

3583 ± 81, and the decoders selected on average 69 ± 14 voxels. The cross-validated test 

decoding accuracy (mean ± s.e.m.) for classifying high vs. low |RPE| was 57.34 ± 0.64 %. 

 

Stage 2 (day 1, 2, 3): online reinforcement learning training 

Once a targeted motion decoder was constructed, subjects participated in 3 consecutive days of 

RL online training (Fig. 1). In the RL task, state information was directly computed from fMRI voxel 
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activity patterns in real time. The setup allowed us to create a closed loop between (spontaneous) 

brain activity in specific areas and task conditions (behaviour). The loop was unknown to subjects; 

the only instruction they received was that they should learn to select one action among two 

options, in order to maximize their future reward.  

On each day, subjects completed up to 12 fMRI blocks; on average (mean ± s.e.m.) 9.9 ± 0.4, 11.2 

± 0.2, and 10.5 ± 0.2 blocks on day 1, 2, and 3, respectively. Each fMRI block consisted of 12 trials 

(1 trial = 22 sec) preceded by a 30-sec fixation period and ending with an additional blank 6 sec (1 

block = 300 sec). Furthermore, on each day, before the reinforcement task, subjects underwent an 

additional resting-state scan of the same duration (300 sec). 

The construction of an online trial observed the following rule. After a 6 sec blank ITI (black 

screen), the RDM was presented for a total of 8 sec. The first 6 sec were always random (0% 

coherence), while on day 3 the last 2 sec of RDM had coherent (coh) dot motion, computed as: 

𝑐𝑜ℎ		 = 	𝑐	 ∗ 𝑎𝑟𝑐𝑡𝑎𝑛(𝐿	 − 	0.5)  

where L is the likelihood, the output of the motion decoder, and c a constant, which increased over 

the first half of the experimental session following a sigmoid function within the interval (0 1). 

Negative values indicated leftward motion, while positive values rightward motion. This allowed us 

to have high coherence in the latter half of day 3. Additionally, the strength of the RDM stimulus 

was modulated by the contrast of the dots on the black background. Contrast was set at a fixed 

value of 20% on day 1 and day 2 while on day 3 it increased up to 100% over the first half of the 

experimental session following a sigmoidal function, staying fixed thereafter. Importantly, because 

the operation of stimulus presentation and online decoding were performed by two parallel scripts 

on the same machine, the stimulus was presented in brief intervals of dot motion lasting 850 ms, 

followed by a short blank period of 150 ms. The presence of the blank period allowed the two 

processes to communicate in order to compute the new coherence level from the decoder output 

likelihood. Although this was effectively carried out only on day 3, the same design was used on 

each day for consistency between sessions. Following RDM presentation and a 1 sec blank ITI, 

subjects had 1.5 sec to make a state discrimination (choose leftward or rightward motion), and 1.5 

sec to give a confidence judgement on their decision (on a scale from 1 to 4). Lastly, subjects had 

to select one of two options, A or B, in order to maximize their future reward. The reward rule for 

options A and B was probabilistic and determined by the decoded brain activity. Each option was 

thus optimal only in one state (e.g., A when left motion was decoded from multivoxel patterns, B 

with right motion). The probability of receiving a reward was ~80% if the choice was congruent with 

the rule, ~20% otherwise. A rewarded trial corresponded to a single bonus of 30Y. On each day, 

up to 3000 JPY could be paid to the subjects. Crucially, the reward association rule and the 
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presence of online decoding were withheld from subjects: they were simply instructed to explore 

and try to learn the rule that would maximize their reward.  

Because brain activity patterns alone were defining whether a trial was to be labelled as rightward 

or leftward - the experimenter had no control over the occurrence of either state (leftward or 

rightward motion representation). Behavioural responses could not be associated with a specific 

button press: pairings between buttons and responses were randomly determined on each trial 

and cued on the screen during response times.  

Real-time fMRI preprocessing 

In each block, the initial 10 sec of fMRI data were discarded to avoid unsaturated T1 effects. First, 

measured whole-brain functional images underwent 3D motion correction using Turbo 

BrainVoyager (Brain Innovation). Second, time-courses of BOLD signal intensities were extracted 

from each of the voxels identified in the decoder analysis for the target ROI (either VC or PFC). 

