
Neuroscience Research 178 (2022) 10–19

Available online 15 September 2021
0168-0102/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Review Article 

Metacognitive resources for adaptive learning⋆☆ 

Aurelio Cortese 
Computational Neuroscience Labs, ATR Institute International, 619-0288 Kyoto, Japan   

A R T I C L E  I N F O   

Keywords: 
Confidence 
Metacognition 
Abstraction 
Learning 
Reinforcement learning 
Meta-representations 
Multivoxel neural reinforcement 
Decoded neurofeedback 

A B S T R A C T   

Biological organisms display remarkably flexible behaviours. This is an area of active investigation, in particular 
in the fields of artificial intelligence, computational and cognitive neuroscience. While inductive biases and 
broader cognitive functions are undoubtedly important, the ability to monitor and evaluate one’s performance or 
oneself – metacognition – strikes as a powerful resource for efficient learning. Often measured as decision con
fidence in neuroscience and psychology experiments, metacognition appears to reflect a broad range of 
abstraction levels and downstream behavioural effects. Within this context, the formal investigation of how 
metacognition interacts with learning processes is a recent endeavour. Of special interest are the neural and 
computational underpinnings of confidence and reinforcement learning modules. This review discusses a general 
hierarchy of confidence functions and their neuro-computational relevance for adaptive behaviours. It then in
troduces novel ways to study the formation and use of meta-representations and nonconscious mental repre
sentations related to learning and confidence, and concludes with a discussion on outstanding questions and 
wider perspectives.   

The ability to learn efficiently is a fascinating aspect of biological 
intelligence. Humans can learn new tasks or behaviours in an often 
predictably fast manner – with limited data. Machines can reach and 
periodically surpass human performance in specific contexts [e.g., Atari 
games, or chess (Lake et al., 2015; Sorokin et al., 2015)]. Yet, the way in 
which humans and machines learn and approach problems remains (for 
the most part) strikingly different, and particularly so for complex be
haviours. Recent empirical and theoretical work suggests inductive 
abilities (Lake et al., 2015; Tenenbaum et al., 2011) and higher cognitive 
functions such as attention, episodic memory as well as metacognition 
and consciousness, may be crucial ingredients to augment artificial 
agents and accelerate learning (Behrens et al., 2018; Bengio, 2017; 
Botvinick et al., 2019; Cortese et al., 2019; Niv, 2019). 

The focus of this review will be on the intersection between meta
cognition and learning. Metacognition, or cognition about cognition, is 
the ability to reflect upon and report one’s own mental states (Fleming 
et al., 2012; Metcalfe and Son, 2012). Interestingly, although many 
other animals have some form of metacognition, it appears to be 
uniquely developed in humans (Metcalfe, 2008). Given its 
self-monitoring nature, metacognition is well positioned to integrate 
feedback loops over behaviour and influence learning processes. It could 
take part in generating meta-representations – summarised re-repre
sentations of ongoing sensory or memory representations (Brown et al., 

2019; Dehaene et al., 2017; Lau and Rosenthal, 2011). This feature 
seems inherently important in a functional architecture of hierarchical 
learning systems such as the brain (Kawato et al., 1987; Wang et al., 
2018), since it provides direct substrate for computations at high 
abstraction levels. Recent work has begun to unravel how metacognition 
interacts with reinforcement learning, and how this interaction could be 
one key solution to learn flexible behavioural policies in complex and 
noisy environments (Cortese et al., 2021, 2020; Lak et al., 2020; Leb
reton et al., 2019). In this paper I will briefly cover how metacognition is 
operationalized, the neural and computational underpinnings, to then 
focus on its relevance for learning algorithms. Finally, I will introduce 
novel ways to study neural representations and meta-representations 
related to learning and metacognition, and discuss outstanding ques
tions and directions for future research. 

1. Metacognition: from perception and memory to high level 
reasoning and strategies 

How do we operationalize metacognition? In neuroscience and 
psychology, metacognition is often measured through confidence. Yet 
‘confidence’ is remarkably broad. It can relate to one’s overall self- 
confidence (I am confident that I will do well in today’s un
dertakings), to decisions (I don’t know whether choosing to turn left was 
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the correct choice), perception (it is foggy, and I am unsure whether 
what I see in the distance is an animal or an object), or memory (I am 
certain I locked the door when I left). 

