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In neuroscience, attention has been shown to bidirectionally interact with reinforcement learning (RL)
to reduce the dimensionality of task representations, restricting computations to relevant features. In
machine learning, despite their popularity, attention mechanisms have seldom been administered to
decision-making problems. Here, we leverage a theoretical model from computational neuroscience
- the attention-weighted RL (AWRL), defining how humans identify task-relevant features (i.e., that
allow value predictions) - to design an applied deep RL paradigm. We formally demonstrate that
the conjunction of the self-attention mechanism, widely employed in machine learning, with value
function approximation is a general formulation of the AWRL model. To evaluate our agent, we train
it on three Atari tasks at different complexity levels, incorporating both task-relevant and irrelevant
features. Because the model uses semantic observations, we can uncover not only which features the
agent elects to base decisions on, but also how it chooses to compile more complex, relational features
from simpler ones. We first show that performance depends in large part on the ability to compile
new compound features, rather than mere focus on individual features. In line with neuroscience
predictions, self-attention leads to high resiliency to noise (irrelevant features) compared to other
benchmark models. Finally, we highlight the importance and separate contributions of both bottom-
up and top-down attention in the learning process. Together, these results demonstrate the broader
validity of the AWRL framework in complex task scenarios, and illustrate the benefits of a deeper

integration between neuroscience-derived models and RL for decision making in machine learning.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Reinforcement learning (RL) provides a powerful description
of learning from experience in biological organisms (Doya, 2007;
Sutton & Barto, 1998). Yet, RL algorithms become notoriously
inefficient when the dimensionality of the problem is large (Bell-
man, 1957), as is generally the case in real-world scenarios.
Animals and humans not only learn new tasks and generalize
quickly from complex, noisy stimuli and experiences, but they
usually adapt to changing conditions with unmatched dexterity.
This ability could, in part, arise from abstractions and selective at-
tention generating lower-dimensional task-state representations
(Cortese, De Martino, & Kawato, 2019; Gazzaley & Nobre, 2012;
Niv, 2019), effectively resolving the “curse of dimensionality” in
RL. That is, the brain would represent a task only in terms of
behaviorally relevant aspects (features) of the environment, fore-
going unnecessary information. From this perspective, attention
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guides the selection of features on which RL operates, while RL
value approximation further refines the attentional focus to cur-
rently relevant dimensions (Leong, Radulescu, Daniel, Dewoskin,
& Niv, 2017; Niv et al., 2015).

In machine learning research, attention models have been
applied to a variety of problems. Visual selective attention has
enabled sequential methods for image processing, similar to sac-
cades in the human eye (Ba, Mnih, & Kavukcuoglu, 2014; Xu
et al, 2015). Top-down, goal-directed attention may be used
to reconfigure general purpose neural networks to accommo-
date new goals (Luo, Roads, & Love, 2020). Self-attention (Bah-
danau, Cho, & Bengio, 2014) has revolutionized natural language
processing by all but replacing more complex recurrent mod-
els for sequential data (Vaswani et al,, 2017). Nevertheless, ex-
plicit models of attention have only recently broken into the
field of reinforcement learning (RL) for decision-making in arti-
ficial neural networks, and almost solely at the sensory (i.e., vi-
sual) level (e.g., see Manchin, Abbasnejad, and van den Hengel
(2019), Sorokin, Seleznev, Pavlov, Fedorov, and Ignateva (2015),
Yuezhang, Zhang, and Ballard (2018)). Yet, research in neuro-
science suggests that attention mechanisms in the brain engage
with representations all along the cortical hierarchy, selecting
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a variety of features, stemming not only from sensory mea-
surements, but also from memory, prior knowledge and pre-
dictive forward-modeling (Chun, Golomb, & Turk-Browne, 2011;
Farashahi, Rowe, Aslami, Lee, & Soltani, 2017; Mack, Love, &
Preston, 2016; Martinez-Trujillo & Treue, 2004).

We take direct inspiration from neuroscience by translat-
ing a theoretical model of feature-based attentional learning,
Attention-Weighted Reinforcement Learning (AWRL) (Leong et al.,
2017; Niv, 2019; Niv et al., 2015), into a functional neural net-
work model based on state-of-the-art machine learning methods.
The proposed model uses the Multi-head Dot-Product Attention
mechanism (i.e., self-attention), originally designed for different
classes of problems in machine learning such as natural language
and sequence processing (Bahdanau et al.,, 2014; Vaswani et al,,
2017). We first derive a novel formulation of self-attention in
feature space, for non-stationary RL paradigms. Self-attention
introduces the exciting possibility of not only selecting task-
relevant features but relating them to create compound rep-
resentations of current observations. Thus, we formalize this
approach by proving that the conjunction of self-attention with
value approximation learning is a generalization of AWRL. It is
important to note that, as opposed to the more common approach
in deep RL models where feature extraction is usually learned
in tandem with optimizing a value function, here we assume an
arbitrary feature extraction process and a subsequent selection
step performed by attention that is the focus of our work. This
is motivated by empirical work in neuroscience showing that
neurons in the first layers of sensory processing represent specific
features and combinations thereof (Grunewald & Skoumbourdis,
2004; Jorntell et al,, 2014), upon which attention can operate
a selection mechanism (Ekman, Roelfsema, & de Lange, 2020),
at various levels of abstraction (Gong & Liu, 2020) that is cou-
pled with reinforcement learning (Leong et al., 2017; Niv et al,,
2015). The viability, benefits, and shortcomings of this model are
evaluated on canonical deep-RL benchmark tasks from the Atari
framework (Bellemare, Naddaf, Veness, & Bowling, 2015).

In a series of three experiments, we seek to answer the fol-
lowing questions: (i) does the simple AWRL model implemented
in deep-RL perform as theorized in the neuroscience literature,
and can we improve performance with the generalized AWRL
approach? (ii) Does the better performer of the two methods
compare with established feature-based models in the same
learning regime? (iii) What are the effects of conditioning atten-
tion on feature-channels or feature-content alone (corresponding
to naive interpretations of top-down and bottom-up attention,
respectively)?