Third, the time-course was detrended (removal of linear trend), and z-score normalized for each 

voxel using BOLD signal intensities measured up to the last time point. Fourth, the data sample to 

calculate the RL state and its likelihood was created by taking the BOLD signal intensities of each 

voxel over 3 sec (3TRs) from RDM onset. Finally, the likelihood of each motion direction being 

represented in the multivoxel activity pattern was calculated from the data sample using the 

weights of the previously constructed motion decoder. The final prediction was given by the 

average of the 3 likelihoods computed from the 3 data points. 

Reinforcement learning modelling 

We used a standard RL model (9) to derive individual estimates of how subjects’ action-selection 

was dependent on past reward history tied to actions and states (state-dependent RL) or actions 

alone (state-free RL). State-dependent (1) and state-free (2) RL are formally described as: 

𝑄(𝑠, 𝑎) 	← 	𝑄(𝑠, 𝑎) 	+ 	𝛼	(𝑟	 − 	𝑄(𝑠, 𝑎))  (1) 

𝑄(𝑎) 	← 	𝑄(𝑎) 	+ 	𝛼	(𝑟	 − 	𝑄(𝑎))  (2) 

Where 𝑄(𝑠, 𝑎) in (1), 𝑄(𝑎)in (2), is the value of selecting A or B. The value of the action selected on 

the current trial is updated based on the difference between the expected value and the actual 

outcome (reward or no reward). This difference is called the reward prediction error (RPE). The 

degree to which this update affects the expected value depends on the learning parameter 𝛼. The 

larger 𝛼, the more recent outcomes will have a strong impact. On the contrary, a small 𝛼 means 

recent outcomes will have little effect. Only the value of the selected action (which is state-

contingent in (1)) is updated. The values of the two actions are combined to compute the 

probability P of predicting each outcome using a softmax (logistic) choice rule: 
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𝑃HI,J =
K

K	L	MNO(PQ(R(HI,J)	P	R(HI,S))
   (3)  

𝑃J =
K

K	L	MNO(PQ(R(J)	P	R(S))
   (4) 

The inverse temperature 𝛽 controls how much the difference between the two predictions values 

for A and B influences choices. 

The two hyperparameters ⍺ and β were estimated by minimizing the negative log likelihoods of 

choices given the estimated probability P of each choice. We conducted a grid search over the 

parameter spaces 𝛼 ∈ (0,1) and 𝛽 ∈ (0,20), with 50 steps each. Rather than directly using the 

single point estimates, we generated the marginal likelihoods of each parameter and then used 

these to compute the respective expected estimates. The fitting procedure was repeated for each 

subject and each day (see supplementary table 2, group mean ± s.e.m). Trial-by-trial RPE 

measures were computed for each RL model, subject, and day, by fitting the data with the 

estimated parameters. RPEs were then used as inputs for offline analyses as described below. 

RPE-based analyses: parametric general linear model 

Image analysis was performed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Raw functional 

images underwent realignment to the first image of each session. Structural images were re-

registered to mean EPI images and segmented into grey and white matter. The segmentation 

parameters were then used to normalize and bias-correct the functional images. Normalized 

images were smoothed using a Gaussian kernel of 7 mm full-width at half-maximum.  

Onset regressors beginning at the beginning of outcome presentation (reward feedback) were 

modulated by a parametric regressor, trial-by-trial RPE from state-dependent RL. Other regressors 

of no interest included onset regressors for each trial event (RDM, choice, confidence, action 

selection, reward outcome), motion regressors (6) and block regressors. Adding a reward 

regressor meant that the signal correlating with RPE was not confounded by mere reward. 

Second-level group contrasts from GLM1 were calculated as one-sample t-tests against zero for 

each first-level linear contrast. Activations were reported at a cluster level threshold of k > 1000, 

and height threshold of P < 0.005 (t > 2.9). Statistical maps were projected onto a canonical MNI 

template with MRIcroGL (www.nitrc.org/projects/mricrogl). 