In human experiments, confidence is generally recorded as an 
explicit judgement / report, through likert rating scales (Rahnev et al., 
2020). More sophisticated metrics may be used, such as wagering on the 
outcome of a choice (Kepecs and Mainen, 2012; Persaud et al., 2007). In 
other animals, in the absence of verbal reports, implicit measures are 
more common. Studies in monkeys tend to use opt-out tasks, whereby 
the animal can choose a safe option instead of a more rewarding but 
riskier discrimination (Kiani and Shadlen, 2009; Komura et al., 2013). 
The intuition behind this approach is that with low confidence, the 
monkey will choose to opt-out more often. In rodents, similar wagering 
paradigms are used, where confidence is indexed as the animal’s will
ingness to wait for a reward (Kepecs et al., 2008; Miyazaki et al., 2018; 
Stolyarova et al., 2019). 

It is worthwhile to make a distinction at this point on the definition of 
confidence, as research has partially evolved along parallel trajectories. 
Work in animals has privileged a probabilistic view of confidence, with 
strong computational undertones. In this normative definition, confi
dence directly reflects the sensory evidence, or the noisy probability that 
the decision was correct (Kepecs et al., 2008; Kiani and Shadlen, 2009; 
Meyniel et al., 2015). Human studies have, instead, tended to incorpo
rate broader views, focusing on both normative definitions of confidence 
(Sanders et al., 2016) as well as on psychological, cognitive aspects 
grounded in signal detection theory (Fleming and Lau, 2014; Rounis 
et al., 2010). Nevertheless, the past few years have seen a blur of this 
cross-species distinction, with substantial benefits for the field. In terms 
of the terminology used – e.g., certainty vs confidence (Dehaene et al., 
2017; Pouget et al., 2016), the computational approaches used to 
determine the basis of confidence judgements (Maniscalco et al., 2021; 
Meyniel et al., 2015; Peters and Lau, 2015; Pouget et al., 2016), and on 
the crucial yet overlooked issue of confounding variables (Fleming and 
Lau, 2014; Maniscalco and Lau, 2016; Morales et al., 2019). 

The eclectic range of confidence definitions and measures leaves us 
with many unanswered questions, despite decades of research. Is re
ported confidence a simple translation of statistical confidence? Simi
larly, is confidence unidimensional or are there multiple signals 
converging into a final experience and reported judgement? At the 
neural level, is there a core brain circuit responsible for primary self- 
monitoring functions? Or rather, are there basic neuro-computational 
motifs repeated throughout the brain, each module tuned to different 
aspects of monitoring / evaluation? Answering these questions will help 
us understand the function of confidence in learning. Behavioural and 
neuroimaging studies in humans, as well as electrophysiological studies 
in non-human primates and rodents, have begun to resolve these ques
tions. Research has identified neural correlates of confidence operating 
in a single domain (e.g., perceptual only vs. memory only), as well as 
more abstract (e.g., both perception and memory) (McCurdy et al., 
2013; Miyamoto et al., 2017; Morales et al., 2018). While there are 
distinct neuro-anatomical substrates of confidence at different levels of 
abstraction, the underlying computations may not differ drastically – 
although this remains to be shown. 

From a computational standpoint, several recent studies have found 
confidence to interact with reinforcement learning (Cortese et al., 2020; 
Lak et al., 2019, 2017), as well as guiding future choices (De Martino 
et al., 2012; Folke et al., 2016), and operating on reasoning / credit 
assignment (Sarafyazd and Jazayeri, 2019). Intriguing perspectives are 
arising, and a closer look at the computational value of confidence will 
help lay the ground for future investigations on the very nature of 
adaptive behaviours. 

2. The computational value of metacognition and confidence in 
reinforcement learning 

Intuitively, confidence reflects the certainty or uncertainty in one’s 

decision, skill, or knowledge. Keeping internal certainty / uncertainty 
signals can be useful to shape one’s future choices (Folke et al., 2016) – 
e.g., if I was not confident and the outcome was negative, next time I 
might consider another option; or in controlling how much an agent 
needs to learn (the learning rate) (Nassar et al., 2010) – e.g., I am 
confident, therefore I don’t need drastic updates in my beliefs. These 
examples provide a first layer of qualitative evidence for the adaptive 
function of confidence. 