2. Attention-weighted RL

Attention mechanisms are prime candidates for the process
of breaking down high-dimensional feature observations into
lower-dimensional representations (Corbetta & Shulman, 2002).
These proposed task-state representations (Niv, 2019) have
several properties to support efficient learning: (i) they are im-
plemented by a set of feature-specific weights, (ii) they are
task-specific (Bar-Gad, Morris, & Bergman, 2003), and (iii) dy-
namically adjustable as the agent shifts task-focus (Frank & Badre,
2012). Physiologically, the inductive bias of perceiving the world
as a collection of features is highly plausible. The visual system
prominently implements a series of filters for orientation, shape,
and color, whose compounds represent the scenes in front of
our eyes (Hubel & Wiesel, 1962). These low-level features are
extracted at the earliest stage of the visual pathway (V1), which is
affected by learning and attention (Ekman et al., 2020; Henschke
et al.,, 2020; Posner & Gilbert, 1999; Somers, Dale, Seiffert, &
Tootell, 1999), supporting the idea that feature-based RL may be
central in biological intelligence.
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Previous work by Leong et al. has extended the general
feature-based RL to incorporate an explicit attentional focus
(Leong et al., 2017). This formulation exhibits a feature-specific
attention weight ¢;(f) that leads to the following RL components:

Value function

Vi(S) =Y e ue(f, Se) (1
f

Reward prediction error

8 =10 — Vi(Se) (2)

Learning rule

ver1(f, Se) <= ve(f, Se) + a [pe(f)3¢] (3)

where v(f, S¢) represents the value estimate of feature f under
the currently examined stimulus S.. The f variable represents
a feature index. This corresponds to an addressing mechanism,
such as spatial attention in abstract space. With this defini-
tion, the framework aligns well with the feature-similarity gain
model (Martinez-Trujillo & Treue, 2004; Treue & Martinez Tru-
jillo, 1999), as it implements a modulation of neural gain in the
value function and learning rule.

Eqs. (1)-(3) highlight the bi-directional interaction between
attention and RL (Leong et al., 2017). Eq. (1) describes how
attention constrains value prediction to selected stimuli, thus in-
fluencing the corresponding reward prediction error by possibly
increasing the prediction’s magnitude. Larger prediction errors
lead to more extensive updates to the feature-specific value es-
timates, again weighted by their respective attention weights.
Through this process, attention modulates what the agent learns
about by guiding decisions. Conversely, learning about attended
features can eventually outweigh the influence of the attention
bias if a given feature’s value estimate is large enough. The
gradual shift of attention may be implemented with an RL mech-
anism that dynamically updates learned feature weights for value
estimation, based on reward prediction errors (as opposed to,
e.g., basing attention on recent reward history) (Jones & Cafias,
2010; Kruschke, 1992; Leong et al., 2017).

3. The self-attention mechanism

The popular Dot-Product Attention (DPA) mechanism serves as
a good candidate for a differentiable weighting function. DPA was
initially developed for applications in natural language process-
ing in the “transformer” architecture, where it replaced more
intricate recurrent models (Bahdanau et al., 2014; Vaswani et al.,
2017). The general processing is simple and geared towards se-
quential data (see inset in Fig. 1A for a graphical illustration of the
mechanism). DPA creates three vector representations q, k, e €
R4 termed query, key, and embedding respectively?, for each
discrete token in a sequence S € R*%n of length L by applying
three parameterized linear mappings q(-), k(-), e(-). Note that the
complete sequence may also be represented in matrix-form, such
that q, k, e S — QKE e RY% Next, these matrices
are used to redefine each individual input token as a weighted
sum of embedding vectors. This step introduces the possibility
of selecting and deselecting input tokens for further processing
and capturing the relationship between every available pairing
of input tokens by summing up their embedding vectors. Query

3 In the original publication, the “embedding” is called “value” as a reference
to database terminology. Here we use the term embedding to avoid confusion
with value definitions in RL.
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Fully connected
agent

Asteroids

Fig. 1. (A), graph representations of the main self-attention agent, as well as two baselines, the fully connected and convolutional agents. Additionally, in the red
inset, the graph representation of a single self-attention head. The self-attention model utilized 2 layers, each with 4 heads. The previous layer output (or stimulus
input), represented by a sequence of vectors S is translated into three disparate matrices Q, K, E. The pairwise dot-products of sequence elements Q;. and K;.
correspond to the attention weight a;;. The attention vectors A;. are input into a softmax and subsequently multiplied with the sequence of embeddings to create
one weighted sum of E per sequence element. (B), screenshots and list of features for each of the three Atari games (Pong, DemonAttack, Asteroids) considered to

test the self-attention model.

and key representations are used to generate the attention map
A ¢ RIXL;

KT
A = softmax (Q—>
A dk

s.t. @i A~ (q(Si..), k(S;..))

Once the attention weights are computed, they are used to
generate an attention-weighted sum of embedded inputs e(S; .)
per input sequence element to form the output of the self-
attention operation:

S = AE

L
St S = Z a;iE; .
j=1

These processing steps are straightforward and effective at
capturing relationships between sequence tokens, but remain ag-
nostic towards order, the defining factor of a sequence. The stan-
dard solution to this problem is the introduction of a positional
encoding, which is generally a static vectorization of the token
index in the sequence (e.g., a sine-cosine encoding (Vaswani
et al,, 2017)). Each of the positional encoding vectors is either
added or appended to their respective token before all other
processing steps, such that S? e RIXIdintdenc] These annotations
serve as feature identifiers in this work.