Connectivity analyses 

For connectivity analyses of resting state data measured at the beginning of each session we used 

the CONN toolbox v.17 (www.nitrc.org/projects/conn, RRID:SCR_009550). Briefly, resting state 

data underwent realignment and unwarping, centred at (0,0,0) coordinates, slice-timing correction, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2019. ; https://doi.org/10.1101/548941doi: bioRxiv preprint 

https://doi.org/10.1101/548941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

outlier detection, smoothing and finally denoising. At the first level, we performed a seed-based 

correlation analysis, testing for significant correlations between voxels in a seed region and the 

rest of the brain. The seed was defined as the cluster of voxels within the basal ganglia that best 

tracked the RPE fluctuations on the last session of the RL task (day 3, independent data). The 

analysis was repeated for each session of resting state scanning (day 1, 2, 3). Second level group 

level results were calculated as one-sample t-tests against zero for each first-level contrast. We 

first looked at between-subjects (PFC > VC), applying between-days contrasts (day 3 > day 1) at a 

height threshold of P < 0.005 (uncorrected), and cluster size = 30. Connections to PFC and 

cerebellum increased over days. Conversely, the between-subjects contrast (VC > PFC) indicated 

increased connections between basal ganglia and cerebellum and posterior cingulate cortex 

(supplementary figure 4). Given these differences, we analysed separately the two groups (results 

reported in the main text) applying between-days contrast (day 3 > day 1) at a height threshold of 

P < 0.005 (uncorrected), and cluster size = 30. Statistical maps were projected onto a canonical 

MNI template with MRIcroGL. 

Statistical analyses with linear mixed effects models        

All statistical analyses were performed with MATLAB Version 9.1 (R2016b) (MathWorks), both with 

built-in functions as well as with functions commonly available on the MathWorks online repository 

or custom written code. Effects of learning on behavioural data over several days and additional 

effects were statistically assessed using linear mixed effects (LME) models with the MATLAB 

function ‘fitglme’ with ‘fminunc’ as optimizer. Post-hoc tests included LME over single days, 

restricted to certain variables as well as two-tailed, or single-tailed where warranted, t-tests.  

To evaluate the effect of confidence (levels from 1 to 4), day (1 - 3), and group (PFC, VC) on the 

dependent variable y (I: probability of selecting optimal action, II: perceptual discrimination, III: 

RPE from state-dependent RL), we used the general model (in Wilkinson notation): y ~ 1 + 

group*day*confidence + (1|subjects), which included random effects (intercept) for each subject, 

and 8 fixed effects (intercept, group, day, confidence, group:day, group:confidence, 

day:confidence, group:day:confidence). Whereby a simpler model (i.e., without 3-ways interaction), 

y ~ group*day + group*confidence + day*confidence + (1|subjects) fit the data equally well 

(likelihood ratio [LR] test indicating no difference), results from the simpler model are reported 

(alongside with LR statistics). Where a significant effect of ‘day’ or interaction between fixed effects 

‘day’ and ‘confidence’ and/or ‘group’ was found, post-hoc tests were carried out on data restricted 

to single days. For single-day data the general model y ~ group*confidence + (1|subjects) was 

used; whereby a simpler model (i.e., without interaction) fit the data equally well, results from the 

simpler model are reported.  
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The same approach was to evaluate the effect of RPE on confidence (RPE from trial-1): the same 

equations and procedure, just defining y as confidence, while RPE was treated as a fixed effect.  
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I) y = probability of selecting optimal action 

formula y ~ 1 + group*day + group*confidence + day*confidence + (1|subjects) 

Likelihood ratio test 
(reduced vs. full model) 