To establish how confidence can affect learning (and vice-versa too, 
how e.g., choice outcomes may affect confidence) in a quantitative 
manner, we need the formalism of mathematical models. In this context, 
reinforcement learning is a very successful framework that explains 
learning and particularly, learning from experience (Doya, 2007; Sutton 
and Barto, 1998). In classic reinforcement learning, agents learn a policy 
through reward and / or punishment. Essentially, learning a set of 
conditions (states), under which certain actions are better than others (e. 
g., more likely to lead to reward). While this is a drastic simplification of 
the interactions any biological organism will have with their environ
ment, reinforcement learning encapsulates a set of seemingly universal 
rules (Dayan and Niv, 2008; Sutton and Barto, 1998). Formally, rein
forcement learning is described by a set of ‘states’ (the description of the 
environment, such as conditions, locations, etc), ‘actions’ (what the 
agent can do, such as choosing between options A, B, C, or moving right, 
left, front, back, etc), and ‘outcomes’ (whether the action taken results in 
a small or big reward, punishment, etc). The agent therefore learns – 
often through a sort of look-out table called the Q value function 
(Watkins and Dayan, 1992) – a policy that maximizes long-term returns 
by taking the most valuable action given a certain state. It is important to 
stress here this notion of policy; the best action might not necessarily be 
the one that leads to the highest immediate return, but the one that 
would do so in the long-term. While there exist a panoply of more 
complex models, two basic parameters govern the way an agent learns 
through reinforcement. The learning rate (α) controls how much the 
mismatch between an outcome and the agent’s prediction (the predic
tion error [PE]) will affect the agent’s value estimates. Stochasticity (β, 
inverse temperature) instead regulates the amount of ‘randomness’ in 
the agent’s action selection (how much the value estimates will influ
ence action selection). We will next look at how confidence intersects 
with learning (Fig. 1A), from the accumulation of evidence to model 
parameters, value estimates, prediction errors and model selection. 

2.1. Evidence accumulation 

A crucial step in any learning scenario is to acquire the right amount 
of information. Confidence has been shown to play a key function in 
controlling evidence accumulation online (Balsdon et al., 2020; Brosnan 
et al., 2020; Lim et al., 2020). Intuitively, if I am already sure that my 
decision, or action, is correct, then there is no need for me to spend 
additional time / resources accumulating more evidence. It is worth 
mentioning that evidence accumulation can mean momentary evidence 
(subsecond range, accumulating evidence for a single choice), as well as 
evidence over longer time scales across entire episodes. 

2.2. Learning rate 

Confidence can control the learning rate - low confidence would 
engage higher learning rates because little is known about the envi
ronment or the current situation (Nassar et al., 2012, 2010). High con
fidence would have the opposite effect whereby the learning rate will 
shrink - if an agent is confident about its choices, behaviour, or strategy, 
then there should be little need to cause large updates to one’s value 
estimates. More recent theoretical work has further shown how the 
learning rate is proportional (inversely proportional) to confidence for 
incorrect (correct) decisions (Drugowitsch et al., 2019). Importantly, an 
open question is whether these effects take place at global and / or local 
levels, depending on the learning horizon and environment factors (such 
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as variability, noise, etc). 

2.3. Stochasticity 

Relatedly, confidence may control global behavioural variables such 
as exploitation-exploration states. In the wild, biological organisms 
periodically shift from explorative states to states of exploitation, where 
the agent can use a set of learned rules or trajectories, to optimize 
returns. Algorithms using variance estimates (upper confidence bound) 
to regulate the exploration-exploitation trade-off have been shown to be 

efficient and effective in multi-armed bandit problems (Audibert et al., 
2009). People too tend to use uncertainty to arbitrate between explo
ration and exploitation, using low confidence about value estimates to 
signal a switch to explorative behaviour (Boldt et al., 2019). 

2.4. Value estimates 

Standard reinforcement learning algorithms update the value func
tion for the ‘state’ visited and the ‘action’ selected. This rests on the 
strong assumption that the state is implicitly or explicitly known. 