To capture different (e.g., hierarchical) relationships between
sequence elements, multiple parallel processing steps are neces-
sary. As such, multiple attention heads in a single DPA layer can
be combined to form a Multi-head Dot-Product Attention (MHA
— the central contribution of the original transformer architec-
ture (Bahdanau et al., 2014; Vaswani et al., 2017)). In the MHA
layer, instead of maintaining a single set of parameters for the
linear transformations q(-), k(-), e(-), each layer holds h sets of
weights per function, each of which processes the input sequence
in exclusivity. The outputs are concatenated along the feature
axis, such that Seoncar € RYXI%*M A fully connected layer then
processes each sequence element as such f : R1¥[dkxhl 5 R1xdour

(4)

(5)

12

4. Deep and generalized AWRL

Now that we have defined both the theoretical foundation
and a candidate mechanism for our attentive deep-RL agent,
we demonstrate that the MHA architecture, in fact, implements
a generalized version of the computational AWRL model when
coupled with value function learning.

In deep-RL, one rarely computes feature-based value function
estimates as proposed in the AWRL framework (Eq. (1)), largely
because input stimuli (such as images) are not easily separa-
ble into distinct features. However, under the assumption that
distinct features (in matrix form as above) are used for value
estimation, we can represent the feature-based value estimate
with a subset of neural network weights from a fully connected
linear layer, such that:

v(i, ) = WS/,
L
(6)
and Vi(S) =W,s" = > (i, S)
i=1
where Wti is the weight matrix solely associated with the ith input
feature. Now, we choose to represent the attention function ¢(i),
which maps the feature index to a scalar attention weight, with
the formulation of self-attention:
de(i) = qe(Dke(i)" (7)
The value function estimate of the entire attention-weighted
stimulus becomes (deep AWRL):
L

Vi(S) = ) (ac(i), ke(D)W]S])

i=1

(8)

This equation is a special case of Eq. (5), where only the diag-
onal elements of the attention matrix may take nonzero values.
Note that for this to have an effect, instead of applying a softmax
activation as in Eq. (4) one must use the similar inner product of
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query and key representations. Alternatively, the softmax may be
applied across the diagonal of the attention map, instead of each
row, to limit the magnitude of attention weights (Appendix A).

Next, we can expand the model by exploring the full potential
of the self-attention mechanism. Instead of selecting and weigh-
ing individual features in exclusivity, the self-attention mecha-
nism introduces a relational inductive bias that allows features’
mixing. To explain why this should be important, imagine the fol-
lowing scenario: when we are crossing a road, the speed of a car
may be only relevant if it is coming towards us, but not when it is
moving away. Thus, not only the individual feature (speed), but
its relation to other features (e.g., direction) provides necessary
information for decision-making. Hence, we reformulate AWRL as
follows:

L
Vi(S) =Y qilike(i)  Wied(Si)"

i=1

deep AWRL

L L
= > WD alk) els;)
i=1 j=1

generalized AWRL

In this formulation, mixtures, while possible, are not manda-
tory. Depending on the requirements of the environment, op-
timizing this value function estimate will select and/or relate
features as necessary and is therefore a general expression of
AWRL. Notably, here we choose to map indices to attention
weights, while in the introductory paragraph on self-attention,
we chose the actual information content as arguments for the
q(-) and k(-) functions. Both approaches have their advantages,
but the former is a more accurate translation of the original
AWRL model. Most applications of the self-attention mechanism
apply a mixture of the two principles, in that the information
content of a sequence element is extended with a positional
encoding (Gehring, Auli, Grangier, Yarats, & Dauphin, 2017).

5. Attention models and baseline architectures

This section will introduce the attention model architecture
as well as three state-of-the-art baseline models used as compar-
isons.

The proposed deep AWRL (d-AWRL) and generalized AWRL
(g-AWRL) models comprise two sequential attention modules
(Fig. 1A left). Each module consists of an MHA layer compiling
four parallel heads, a linear up-scaling layer applied separately
to each feature vector, and a batch-normalization layer. The two
attention modules are succeeded by a final, fully connected layer
that feeds into policy- and value-outputs in the case of the g-
AWRL. See Fig. S1 for a comparison with 2 and 16 heads, indicat-
ing 4 heads are optimal. The d-AWRL model, true to the original
formulation in Leong et al. (2017), forgoes this additional fully
connected layer, such that value truly is computed on a feature-
by-feature basis. By feeding the feature sequence directly into
the value-estimation layer represented by a fully connected layer,
the value estimates are calculated in exclusivity and subsequently
summed up (see Eq. (6)). To ensure that no feature mixing is
applied in each of the self-attention layers, a mask is applied to
the attention maps, such that only values along the main diagonal
are considered for feature representations. Notably, the vast ma-
jority of trainable parameters are shared between policy y and
value-function estimate V,, except for their final output step. This
approach is relatively common in actor-critic models (Mnih et al.,
2016; Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017), and
constitutes the basis of all proposed model and baselines.
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The first baseline (FC) is a fully connected neural network
(Fig. 1A center), i.e., every vector element in the input volume is
connected to each neuron in the first network layer, and so on. To
make the model more competitive, we employ an initial feature-
wise embedding layer that allows the network to mutate each
feature-vector before processing the input volume in its entirety.
Note that this step adds a notion of location invariance to this
model that would otherwise be absent. The network has two
sequential, fully connected layers after the embedding layer. The
number of neurons per layer is chosen such that the number of
trainable parameters is similar to the attention model. However,
it follows logically that the number of trainable parameters must
increase quadratically as a function of the number of features.

The second baseline (CNN) is a convolutional neural network
of the style commonly applied to natural language tasks (Fig. 1A
right). Multiple parallel layers comprising filters of different sizes
process the input volume (here, 3, 5, and 7), i.e., a matrix repre-
senting L features of dimensionality d;,. The feature maps created
by each of these layers are then concatenated with each other
along the channels dimension. In simple terms, this allows the
convolutional layer to compute multi-step relationships between
up to seven contiguous features at a time. The fully processed
output at a single sequence index then includes multiple relation-
ships along the channel-axis from a maximum distance of one to
three neighbors. A subsequent layer will then be able to relate
between three and seven one- to six-neighbor relationships at a
time. Unlike the fully connected baseline, the basic convolutional
model is limited in its capabilities to relate spatially distant vec-
tors to each other by filter- and step-size. Specifically, this means
that the same filter would never process the first and last feature
in the observation simultaneously without further hierarchical
processing.