LRStat = 0.089 deltaDF = 1 P = 0.765 

 𝛃 SE tStat DF P CIL CIU 

intercept 0.588 0.0861 6.827 194 <10-8 0.418 0.757 

group -0.0457 0.0826 -0.553 194 0.581 -0.209 0.117 

day -0.0526 0.0374 -1.406 194 0.161 -0.126 0.0212 

confidence -0.0413 0.0293 -1.408 194 0.161 -0.0991 0.0165 

group:day -0.0278 0.0281 -0.989 194 0.324 -0.0833 0.0277 

group:confidence 0.0312 0.0213 1.462 194 0.145 -0.0109 0.0732 

day:confidence 0.0409 0.0128 3.188 194 0.0017 0.0156 0.0662 

Day 1 [y ~ 1 + confidence + group + (1|subjects)] 

intercept 0.491 0.0634 7.744 62 <10-8 0.364 0.617 

group 0.0063 0.0555 0.114 62 0.909 -0.105 0.117 

confidence 0.0178 0.0204 0.87 62 0.387 -0.023 0.0586 

Day 2 [y ~ 1 + confidence + group + (1|subjects)] 

intercept 0.466 0.0475 9.823 62 <10-12 0.371 0.561 

group -0.0236 0.0406 -0.58 62 0.564 -0.105 0.0576 

confidence 0.0457 0.0157 2.916 62 0.0049 0.0144 0.077 

Day 3 [y ~ 1 + confidence + group + (1|subjects)] 

intercept 0.381 0.0571 6.669 68 <10-7 0.267 0.494 

group -0.0508 0.0487 -1.042 68 0.301 -0.148 0.0465 

confidence 0.102 0.0182 5.572 68 <10-5 0.0653 0.138 
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II) y = probability of correct discrimination  

formula y ~ 1 + group*day + group*confidence + day*confidence + (1|subjects) 

Likelihood ratio test 
(reduced vs. full model) 

LRStat = 1.02 deltaDF = 1 P = 0.31 

 𝛃 SE tStat DF P CIL CIU 

intercept 0.451 0.0967 4.667 194 <10-5 0.260 0.642 

group 0.0182 0.0902 0.202 194 0.840 -0.160 0.196 

day -0.0377 0.0430 -0.878 194 0.381 -0.122 0.0470 

confidence -0.0578 0.0337 -1.717 194 0.0876 -0.124 0.00861 

group:day 0.0266 0.0323 0.823 194 0.411 -0.0371 0.0903 

group:confidence -0.0102 0.0244 -0.418 194 0.676 -0.0583 0.0379 

day:confidence 0.0695 0.0147 4.711 194 <10-5 0.0404 0.0986 

Day 1 ([y ~ 1 + confidence + group + (1|subjects)] 

intercept 0.394 0.0631 6.249 62 <10-6 0.268 0.52 

group 0.039 0.0474 0.824 62 0.413 -0.0557 0.134 

confidence 0.0299 0.0219 1.37 62 0.176 -0.0137 0.0736 

Day 2 [y ~ 1 + confidence + group + (1|subjects)] 

intercept 0.436 0.0572 7.633 62 <10-8 0.322 0.551 

group 0.0226 0.0505 0.447 62 0.657 -0.0785 0.124 

confidence 0.0334 0.0185 1.802 62 0.0764* -0.00364 0.0704 

Day 3 [y ~ 1 + confidence + group + (1|subjects)] 

intercept 0.333 0.0553 6.024 68 <10-6 0.223 0.444 

group 0.0813 0.0486 1.672 68 0.099 -0.0157 0.178 

confidence 0.163 0.0174 9.379 68 <10-12 0.128 0.198 
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III) y = RPEsb (RPE from state-dependent RL, log-transformed) 

formula y ~ 1 + group*day + group*confidence + day*confidence + (1|subjects) 

Likelihood ratio test 
(reduced vs. full model) 

LRStat = 3.563 deltaDF = 1 P = 0.059 

 𝛃 SE tStat DF P CIL CIU 

intercept -1.868 0.126 -14.78 6614 <10-45 -2.116 -1.62 

group 0.0745 0.126 0.592 6614 0.554 -0.172 0.321 

day 0.242 0.0527 4.596 6614 <10-5 0.139 0.345 

confidence 0.0169 0.045 0.375 6614 0.707 -0.0713 0.105 

group:day -0.0433 0.0398 -1.086 6614 0.277 -0.121 -0.0348 

group:confidence 0.0044 0.031 0.141 6614 0.888 -0.0563 0.0651 

day:confidence -0.0543 0.0176 -3.089 6614 0.002 -0.0888 -0.0198 

Day 1 [y ~ 1 + confidence + group + (1|subjects)] 