Fig. 1. The diverse computational and neu
ral substrates of confidence. A – Schematic of 
a simple reinforcement learning algorithm, 
with each model operation potentially affected 
by confidence indicated by a red arrow. X: 
integration, α: learning rate, β: stochasticity 
(randomness), δ: prediction error, r: outcome / 
reward, a: selected action, Q: value function / 
prediction. B - Neural circuits of confidence – 
highlighted in orange, reinforcement learning – 
highlighted in black, and their potential in
teractions – highlighted with red contour. Cir
cuits for metacognition and confidence include 
subregions of the prefrontal cortex (e.g., frontal 
poles, DLPFC, OFC, vmPFC), parietal, pre
cuneus, ACC, pgACC, as well as basal ganglia 
and thalamus (pulvinar). Areas associated with 
reinforcement learning are in the PFC (value 
estimates: vmPFC, frontal poles, SMA), in the 
basal ganglia (prediction errors, action selec
tion), cerebellum (prediction errors), SMA (ac
tion selection), parietal cortex (state 
representations), OFC / ACC (model selection). 
Potential interactions can happen directly 
within regions codings for both confidence and 
reinforcement learning variables, and through 
deep parallel loops linking subcortical areas 
with neocortex. Abbreviations: DLPFC =

dorsolateral prefrontal cortex, OFC = orbito
frontal cortex, vmPFC = ventromedial prefron
tal cortex, ACC = anterior cingulate cortex, 
pgACC = pregenual ACC, SMA = supplemen
tary motor area, FPC: frontopolar cortex, PC / 
LIP: parietal cortex, lateral intraparietal sulcus, 
PreC: precuneus, Pul: pulvinar, dMB: dopami
nergic midbrain, Pu: putamen, Cd: caudate.   
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However, in the real-world information about the state is often ambig
uous and noisy, and the outcome of one’s action may not be immediately 
known. It is thus often impossible to be sure about which state to update, 
especially when the number of possible states is high. Confidence could 
play a critical function (Lak et al., 2017): when the agent is confident, 
the value prediction update can be sharp at or around the relevant state. 
On the other hand, if the agent is not confident about the decision, or the 
state information, then the update may take a distributed form, whereby 
the value of neighbouring or conceptually related states may undergo 
partial updates. The spread of the update function towards alternative 
states may in itself also depend on confidence. 

2.5. Prediction errors 

Beyond value estimates and learning rates, confidence could also 
directly influence prediction errors. For example by modulating their 
magnitude (Lak et al., 2019), or as a step-function determining whether 
the prediction error should be considered at all. More complicated 
reinforcement learning architectures may afford additional venues for 
confidence computations related to prediction errors. In hierarchical 
models with mixture-of-experts architectures, an agent takes a global 
action as the weighted average, or product, of individual experts (Doya 
et al., 2002; Jacobs et al., 1991; Sugimoto et al., 2012). Each expert is 
effectively a simpler learning algorithm, tracking a specific subset of the 
environment or the representational space, or implementing a unique 
policy. Usually, prediction errors from each expert are used to weigh the 
experts and select the agent’s global action. An exciting question here is 
how much confidence and metacognition can gauge these internal 
representations or strategies, affecting the way prediction error signals 
are used to select the best expert (Cortese et al., 2021). 

2.6. Model selection 

Cognitive control and strategic behaviour can provide further, fertile 
grounds to investigate higher order properties of confidence. In hierar
chical fashion, multiple confidence signals tracking trial-by-trial de
cisions, evidence, and their outcomes could be summarised into more 
abstract forms of metacognition to monitor the effectiveness, or use
fulness, of a certain behavioural strategy. When the reliability of the 
current world model – i.e., how well it predicts events in the world, or 
choice outcomes – goes down (Donoso et al., 2014), confidence could 
trigger changes in the course of action (Sarafyazd and Jazayeri, 2019). 
Here, reliability is strictly a variable related to the model: it is computed 
based on its parameters, similar to prediction errors. Confidence instead 
is more “general”, since it can be in multiple dimensions, such as 
perception (e.g., about the input stimuli that are used by the model), 
decisions (e.g., the action selected by the model). Note the arrow of 
causality from reliability, to confidence, to behavioural switches re
mains speculative, since previous studies did not investigate confidence 
directly. Model reliability and confidence may evolve in parallel and 
affect behaviour as indicated above or, in other circumstances, 
orthogonally. 