Therefore, we include an advanced convolutional model
(a-CNN) as the third baseline. While the base-case consists of a
simple two-layer convolutional network with enough filters to
match the attention models’ number of parameters, the a-CNN
is equipped with up to 20 sequential layers, depending on the
number of features L in the observation space, such that it can
cover the full length of the input volume with a single filter.
Note that this model has a much higher number of parameters
compared with all other baselines.

Finally, all models are trained using an updated version of
the proximal policy optimization (PPO) algorithm that imple-
ments various specifications to facilitate stability and perfor-
mance (Engstrom et al., 2020) (Appendix B). See Appendix C for
hyperparameter details of all models.

6. Testing environment and selected games

For all experiments, we test the main model and the baselines
on a selection of three Atari games from the Arcade learning
environment (Bellemare et al., 2015). The choice of games is
based on their respective observation space and task complexity,
with particular attention given to the relevance of each feature
in the input. For example, the game Breakout does provide a
large observation space (35 individual features per time-step,
stacked along four time-steps), but most features refer only to
the location of one of the colored bars at the top. However, any
agent can achieve a perfect Breakout score by merely keeping the
ball from falling below the paddle, i.e., paying attention to ball
and paddle positions. Most features are thus irrelevant, meaning
that both the observation space and task are of low complexity.
Hence, we choose the following 3 games: Pong (low observation
and task complexity), DemonAttack (medium observation and task
complexity), and Asteroids (high observation and very high task
complexity) — see Appendix D for a description of the learning
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Fig. 2. Comparing performance scores of the original d-AWRL (green lines) and the generalized version g-AWRL (pink lines) on the three Atari games Pong,
DemonAttack, Asteroids. The agents completed 10 training runs for each game (parameters were reinitialized each time). The thick line represents the mean, the

shaded areas the S.E.M.

Table 1

Number of features for each game, under low and high noise conditions.
Task L features 2L 4L
Pong 8 16 32
DemonAttack 10 20 40
Asteroids 41 82 164

environment, feature observations, and of each game with de-
tails on the available features. The third game is so demanding
that modern convolutional approaches have difficulty matching
human-level performance and thus makes for an excellent upper
bound on the capabilities of our proposed model.

7. Experiment 1: deep vs generalized AWRL

The first set of experiments aims to investigate the potential
benefits of computing the value function of compound features,
as opposed to individual features (i.e., comparing the d-AWRL
model to the g-AWRL approach).

7.1. Task description

The agents are tested on 3 different games: Pong, DemonAttack,
and Asteroids, where most features are task-relevant. The number
of features in observation space is charted in the second column
(L features) in Table 1. The agents complete 10 training runs for
each game, with each training run allowing 10e® time-steps inter-
actions with the environment. Parameters are newly initialized in
each game and training run.

7.2. Results

Results from ten individual runs per game demonstrate a clear
benefit of relating features before computing their respective
value contribution. The learning curves clearly show the g-AWRL
model reaches high performances in all 3 games, at various levels
of difficulty. Conversely, the d-AWRL model fails to reach any
competitive performance in all three games, only achieving min-
imal improvement on the Pong task. This model simply sums
individual features’ value-predictions. The same is true for its
policy network, which effectively sums several logits, each based
on a singular feature to arrive at a policy distribution. As such,
the model is limited to capturing linear relationships between
features, in addition to only one relational computation step as
opposed to multiple hierarchical ones in the g-AWRL model. The
performance on the game Pong (Fig. 2 left) may be explained by
its simple mechanics and generally low observation complexity
since the game can be played with some success (winning a
majority of matches) by a linear function, minimizing the vertical
distance between ball and player.

14

However, the other two games demand a higher fidelity of
compound feature representations. In DemonAttack, (Fig. 2 cen-
ter) the player needs to line up a spaceship, fire a shot, and
observe whether the shot finds its target, all the while avoid-
ing enemy fire. Additionally, to confirm that a shot will hit its
target, DemonAttack requires two-dimensional evaluations of po-
sition. Predictably, the d-AWRL falls short of finding the necessary
representations to derive accurate value-function estimates and
policies.

The same challenges are exacerbated in Asteroids, (Fig. 2 right)
where the number of objects to be tracked increases significantly,
and each of the objects can move in sixteen directions instead of
two as in DemonAttack.