intercept -1.689 0.188 -8.98 2059 <10-17 -2.058 -1.32 

group 0.0342 0.25 0.137 2059 0.891 -0.456 0.524 

confidence 0.0127 0.0323 0.393 2059 0.695 -0.0506 0.076 

Day 2  [y ~ 1 + confidence + group + (1|subjects)] 

intercept -1.513 0.156 -9.733 2312 <10-20 -1.818 -1.209 

group -0.0406 0.202 -0.201 2312 0.84 -0.436 0.355 

confidence -0.0564 0.0282 -2.002 2312 0.045 -0.112 -0.0012 

Day 3  [y ~ 1 + confidence + group + (1|subjects)] 

intercept -1.0622 0.131 -8.107 2241 <10-14 -1.319 -0.805 

group -0.0329 0.153 -0.214 2241 0.83 -0.334 0.268 

confidence -0.16 0.0225 -7.116 2241 <10-10 -0.204 -0.116 
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IV) y = confidence, (fixed effect RPE from state-dependent RL, log-transformed) 

formula y ~ 1 + group*day + group*rpe + day*rpe + (1|subjects) 

Likelihood ratio test 
(reduced vs. full model) 

LRStat = 3.061 deltaDF = 1 P = 0.08 

 𝛃 SE tStat DF P CIL CIU 

intercept 1.329 0.119 11.214 6560 <10-27 1.097 1.561 

group 0.549 0.211 2.595 6560 0.0095 0.134 0.963 

day 0.498 0.0257 19.424 6560 <10-80 0.448 0.549 

rpe 0.157 0.0288 5.453 6560 <10-6 0.101 0.214 

group:day -0.157 0.0309 -5.079 6560 <10-5 -0.217 -0.0963 

group:rpe -0.0139 0.0209 -0.665 6560 0.506 -0.0549 0.0271 

day:rpe -0.103 0.0127 -8.128 6560 <10-14 -0.128 -0.0781 

Day 1 [y ~ 1 + rpe + group + (1|subjects)] 

intercept 1.995 0.14 14.3 2041 <10-42 1.722 2.269 

group 0.317 0.261 1.211 2041 0.226 -0.196 0.829 

rpe 0.0447 0.015 2.975 2041 0.003 0.0152 0.0742 

Day 2  [y ~ 1 + rpe + group + (1|subjects)] 

intercept 2.052 0.149 13.751 2294 <10-39 1.76 2.345 

group 0.297 0.279 1.066 2294 0.286 -0.25 0.844 

rpe -0.0291 0.0153 -1.906 2294 0.0568* -0.0591 0.0008 

Day 3  [y ~ 1 + rpe + group + (1|subjects)] 

intercept 3.021 0.0993 30.419 2223 <10-168 2.823 3.216 

group 0.0738 0.179 0.413 2223 0.68 -0.277 0.424 

rpe -0.125 0.0194 -6.405 2223 <10-8 -0.163 -0.0864 
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Artificial Neural Network modelling (multilayer perceptron) 

The goal of the ANN was to solve the gambling task - that is, to correctly classify trials into left or 

right states (since each state was associated with one constant optimal action: finding the correct 

state constrains the rule to a trivial combination). We utilized a multilayer perceptron (MLP; input, 

hidden, output layers), fully connected, feedforward, with sigmoid activation function. The network 

had as many units in the input layer as there were voxels in the multivoxel patterns (1:1 mapping). 

The hidden layer was composed of 10 units, while the output layer had 2 units. Connection weights 

were randomly initialized. The training procedure was based on backpropagation with gradient 

descent, momentum and fixed learning rate, estimated for each individual subject from their RL 

modelling. The data for training and testing were the trial-by-trial averaged fMRI signals from the 

first 3 sec from RDM onset in the online behavioural task. The dimensionality was determined by 

the number of voxels: either the pre-selected voxels (s-vox) or all the voxels within a target region 

(a-vox). To prevent a trivial formulation which would not be much comparable to human learning, 

we trained the MLP in three ways:  

1) as many runs as there were trials, allowing the number of available trials on each run as n-5 to n 

(5 samples, moving window), n being the current run, using subjects’ perceptual discrimination as 

labels (2 cases, s-vox and a-vox). The simulation was run once for each subject.  