Are these influences of confidence (Fig. 1A) distinguishable empiri
cally? Experimental manipulations and computational modelling of 
behaviour can provide insight into these different hypotheses and which 
parameter is most likely controlled by confidence under a given set of 
conditions. For example, under high volatility in outcomes’ probabili
ties, the main effect of confidence would likely be seen on evidence 
accumulation or learning rate. That is, to sample information longer or 
to limit the horizon of relevant past experience to the last few trials. In 
situations of high uncertainty in the states – either because of ambiguous 
stimuli, or the high dimensionality of states, confidence would affect 
mainly evidence accumulation and value estimates. These are just two 
examples, a better characterization of the conditions and the uniqueness 
(or not) of confidence influences on reinforcement learning variables is 
necessary. But besides experimental manipulations, computational 

modelling and simulations will prove crucial to gain quantitative insight 
and make progress in assessing the different influences (Palminteri et al., 
2017; Wilson and Collins, 2019). Computational modelling of behav
ioural data, possibly including neural data [as in e.g., (Leong et al., 
2017)], will allow the quantification of each influence. Model compar
isons will indicate which models are most likely to represent the un
derlying processes. Simulations across multiple candidate models (e.g., 
with and without confidence influence on specific learning parameters) 
using a range of parameter values, as well as using parameter estimates 
from participants’ choices, will further enable the falsification of specific 
models that may initially appear legitimate (Palminteri et al., 2017). 

Finally, it is important to note that confidence itself can be integrated 
as a prediction error signal in the absence of external feedback (Daniel 
and Pollmann, 2012; Guggenmos et al., 2016; Stolyarova et al., 2019). 
Thus, in perceptual learning (but other learning scenarios too, prob
ably), confidence itself can act as the teaching signal. 

3. Neural substrates at the intersection of learning and 
metacognition 

The neural circuits that support reinforcement learning, confidence 
computations, and their interaction are surprisingly diverse. In rein
forcement learning, research has traditionally aligned the neural ar
chitecture onto separate regions that track task and environment states – 
PFC and parietal cortex; prediction errors – caudate / striatum / puta
men; and action selection – supplementary motor area and basal ganglia 
(Fig. 1B, black notes). Yet, this picture has changed as more studies 
examined the neural underpinnings of reinforcement learning under a 
wider variety of conditions. Rather than having general reinforcement 
learning modules that are anatomically and functionally segregated, the 
brain implements (1) single learning variables encoded in parallel across 
multiple regions, (2) a diversity of variables encoded by single neurons 
[i.e., as in mixed selectivity (Fusi et al., 2016; Rigotti et al., 2013)], (3) 
different variables encoded by different neurons within localized cir
cuits. Prediction errors offer a great example: correlates have been found 
in almost every region of the brain, from the cerebellum (Heffley and 
Hull, 2019; Schlerf et al., 2012) to the frontopolar cortex (Boorman 
et al., 2011). Crucially, these prediction errors appear distributed ac
cording to their target behavioural dimension: sensory, motor, social, 
counterfactuals, etc. Moreover, even within a single task, prediction 
errors about different task features are encoded across a broad fronto
parietal network (Oemisch et al., 2019). Yet somewhere, most likely the 
ventral striatum in the basal ganglia, neurons code for general predic
tion errors [as an abstract signal, arising from any dimension (Schultz 
and Dickinson, 2000)]. 

Similarly, is the computation of confidence unequivocally linked to 
one central circuit, or is it driven by a distributed neural coding scheme 
(Fig. 1B, orange notes)? In humans, the PFC – and particularly the ros
trolateral and dorsolateral PFC (rlPFC/DLPFC) – is a central component 
of the explicit metacognitive / confidence circuitry (Cortese et al., 2016; 
Fleming et al., 2010; Lau and Passingham, 2006; Rounis et al., 2010). 
Recent studies have sought to disentangle different components that 
contribute to the construction of confidence. DLPFC activity correlated 
with the reported scalar confidence, while the pregenual anterior 
cingulate cortex (pgACC) contributed by forming an estimate of the 
probability of making a correct choice (Bang and Fleming, 2018; Mo
rales et al., 2018). Interestingly, activity in the pgACC has also been 
shown to correlate with the uncertainty in pain controllability (Zhang 
et al., 2020). This area may thus code a general certainty monitoring 
signal reflecting the current behavioural demand or goal: e.g., about the 
correctness of a choice in decision-making; about controllability in a 
control problem, etc. 

In monkeys, neurons in the area LIP code for implicit confidence 
signals (Kiani et al., 2014; Kiani and Shadlen, 2009). In rodents, the ACC 
has been found critical for confidence in visual modality (Stolyarova 
et al., 2019), while the orbitofrontal cortex (OFC) in olfactory modality 
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(Kepecs et al., 2008; Lak et al., 2014). More recent work has shown that 
single OFC neurons compute abstract confidence, across sensory (ol
factory and auditory) modalities (Masset et al., 2020). 