The associated attention maps’ patterns illustrate that both
models converge on highlighting the most relevant task fea-
tures (Fig. 3, the example maps are from the game Pong). While
the d-AWRL agent is limited to selection only (hence the one-
dimensional maps), it still identifies most of the features that
explain the variance in the environment’s value-function at any
given time (Fig. 3A). The g-AWRL model (Fig. 3B), on the other
hand, has the ability to either select or mix learned feature
representations to find value-predictive task-states by creating
a weighted sum of feature embedding vectors (see Fig. 4 for
a graphical explanation). Thus, the model demonstrates that
some tasks demand feature compilation to translate into lower-
dimensional task-state representations through emergent behav-
ior that follows the value-function optimization process. Indeed,
by examining the attention maps of the g-AWRL, we find that
feature compilation does occur. Two particular mixing patterns
can be found in all game settings: (i) mixing the same feature
across several time-steps (suggesting changes in position, score,
or other dynamic values) (e.g., Fig. 3B-1 for Pong, where ‘ball X’ is
integrated over two time-steps) and (ii) modal mixing of features
in a single time-step (that is, mixing features of the same modal-
ity like the x-coordinates of two separate objects) (e.g., Fig. 3B-2
for Pong, where ‘ball x’ is mixed with ‘player x’). The first style
of compound features is ubiquitous in all attention-layers and
heads. More so than relating different aspects of the observation,
this behavior can be interpreted as time integration to formulate
new low-level features. Such a composition captures information
about speed and direction, which is then used in subsequent
layers. Beyond the ability to track multiple features, this will
allow the agent to relate arbitrary features inter-categorically.
NLP applications of the self-attention mechanism illustrate this
capacity, e.g. by mixing representations of surrounding tokens
to identify a noun as the subject of a sentence. Similarly, our
agent will compose a selection of feature vectors (what we deem
a partial state representation) to feed to the actor and critic
networks for policy generation and value prediction. The second
mixing pattern occurs equally frequently, but it rarely exhibits
the same amount of selective magnitude, which means that those
features selected for compilation are rarely selected as sparsely
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Fig. 3. Example attention maps from two representative agents, at the end of training on the game Pong. (A) Attention maps of the 4 attention heads in the first
layer of a trained d-AWRL agent. Note the number of features is x4 the original eight, as four time-steps were always included as the input (t, t-1, t-2, t-3). The
maps are 1-D vectors since the d-AWRL agent can only select features, but not mix them (no compositions). (B) Attention maps of the 4 attention heads in the first
layer of a trained g-AWRL agent. As in (A), the number of features is x4 the original eight ones, as four time-steps were always included as the input (t, t-1, t-2,
t-3). The maps are 2-D matrices since the g-AWRL agent can select and mix features, giving rise to compositions. The color bars represent the importance weight
assigned to each feature or their combination in a given map.
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(with as large of an attention weight) as in the first mixing pat- common mode attention operates on for the generation of task-
tern. This behavior may suggest that, while feature compilation is state representations. The expressiveness of differentiable feature
necessary to achieve peak performances, selection is the far more representations even allows for amodal mixing, such as scores
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with positions, which we observe less frequently (e.g., in Fig. 3B-2
top right). We assume further that conjunctive learning in the
Atari context has many similarities to compositions of discrete
features, with the added benefit of partial matches. lLe., where
discrete feature space experiments will not yield partial reward if
one of the target dimensions does not match the target feature, in
Atari games and other dynamic environments smaller variations
within the target dimensions might still correlate with future
reward or specific policies. In other words, slight deviations in
the target feature expressions should have minimum impact on
the output distributions of actor and critic networks.

Lastly, we find that the g-AWRL agents tend to discard a large
number of input features by choosing to represent them as the
same feature multiple times. For example, the attention head in
Fig. 3 B-4 for Pong elects to represent every input feature as the
‘ball x’-position almost exclusively.

While we have discussed here the attention map from the
g-AWRL agent trained on the game Pong, the maps obtained
after training on the games DemonAttack and Asteroids display the
same mixing patterns (see Figs. S2 and S3).

8. Experiment 2: generalized AWRL vs baselines

This second round of experiments examines whether the ap-
plication of attention mechanisms harbors algorithmic benefits
for a deep-RL agent, particularly in conditions that are closer to
real-world cases (e.g., with high-dimensional, noisy input obser-
vations). Here, the g-AWRL agent competes against the FC, CNN,
and a-CNN baselines.

8.1. Task description

As in Experiment 1, we use the 3 Atari games Pong, De-
monAttack, and Asteroids. To test the resilience of the agents
to high dimensionality and noise, we introduce distractor envi-
ronments, which are parallel instances of each respective game
whose features are appended to the observation input vector. The
agent interacts with only one of these environments and has to
identify the correct set of corresponding features. It is important
to emphasize that while the distractor features are drawn from
the same environment, they are independent instances of the
game played by a decoupled, pre-trained agent. As such, they do
not contribute any information to the observation, but they keep
the distribution over feature values very similar (and make the
attention task difficult). Thus, we extend the task-set by a low-
noise and a high-noise version of each of the environments. The
low-noise condition adds only a single distractor environment,
where the number of features in each observation is doubled. In
the high-noise version, a total of three distractor environments
are added — quadrupling the size of the observation per time-
step. The number of features in observation space is charted in
Table 1, center and right columns. Additionally, we run a supple-
mentary analysis using 7 distractor environments, and an analysis
using random distractor features, to test if the ability of the
g-AWRL model to select relevant features even among very high
noise, or an equivalent level of uncorrelated noise, is preserved.
Random features are sampled from different periodic functions
to prevent large changes in the same feature within single frame
updates. At the outset of each training run, the sequence of
features in the observation window is randomized to minimize
correlations between spatial and associative relationships. The
agents complete 10 training runs for each game and conditions,
with each training run allowing 10e® time-steps interactions with
the environment. Parameters are newly initialized in each game,
condition and training run.
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8.1.1. Results

The learning curves illustrate the strong advantage of the
g-AWRL attention agent (Fig. 5). However, the a-CNN agent is
a close match in terms of final performance and convergence
speed in more complex tasks and high-noise cases (e.g., DemonAt-
tack, Asteroids). The basic CNN model’s top-performances in low-
noise and low-complexity environments instead lend support
to the notion that some form of spatial invariance significantly
contributes to performance in feature space. The idea is intu-
itive, given that the fully connected baseline model maintains
a large number of weights exclusively processing task-irrelevant
features, presenting an ineffective architecture for the data.

Except for the Asteroids task, the basic CNN agent demon-
strates stable improvements in low-noise environments and per-
formance curves second only to the g-AWRL agent, likely due
to its computation graph’s low complexity. Another compelling
explanation is the proximity of task-relevant features within the
window of observation. With low dimensionality in observation
space, each convolutional filter will create a mixed representation
of almost the entire width of the observation (along the feature
index axis). Effectively, each filter acts as one attention head,
albeit with simplified computation graph and output sequence,
and a lower number of parameters to train. As the number
of features in the observation window increases, these benefits
rapidly disappear since single convolutional filters will be less
likely to capture multiple task-relevant and relatable features in
a single operation. This issue does not affect the g-AWRL agent,
which will consider all combinations of features locally and non-
locally as training commences, depending on the query and key
mappings’ initialization. CNNs are theoretically able to implement
such non-local processing as well, depending on the size of the
applied kernels. With smaller kernels, several hierarchical layers
are necessary to span the whole input sequence (Cordonnier,
Loukas, & Jaggi, 2019).