2) a single run, using all trials at once and optimal action labels (2 cases, s-vox and a-vox). 

Because the number of samples in the two classes was unequal, the sample set was randomly 

down-sampled.  

3) over five consecutive runs, using all trials at once and optimal action labels (2 cases, s-vox and 

a-vox). Because the number of samples in the two classes was unequal, the sample set was 

randomly down-sampled. 

These procedures were repeated, separately, for data from each day (day 1, 2, 3). To note, no 

cross-validation procedure was implemented in order to test the hypothesis that even under very 

relaxed conditions this sort of ANN have difficulty to solve such problem formulation.  

Offline multivoxel pattern analyses (figure 5B, C) 

For each day of the RL task, we used the set of voxels selected by confidence (dlPFC) and |RPE| 

(basal ganglia) decoders (described in the Decoding: multivoxel pattern analysis section) to 

compute the degree of association between confidence and |RPE| at the multivoxel pattern level. 

For |RPE|, the data set was composed of the predicted labels (high, low |RPE|) of all trials within a 

day. To issue these predicted labels, we inputted the preprocessed voxel activities during the 2 

TRs corresponding to action selection outcome to the |RPE| decoder. For confidence, the 

prediction was extended to several time points. Specifically, the search was extended to TRs 8-17 
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(TRs corresponding to stimulus presentation, as well as those showing high correlation between 

confidence and RL-state on day 2, 3). Within the range 7-15 TRs we took the averaged raw voxel 

activities over 3 TRs for better S/N ratio before inputting data to the confidence decoders. As such, 

we obtained 8 predictions for each trial, and selected the single one leading to the highest 

association strength between confidence and |RPE| predictions over all trials, at the subject level. 

Finally, we obtained two vectors of the same length (number of trials within a day) of predicted 

|RPE| (high, low) and confidence (high, low). These vectors from each subject were concatenated 

and the final degree of association was thus computed through 𝜒Xstatistic. The process was 

repeated over 1000 resampling runs by changing the subset of trials used to compute the 

confidence predictions at the subject level. This allowed us to create a distribution of 1000 

𝜒Xvalues reflecting the overall degree of association between multivoxel patterns predicting 

confidence in the dlPFC and |RPE| in the basal ganglia.  

At the single trial level, predicted data points were categorized according to the following labels: 

target if the prediction were high confidence - low |RPE| or low confidence - high |RPE|, and 

opposite if the predictions were high confidence - high |RPE| or low confidence - low |RPE|. For 

each resampling run we summed all occurrences of target and opposite, creating a distribution of 

1000 values. Overlapping distributions means that there is no association.  
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Supplementary figures and tables 

 

Supplementary figure 1. Stage 1 (day 0) behavioural task. To construct motion decoders used in 

stage 2 for the online training, subjects engaged in a two-choice direction discrimination task with 

confidence judgement while in the MR scanner. Each trial featured a random dot motion stimulus 

with either high or low motion coherence for 2 sec, followed by a delay period of 4 sec. Subjects 

were then instructed to choose a motion direction (left or right), and indicate their confidence in 

their choice (1 to 4) by pressing a button on a response-pad according to the positional cue 

presented on the screen. A trial ended with an ITI of variable length (3 to 6 seconds). 
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Supplementary figure 2. Gambling performance of multilayer perceptron. The simulation was 

repeated once for each subject’s data configuration, producing the same number of “behavioural” 

data as in the original subjects’ case. A, the perceptron took as input multivoxel patterns (Net(s-

vox): the pre-selected voxels utilized in the online task, Net(a-vox): all voxels within the target 

region, either VC or PFC); the training labels were subjects’ perceptual choices, and target outputs 

were optimal actions. Note that when perceptual choices become accurate on day 3, the network 
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can learn the correct association better than humans only in the very simple case of inputs 

consisting of pre-selected voxels. B, the perceptron took as input multivoxel patterns; both training 

labels and target output were the optimal actions. In this setting the network was trained with 