Beside the neocortex, subcortical regions are also very relevant for 
confidence. Given the wiring patterns of these areas with brain regions 
involved in reinforcement learning, the subcortical coding of confidence 
offers an interesting path to explore the points of contact between 
confidence and learning (Fig. 1B). Neurons in the pulvinar (a set of 
thalamic nuclei) explicitly signal decision confidence: their firing rates 
vary linearly with the degree of confidence, and their inactivation im
pairs confidence behaviour without affecting performance (Jaramillo 
et al., 2019; Komura et al., 2013). In the basal ganglia (caudate, puta
men), a confidence prediction error occurs when humans learn without 
feedback (Daniel and Pollmann, 2012; Guggenmos et al., 2016). Dopa
minergic neurons in the neighbouring midbrain signal confidence as a 
belief state about choice accuracy in rats (Lak et al., 2017). Disruption of 
dopaminergic neurons’ normal coding affects the animal’s future 
choices, consistent with an effect of confidence on prediction errors (Lak 
et al., 2019). 

Thus, what is the exact substrate for the interaction between confi
dence and reinforcement learning? For one, there are striking parallels 
in terms of the brain regions involved in both computation streams. 
Within the basal ganglia, the caudate and putamen represent prediction 
errors that go beyond reward prediction errors to also include confidence 
prediction errors. The vmPFC linearly encodes values (in reinforcement 
learning, expected value), but also confidence quadratically (Lebreton 
et al., 2015). Furthermore, top down projections from prefrontal cortex, 
parietal and cingulate cortices may directly pair neurons computing 
confidence with reinforcement learning circuits. Confidence signals 
could be integrated as feedback terms by different subsets of rein
forcement learning-related neurons (coding prediction errors, value, 
action selection). 

One appealing hypothesis along this line of thought is that parallel 
loops linking basal ganglia with cortical regions (especially the pre
frontal cortex) (Haruno and Kawato, 2006; Jeon et al., 2014; Lee et al., 
2020; Nakahara et al., 2001) support these interactions (Cortese et al., 
2019). Anatomically, the DLPFC – implicated in explicit metacognitive 
reports, is richly connected to the rostral and caudal parts of the puta
men and caudate, as well as the ventral striatum (Draganski et al., 2008), 
which represent different types of prediction errors, cached values, and 
commands for action selection. The parallel loops could allow the in
teractions to take place at multiple levels of specificity or abstraction. 

These ideas bring the discussion surprisingly close to the proposal 
that the brain is composed of learner and meta-learner modules (Doya, 
2002). Broadly speaking, the learner integrates information, associa
tions, outcomes or behavioural trajectories that map onto limited time 
steps, such as a single action-outcome pair. The meta-learner instead 
“learns to learn”: it is dedicated to extracting regularities and structure 
over longer time horizons, so as to tune the free parameters of the 
learner (Buschman and Miller, 2014; Doya, 2002; Wang et al., 2018). In 
the brain, the meta-learner loosely maps onto the PFC, while the learner 
onto the basal ganglia (Buschman and Miller, 2014; Doya, 2002). Given 
the ways in which confidence has been shown to affect the update of 
several reinforcement learning parameters (evidence accumulation, 
learning rates, etc), an attractive idea is that some elements of meta
cognitive confidence are part of a meta-learning system. Confidence 
could negotiate adjustments in behavioural policies via parameter up
dates in reinforcement learning modules. Note that this meta-learning 
system, although generally mapping onto the PFC, is not necessarily 
restricted to the PFC alone. 

4. Measuring, modulating, and generating neural meta- 
representations 

A critical question concerns how to investigate the neural represen
tations and neural circuitry that support the interaction between 

confidence / metacognition and learning. In this context multivoxel 
neural reinforcement (also known as decoded neurofeedback) is an 
attractive causal approach (Shibata et al., 2011; Taschereau-Dumouchel 
et al., 2020), which has evolved with recent developments in neuro
imaging (Feinberg et al., 2010; Haxby et al., 2014, 2011; Xu et al., 
2013). Combining machine learning approaches and real-time fMRI, 
multivoxel neural reinforcement has high content specificity (Lubia
niker et al., 2019), which enables researchers to reinforce or modify 
connections between two or more brain regions, specific neural repre
sentations, and even psychological processes. 