Importantly, the g-AWRL is resilient to noise even when us-
ing very high numbers of irrelevant features (i.e., 7 distractor
environments, game Pong) or random features (Fig. S4). Includ-
ing random noise as irrelevant features (instead of distractor
environments), has less of a detrimental effect on performance
(Fig. S4). This is likely due to the differing distribution across
time in the random features as opposed to real features drawn
from a distractor environment. Analyzing the attention maps
demonstrates that the agents discriminate the relevant features
from the irrelevant copies (Fig. S5). Finally, we also test the agents
in the basic environments without any noise (Fig. S6), and find
that - all environments and noise levels considered - the g-AWRL
consistently reaches the best performances.

9. Experiment 3: exclusive spatial- vs content-based attention

With the third experiment we investigate the differences in
attention patterns between conditioning attention exclusively on
feature content or spatial addresses. Spatial addresses here refer
to the positional encoding that serves to index every feature vec-
tor. While features are randomly sorted at every new initializa-
tion of a learning environment, their position in the observation
space does not change within a training run.

To solve a game, the agent will attempt to approximate the
environment’s value-function. In the spatial attention case, the
agent is forced to select those feature channels that may hold
task-relevant information using address-based attention. How-
ever, the observed information within the selected channels may
not be relevant at any given moment. This process corresponds
to a crude interpretation of feature search. Intelligent agents
seek out features using top-down attention mechanisms that
modulate the response of those neurons tuned to that feature



L. Bramlage and A. Cortese

Low noise

Score
o

Neural Networks 145 (2022) 10-21

High noise

Pong

—— g-AWRL
FC
a-CNN

—— CNN

Demon attack

16000
14000
12000
10000
8000
6000
4000
2000

Score

Score

2¢° 4¢° 6e°

Time (training steps)

8¢e°

Vi

Asteroids

10e°

A
el

\;/WV\VW

0e° 2¢° 4¢° 6€° 8¢e° 10€°
Time (training steps)

Fig. 5. Comparison of the g-AWRL vs baselines in low (2 x L features: L relevant, L irrelevant) and high noise conditions (4 x L features: L relevant, 3 x L irrelevant),
in the three Atari games Pong, DemonAttack, Asteroids. The agents complete 10 training runs for each game and condition (parameters are reinitialized each time).

The thick lines represent the mean, the shaded areas the S.E.M.

(Treue & Martinez Trujillo, 1999). In the content-based case, on
the other hand, attention is conditioned exclusively on features
that are currently available in the observation. This type of at-
tention corresponds to stimulus-driven, i.e., bottom-up processes,
where a salient observation will capture the attentional spotlight.
Bottom-up attention is a necessary mechanism in biological in-
telligence that allows agents to react to essential stimuli on the
fly, without engaging in a specific task (e.g., responding to the
presence of a predator or an unexpected food-source).

9.1. Task description

Here, both attention models are built upon the g-AWRL ar-
chitecture. The observations received from the environment are
static for the computation of attention maps in the address-based
case (spatial) and comprised of feature values in the content-
based case (content). To clarify, the address-based agent will
still receive the contents of selected features for later processing
steps, and merely the selection process is limited to predefined
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positional encodings. For this experiment, the environments are
fed as such to the agents, without noise. The agents complete
10 training runs, with each training run allowing 10e® time-
steps interactions with the environment. Parameters are newly
initialized in each training run.

9.2. Results

In terms of performance, we find that both versions of the
g-AWRL achieve, on average, lower scores compared with the
main g-AWRL (Fig. 6A vs Fig. S6), highlighting the importance of
integrating both attention streams for an agent to solve complex
tasks. Overall, the purely address-based attention agent tends to
achieve scores close to the zero-noise benchmarks of g-AWRL,
while the purely content-based agent displays a severe reduction
in top-scores and convergence speed. One particular issue of
purely content-based attention, in this case, is that the agent has
no broader understanding of the observations it makes. With-
out a sense of which feature channel is being attended, the
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Fig. 6. Comparison of exclusive spatial- and content-based attention. (A) Performance curves in the three Atari games Pong, Demon Attack, Asteroids for the g-AWRL
version with only spatial-based attention or content-based attention. Thick lines represent the mean, shaded areas the S.E.M. (B) Example attention maps of the 4
attention heads in the first layer of a g-AWRL agent equipped with content-based attention, performing the game Pong after training. (C) Example attention maps
of the 4 attention heads in the first layer of a g-AWRL agent equipped with spatial-based attention, performing the game Pong after training.

agent is forced to identify salient feature values which might
share the same neural codes regardless of the features they rep-
resent. Meanwhile, the address-based agent, while grounding
attention weights on the addresses (which can be understood as
an immutable feature identifier), will still transform the weighted
features using the final linear layer in the self-attention module.
Unlike in the purely content-based agent, all venues of infor-
mation contained in the baseline g-AWRL architecture are still
present and being processed, though in exclusion of each other.
The one difference is that attention maps remain static and need
to track task-relevant features continuously. This process is con-
sistent with the original neuroscience AWRL formulation since
the model does not explain temporal dynamics, with some fea-
tures being task-relevant only some of the time. If task-state
representations truly only highlight a set of features for a given
time (regardless of their content) (Leong et al., 2017; Niv et al,,
2015), then the address-based model can be understood as the
most faithful translation of AWRL.