stochastic gradient descent, using all trials, on a single pass. Note that in this more stringent 

setting even providing as input the preselected voxel pattern did not result in high performance. C, 

the perceptron took as input multivoxel patterns; as in B, both training labels and target output 

were the optimal actions. In this setting the network was trained with stochastic gradient descent, 

using all trials, on five consecutive passes (during which connection weights were continuously 

updated). Note that with this very lenient setting the network outperformed the human on day 1 

and 2, but not on day 3. In both B and C, for all networks, the learning rate was taken to be the 

same estimated for each subject, on each day, in the RL modelling (see supplementary methods 

and supplementary table 2). 

 

 

Supplementary figure 3. Computational modelling of action selection with reinforcement 
learning. Two versions of the Q-learning RL algorithm were fitted to the data. QLsd: state-

dependent RL model based on both actions (subjects’ A/B choices) and states (decoder output), 

expressed as 𝑄(𝑠, 𝑎) 	← 	𝑄(𝑠, 𝑎) 	+ 	𝛼	 ⋅ (𝑟	 − 	𝑄(𝑠, 𝑎)); QLsf: state-free RL model that simply 

maximises actions (regardless of the state), expressed as s 𝑄(𝑎) 	← 	𝑄(𝑎) 	+ 	𝛼	 ⋅ (𝑟	 − 	𝑄(𝑎)). A, 

Correlation between the difference in goodness of fit computed as the ΔAIC (Akaike Information 

Criteria) (40) and changes in the optimality of action-selection for the state-dependent (RLsd) model 

(left) and state-free (RLsf) model (right). Differences were computed between day 2 and day 1, 

when the experimental settings were identical on both sessions. More negative values of ΔAIC 

indicate improved fits, while more positive values of Δp indicate higher optimality in action 

selection. B, Difference in the empirical contribution to subjects’ optimal action-selection by each 

process (state-dependent vs. state-free). Briefly, we used the maximum possible degree of optimal 

action selection attainable by each model: 1.0 for state-dependent, and the ratio of L/R states for 

state-free. The contribution of each model was then computed by normalizing the real optimal 

action selection (above 0.5) by the learning rates and the maximum optimal action selection 

attainable by each model. Positive values indicate a prevalence of RLsd over RLsf. 
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Supplementary figure 4. Analysis of behaviour: confidence ratings. A, confidence judgements 

for each day. Confidence increased from day 1 to day 2 and from day 2 to day 3. B, confidence 

judgements for correct and incorrect trials (discrimination, based on decoder output). From day 2, 

confidence was higher for correct than incorrect trials, as a form of emerging metacognitive 

access. On the day 3 the difference was very large, as expected in a standard decision-making 

task. C, perceptual (state) discrimination accuracy subdivided by confidence level. Data analysed 

with an LME model (see supplementary methods). From day 2, a weak relationship between state 

discrimination and confidence arose. On day 3 confidence became highly predictive of state 

discrimination accuracy. D, overall strength of confidence effect with action selection and 

perceptual discrimination were correlated on day 2. C-PC: measure of confidence effect on 

perceptual choice; C-AS: measure of confidence effect on action selection. The measure was 

computed as the magnitude of the averaged (signed) differences in performance over confidence 

levels. † p < 0.08, * p < 0.05, *** p < 0.005. 
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Supplementary figure 5. Control experiment: action selection and confidence in naive 
subjects without neurofeedback loop. The same task was submitted to naive subjects. As in the 

main experiment, physical stimuli had zero coherence. Furthermore, trials were determined 

exogenously: yoked trial sequences were randomly selected without replacement from those of 

subjects who did the full neurofeedback experiment. A, optimal action selection for day 1 and day 

2. Inset histograms depict the distributions (day 1, day 2) of all possible random draws of N=5 from 

the original subjects’ data. The coloured vertical line represents the mean of the N=5 control 

subjects. B, mean confidence ratings on day 1 and day 2. No difference between the two days, as 

opposed to subjects from the original experiment (see supplementary figure 5A). The Inset 

histogram depicts the distribution of confidence difference between day 2 and day 1 of all possible 

random draws of N=5 from the original subjects’ data. The coloured vertical line represents the 

mean of the N=5 control subjects. C, Optimal action selection subdivided by confidence level. No 

effect of confidence was found [LME model, for each day parametrization as y ~ confidence + (1 | 
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subjects)]. AS above, the same model was run, for each day, on the original subsampled data with 

all possible combinations of N=5, to create a distribution of confidence coefficients for each day. 