In multivoxel neural reinforcement the experimenter first builds a 
machine learning decoder using brain activity patterns acquired with 
fMRI (or EEG, MEG) while participants engage in a task or are at rest. For 
example, while participants discriminate the movement direction of a 
cloud of dots. A trained decoder (e.g., that predicts left vs right motion 
from brain activity patterns), will be able to compute the likelihood that 
a new brain activity pattern represents each original class (left and right 
motion). Because the calculation can be done in real-time and partici
pants need not be aware of the procedure, this approach provides a 
powerful means of accessing ongoing conscious or nonconscious neural 
representations. The output of the decoder (the probability of, say, left 
motion) can then be used to provide a commensurate reward and teach 
the brain to reinforce specific activity patterns (Fig. 2A). This way, one 
can induce perceptual learning (Amano et al., 2016; Shibata et al., 
2011), change confidence (Cortese et al., 2017, 2016; Koizumi et al., 
2017), reduce fears (Koizumi et al., 2016; Taschereau-Dumouchel et al., 
2018), and – presumably – elicit more complex secondary associations. 
Importantly, the vast majority of participants do not have conscious 
access to the information represented in their momentary brain activity 
patterns during decoded neurofeedback (Shibata et al., 2019). 

Richer designs can be considered in which task conditions are 
directly determined by high-dimensional multivoxel patterns of activity 
(Chew et al., 2019; Cortese et al., 2020). Thus, this kind of paradigm 
provides a useful way to study the mechanisms by which the brain re
solves dimensionality issues with limited amounts of training data (the 
“curse of dimensionality”). In a recent study by Cortese et al., an action 
(e.g., choosing option A) was paired with a particular latent brain state 
(e.g., a nonconscious representation of leftward motion) (Cortese et al., 
2020). Among a huge number of possible ongoing patterns of neural 
activity (with additional noise since measured indirectly through fMRI), 
the brain had to learn to selectively associate the output of a locally 
restricted neural population (e.g., within the visual cortex), with an 
action, through trial-and-error. The problem faced by the brain is 
effectively equivalent to searching a needle in a haystack. Yet, partici
pants displayed learning evidence. 

Crucially, Cortese and colleagues found that perceptual confidence 
indexed reinforcement learning at multiple levels (Cortese et al., 2020). 
Across participants, initial metacognitive sensitivity (Maniscalco and 
Lau, 2012) – defined as the ability to discriminate between correct and 
incorrect responses – predicted subsequent learning performance in the 
high-dimensional reinforcement learning task. Second, decision confi
dence was positively correlated with reinforced choice accuracy, and 
negatively correlated with the trial-by-trial magnitude of prediction 
errors obtained from reinforcement learning modeling. On trials in 
which participants’ confidence was lowest, they exhibited large learning 
uncertainty (Fig. 2B). That is, prediction errors had large magnitude 
indicating large mismatches between expectations and actual outcomes. 
This relationship was supported by the neural coupling between the 
DLPFC and the basal ganglia. Specifically, with learning, DLPFC activity 
patterns representing perceptual confidence became increasingly asso
ciated with basal ganglia activity patterns representing prediction error 
magnitude (Fig. 2C). Moreover, the functional connectivity measured at 
rest between the basal ganglia and a subregion of the DLPFC also 
increased as learning progressed, further supporting the finding of an 
association between metacognition and reinforcement learning at the 
neural level. Taken together, these results support a model of the brain 
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in which metacognition (confidence) is causally important for rein
forcement learning. Although the demonstration was not direct because 
it was based on observational data, analysis on time lag effects, as well as 
additional analyses ruling out alternative interpretations, make it highly 
plausible that metacognition plays a causal function in reinforcement 
learning. 

While this study established the role of metacognition in high- 
dimensional reinforcement learning problems, the actual mechanism 
remains essentially unclear. Parallel loops between the basal ganglia and 
the prefrontal cortex (and probably elsewhere in the brain too) provide a 
strong candidate neural substrate, but it remains unclear what is the 
actual implementation at the neuronal (and representational) levels. 

Taking a more speculative stance, these results may suggest that 
metacognition accelerates reinforcement learning processes by gener
ating low-dimensional meta-representations. When confidence is 
computed about a choice (as in this experiment, but it could be about 
something else such as a memory, or the sensory stimulus itself), the 
brain may re-represent the content of the primary (first-order) repre
sentation as a meta-representation. That is, suppose the choice is about 
motion direction, then there should be a primary motion representation, 
in area V5 of the visual cortex. By computing confidence about the 
relevant choice, the brain could re-represent this motion information in 

the prefrontal cortex, as a meta-representation. Such meta- 
representations are void of irrelevant information, and are construed 
in a low-dimensional space. If reinforcement learning operates on these 
low-dimensional folds, it would be faster, bypassing the bottlenecks that 
arise in high-dimensional sensory space. 