As expected, attention patterns vary significantly between
purely content- vs. purely address-based attention (Fig. 6B-C).
In the content-based case (for the game Pong, Fig. 6B), attention
patterns fluctuate between observations. In line with previous re-
ports (Mott, Zoran, Chrzanowski, Wierstra, & Rezende, 2019), we
find that particular feature ranges trigger larger attention scores
in a bottom-up fashion. For example, in Pong, the ball position
will not be attended to by the agent unless it reaches a distinct set
of values — specifically, positions in close proximity to the player
and enemy agents. In this case the attention score is computed by
the dot products of vector embeddings of that particular position.
That is, the network adapts to finding specific feature expressions,
or values, that correspond to better explanations of variance in
the value-function. Conversely, in the address-based attention
agent (for the game Pong, Fig. 6C), patterns do not fluctuate at all
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after training. The agent has no perceivable notion of either time
or the current observation until the attention-weighted observa-
tion enters the value-function- and policy-networks. Attention is
fully conditioned on task-learning. Thus, the agent is forced to
highlight those feature channels that may or may not hold task-
relevant information continuously. The corresponding attention
patterns are close to static, highlighting these channels. Different
attention heads converge to select and combine specific features
like player position over time.

10. Discussion

This work presents an empirical application of the theoreti-
cal Attention-Weighted Reinforcement Learning (AWRL) frame-
work, a model of feature-based attention in biological RL, in
canonical deep-RL tasks. AWRL mathematically illustrates how
organisms select multimodal stimulus dimensions to form lower-
dimensional state representations subject to particular task-
settings. This process is necessary since most real-world scenarios
faced by biological organisms present few task-relevant features
amid a majority of equally salient distractor or irrelevant features.

We first translate the AWRL framework into a trainable neural
network architecture (d-AWRL), using the self-attention mecha-
nism popularized in natural language processing (Bahdanau et al.,
2014; Vaswani et al., 2017). We demonstrate that d-AWRL is
a special case of self-attention combined with value function
approximation and extend the model to allow for relational,
beyond purely selective, processing. Our proposed g-AWRL ap-
proach offers a more effective solution to the binding problem
— a formulation of the challenging task to select and relate
stimuli, knowledge, and memory to represent the current ex-
perience neurally. In the original AWRL model, task-state rep-
resentations correspond to neural codes that allow for accurate
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value-prediction, conditioned on a given task. The same is true
for our applied version, where feature-specific attention weights
are made differentiable, and thus learnable, with respect to value-
prediction errors in accordance with the Mackintosh model of
attention (Mackintosh, 1975).

The results of the first experiment indicate that our general-
ized approach to solving the feature binding problem through
feature compilation (and concomitantly avoid the limitation of
only using features in isolation) is essential to perform com-
petitively in environments were stimuli have more than a few
dimensions such as Atari video games (Fig. 2A). The emergent
dynamics of the attention mechanism suggest that agents inte-
grate features over time, as well as modal features that provide
information such as relative distances between objects. Similarly,
elegant recent work with deep convolutional neural networks
has highlighted how biological attention mechanisms can im-
prove network classification performance mostly by modulating
higher layers (Lindsay & Miller, 2018), which are generally asso-
ciated with more complex features created by the compilation
of simpler ones. This bears a strong resemblance to the brain,
as higher visual areas — but also parietal or frontal regions as
one moves along the cortical hierarchy, are related to more ab-
stract representations (Bernardi et al., 2020; Cortese et al., 2020;
Kikumoto & Mayr, 2020), and implicated in sophisticated RL-type
behavioral/conceptual navigation (Brunec & Momennejad, 2019;
Cortese, Lau & Kawato, 2020; Momennejad, Otto, Daw, & Norman,
2018; O’Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001).

The second experiment demonstrates that an RL agent en-
dowed with self-attention has a notable advantage over compara-
ble models in settings with many noisy features per observation,
exhibiting stable performance retention as the number of distrac-
tor features increases — particularly if we only consider models
with similar number of parameters. Notably, these environments
come much closer to the challenges faced by biological organisms,
as they are rich with salient, but task-irrelevant, stimuli. The
performance retention most likely results from non-local process-
ing, which allows the g-AWRL agent to consider every possible
combination of features for its task-state representations. At the
same time, more traditional models like the fully-connected- and
both convolutional baselines tend to struggle to capture larger ob-
servation spaces concisely. Meanwhile, the g-AWRL collapses the
space of possible feature combinations effectively by optimizing
its value-function estimate with respect to its attention weights.
Admittedly, considering all input features, and all possible combi-
nations, may not be exactly biologically plausible. But ultimately,
this may or may not be a limitation — in the current work
it proves advantageous, and one can think of other situations
in which it may not (e.g., limited processing capacity, speed of
processing, size of the network in question), raising the need for
alternative solutions in the form of memory, abstractions or even
consciousness (Bengio, 2017; Dehaene, Lau, & Kouider, 2017; Ho,
Abel, Griffiths, & Littman, 2019; Lengyel & Dayan, 2008).

In the first two experiments, the g-AWRL agents use ob-
servations where features are concatenated with a positional
encoding. This vectorized positional index serves as an identifier
of the feature. One possible interpretation that relates closely
to neuroscience is that this embedding holds information on
which neuron or cluster of neurons represents a particular fea-
ture. In physiological terms, attending to such pre-selected neu-
rons would mean a modulation of their firing rates when pre-
ferred stimuli are detected (e.g., see the feature-similarity gain
model (Martinez-Trujillo & Treue, 2004; Treue & Martinez Tru-
jillo, 1999)). In the final experiment, we thus examine
differences in performance and attention patterns when the
attention scores were conditioned only on this identifier (top-
down, task-driven) or only on the actual feature content (bottom-
up, stimulus-driven). The results indicate that a combination of
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both is undoubtedly superior, as can be naturally expected under
the lenses of biological attention (Knudsen, 2007).