On day 2 the control coefficient remains stable close to zero, but the original data distribution 

shows a marked shift toward higher effect sizes.  

 

 

Supplementary figure 6: Group-specific increases in functional connectivity. The seed region 

in the basal ganglia was defined from the RPE analysis of day 3 - independent data, collected after 

the last resting-state scan. A, analysis restricted to subjects from the dlPFC group. View: x = -34, y 

= 33, z = 36. B, analysis restricted to subjects from the VC group. View: x = 6, y = -100, z = -10. 

Statistical parametric maps plotted at p < 0.005 (t > 2.9, uncorrected) and cluster threshold k > 30. 

Maps were created by applying a one-sided (positive) F-test with contrast [-1 0 1] over the 3 

resting-state scans to test for increases in strength of functional connectivity. 
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Supplementary figure 7. Computational modelling of behaviour: reinforcement learning effect 
on confidence. Reward prediction error (RPE) was computed based on the state-dependent 

version of a standard RL algorithm (9). The magnitude of RPE modulated confidence from the 

earliest stages: Smaller absolute RPE on the current trial was associated with higher confidence in 

the visual discrimination task in the next trial, meaning that an unexpected outcome was more 

likely to trigger a low confidence judgement in the next trial. |RPE| data were log-transformed prior 

to LME model(s) fitting. Coloured circles represent the mean across all subjects pooled, light/dark 

grey circles represent the mean across all subjects pooled from VC and PFC groups, respectively; 

error bars the s.e.m. † p<0.06, *** p<0.005 
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Subject # Brain region Subregion decoder 

S1 PFC dlPFC 

S2 VC V1/2 

S3 PFC dlPFC 

S4 VC V1/2 

S5 PFC MFG 

S6 VC V1 

S7 VC V1/2/3 

S8 PFC MFS 

S9 PFC MFG 

S10 VC V1/2 

S11 PFC IFS 

S12 VC V1/2 

S13 PFC dlPFC 

S14 VC V1/2 

S15 VC V1/2/3 

S16 PFC MFG 

S17 VC V1/2/3 

S18 PFC MFG 
 

Supplementary table 1. Subject-specific subregions selected for motion decoder. Each 

subject was assigned to the PFC or VC group so as to minimize the intergroup difference in 

decoding accuracy (which could otherwise lead to a large confound factor). Furthermore, within 

each region, the decoder based on the subregion that yielded the highest mean accuracy, with the 

lowest difference between the two classes (i.e., leftward vs. rightward motion), was selected. The 

table reports for each subject the group they were assigned to (VC or PFC) as well as their 

individual decoder used in the stage 2 online training. PFC: prefrontal cortex, VC: visual cortex, 

MFG: middle frontal gyrus, MFS: middle frontal sulcus, IFS: inferior frontal cortex, dlPFC: 

dorsolateral prefrontal cortex (combination of IFS, MFS, and MFG), V1: area V1 of VC, V1/2: areas 

V1 and V2 of VC, V1/2/3: areas V1, V2, and V3 of VC. 
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 Day 1 Day 2 Day 3 

 
State-dependent 
RL 

⍺ 0.21 ± 0.02 0.19 ± 0.02 0.19 ± 0.01 

β 16.51 ± 0.25 16.05 ± 0.32 16.30 ± 0.26 

 
state-free RL 

⍺ 0.25 ± 0.04 0.23 ± 0.03 0.24 ± 0.04 

β 3.36 ± 0.79 3.19 ± 0.73 2.75 ± 0.44 

 

Supplementary table 2. Estimated hyperparameters for state-dependent RL and state-free RL. 

Estimated values represent group mean ± s.e.m. The models were fitted on individual data, on 

each session (day 1, 2, 3).  
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