With the initial success of the presented experiments, the
popularity of self-attention mechanisms and attention in general,
as well as the blossoming of neuroscience-inspired artificial in-
telligence, many avenues remain to be explored. For example,
using linearly complex self-attention methods (Wang, 2020), or
different forms of RL such as off-policy methods that would
allow active-sampling and prioritized experience replay (Mattar
& Daw, 2018; Moore & Atkeson, 1993; Schaul, Quan, Antonoglou,
& Silver, 2016) for the integration of the Pearce-Hall and Mack-
intosh models of attention learning (Mackintosh, 1975; Pearce
& Hall, 1980). Further, RL alone is unlikely to account for all
effects of biological learning. For example, in decision-making
tasks that require attending to different features in order to
obtain rewards, human participants often perform better than
chance after only 2-3 trials, an effect brought about by the ability
to rapidly switch focus between features (Leong et al., 2017; Rad-
ulescu, Niv, & Ballard, 2019). This suggests that humans employ,
at least in part, alternative strategies such as serial hypothesis
testing (Donoso, Collins, & Koechlin, 2014; Radulescu, Niv et al.,
2019; Radulescu, Niv, & Daw, 2019). In environments with a
stable structure, alternative methods to gradient-based and re-
inforcement learning - such as particle filtering — could allow an
agent to reach robust value-function estimates faster (Radulescu,
Niv et al., 2019). Nevertheless, in environments with high num-
bers of continuous features, with stochastic and dynamic changes,
gradual updates would probably remain superior. An interesting
way forward would be to develop models that can adjust the way
attention shifts — gradual updates vs. quick changes - based on
environment or task characteristics.

The above points bring the discussion close to the delicate
comparison between human and machine performances (Fire-
stone, 2020). How does the g-AWRL agent described here com-
pare with humans in terms of learning speed? As it currently
stands, the proposed model is unlikely to reach human levels in
tasks commonly used in human neuroscience or psychology ex-
periments, such as the task illustrated in the original formulation
of AWRL. This is mainly due to the slowness of gradient-based
updates and the still significant number of tunable parameters in
the g-AWRL model. Besides, humans have an exceptional ability
to quickly garner adequate skill in any number of previously
unknown tasks, implemented most likely by various higher cog-
nitive functions (Cortese et al., 2019). Mastery, on the other
hand, takes most of us ample amounts of training, especially
in tasks that require complex motor behavior beyond accurate
value estimates. State-of-the-art deep RL approaches, while re-
quiring very large training sample data to reach even acceptable
performances, tend to converge to top scores quite rapidly once
initial success is observed. Our g-AWRL model displays very sim-
ilar performance profiles - especially in the simpler game Pong,
with steep learning curves after initial periods of low score. A
compelling direction for future work will be a formal comparison
of machine and human learning trajectories both over short and
longer time horizons, and at different levels of task complexity.
Together with further exploration of rapid value-function learn-
ing to supplement and accelerate the robust policy acquisition in
deep RL algorithms, these lines of work will allow us to better
understand the unique elements of human learning.

As a straightforward explorative extension of our current
approach, one may focus control with the softmax activation
function that is an integral part of the self-attention mechanism.
The softmax turns the logits, representing how much each se-
quence element is related to the current query element, into
a distribution. The temperature parameter T in the softmax
governs the entropy of the resulting distribution. In our appli-
cation of self-attention as a feature selector, lower temperatures
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would enforce sparser feature selection, possibly resulting in
attention heads that carry only a single feature representation.
The effects on learning of sparse and dense heads need to be
researched in future work, as sparser heads might lead to more
compact task-state representations and even better interpretabil-
ity of the model behavior. Unlike the explicit comparison of
single-selection vs. feature-mixing in this paper, reducing the
temperature parameter will allow the agent to mix features
as long as they are weighted equally. Sparsity might lead the
g-AWRL to approach the speed of particle filtering, which has
been suggested to well reflect human choice behavior based on
feature learning (Radulescu, Niv et al., 2019).

Finally, the majority of deep-RL models are trained end-to-
end, meaning that each trainable parameter is optimized with
respect to a value-function (in some cases, a policy) — from
stimulus input to action output. This paradigm often results in
impressive performances on narrow sets of challenges, but ulti-
mately corresponds to a severe case of over-specialization and
is not suitable for multi-tasking or actual task generalization
settings. Ideally, pre-trained or out of the box models could be
introduced as direct sensory modules to RL agents. In the visual
domain, variational autoencoders (VAE) have achieved great suc-
cess in representing interpolable classes at small scales, i.e., as
small feature vectors (Kingma, Rezende, Mohamed, & Welling,
2014), and could be used as such. Yet, without modification
the VAE approach has specific limitations that prove fatal to
learning for decision-making. Most glaringly, the reliance upon
pixel-based loss functions (measuring the importance of visual
features based on the relative frequency of their associated pixel-
values), and omitting smaller but semantically significant features
from their representations. A recent approach for unsupervised
representation learning attempts to remedy the problem by in-
troducing a mutual information-based loss function (the Spa-
tiotemporal Deep InfoMax) (Anand et al, 2020). In this way,
a convolutional neural network will generate feature vectors
from RGB-images that capture both local features of small image
patches and a global representation relating all image patches.
The representations are trained outside the RL cycle and promise
to be general enough to be applied to several tasks within the
same environment. Additionally, the authors introduce a cre-
ative temporal bias, in that the model does not encode simple
images but image transitions, ensuring that the most salient
parts of the image are captured in the limited representation
space. The feature-based models presented in this work certainly
need a robust stimulus-to-representation encoder to function in a
broader range of scenarios. The Infomax approach is a promising
candidate for a lightweight solution to this challenge. As a proof-
of-concept, exploratory experiment, we show that pairing our
g-AWRL approach with the Deep InfoMax leads to fast learning
and significant improvements in reaching top scores in the game
Pong (Fig. S7).

To conclude, the approach and results presented in this study
provide theoretical and empirical evidence that endowing an
agent with a simple attention mechanism paired with RL is one
solution to learn appropriate behavioral policies in complex, noisy
environments. We hope this work will further the fruitful ex-
change between neuroscience and machine learning.
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