The use of closed-loop neuroimaging and machine learning decoders 
provides a unique opportunity to quantify the function of neural rep
resentations (conscious or nonconscious), meta-representations, in 
metacognition and learning. 

5. Discussion, perspectives, and the many open questions 

This paper aimed to provide an overview of the burgeoning area of 
research on metacognition and learning, at the intersection of cognitive 
sciences, psychology and computational neuroscience. It is becoming 
increasingly clear that confidence can affect learning processes at 
various levels: by controlling how evidence is accumulated, by directly 
biasing value estimates, by modulating learning rates, by affecting 
prediction errors and their integration, and by changing the amount of 
exploration drive for the selection of new strategies. From a more 
speculative viewpoint, metacognition could also accelerate learning by 
generating meta-representations, essential building blocks of 

Fig. 2. Multivoxel neural reinforcement and 
closed-loop experiments for confidence and 
learning. A - The decoded neurofeedback pro
tocol. A participant’s brain activity is measured 
with fMRI, and the data is used in real-time to 
compute a score with a machine learning 
decoder. This score signals the likelihood that 
the current activity pattern represents the 
target, such as an object, a task feature, or a 
psychological variable. In the neurofeedback 
experiment, the score is fed back to participants 
in the form of a visual cue (a circle). Partici
pants are instructed that the larger the feedback 
circle, the larger the monetary reward. The 
same setting can be utilized to define task 
conditions. That is, instead of using the decoder 
score to provide visual feedback, the score can 
be used to determine the contingency for an 
optimal choice, or to modify a visual stimulus 
presented on the screen, or to determine the 
task difficulty, in real-time. Image modified 
from (Cortese et al., 2021). B - confidence was 
associated with prediction error magnitude in a 
study where participants had to learn a 
high-dimensional mapping between patterns of 
brain activity and a 1-d (2 options) action 
space. That is, the contingency for the optimal 
choice was defined by a brain activity pattern. 
The results show that the higher the confidence, 
the smaller the learning uncertainty in the form 
of smaller prediction errors. * p<0.05, *** 
p<0.001. Image modified from (Cortese et al., 
2020). C - In parallel with confidence - predic
tion error magnitude correlation at the behav
ioural and computational levels, the same study 
found increased neural coupling between the 
DLPFC and the basal ganglia. This coupling was 
specific for the information represented in these 
areas: confidence in DLPFC, and uncertainty 
(prediction error magnitude) in the basal 
ganglia, and it increased with learning. Image 
modified from (Cortese et al., 2020).   
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summarised abstract states in the brain. 
Do we now know where in the brain confidence signals originate? In 

the quest to characterize the neural and computational origins of con
fidence, invariably there will be differences across studies (as discussed 
in the section about neural correlates, Fig. 1B). Similar to other fields in 
decision-making research (Wallis, 2011), some of the differences in the 
literature might arise because of complex functional homologies be
tween areas across species (humans, non-human primates, rodents, …). 
This may be particularly true between rodents and non-human primates 
or humans (Wise, 2008), as the latter two display high anatomical and 
functional homology in terms of brain areas related to reward-guided 
learning and decisions (Neubert et al., 2015). The primary decision to 
record from a given area might have an impact too – we might be 
recording from the ACC, but neurons in the OFC are perhaps also related 
to the same experimental variable(s). Yet, differences probably also arise 
from the type of confidence measured (reflecting statistical confidence 
or a metacognitive evaluation), or the tasks used. As mentioned earlier, 
humans are often asked to report confidence as an explicit judgement on 
a linear scale, while in other animals confidence is measured as the 
willingness to wait for a reward or choosing an opt-out safe option. 
Although all these tasks clearly measure confidence signals, the under
lying computations and the behavioural endpoint can subtly differ. 
Future work could capitalize on the use of closely matched tasks and 
conditions in different species (Odegaard et al., 2018; Stolyarova et al., 
2019) to disentangle these issues. 

From a more conceptual angle, can we really talk about meta- 
representations (re-representations of ongoing sensory or memory rep
resentations)? In a way, from a purely mechanistic viewpoint, meta- 
representations are here equivalent to abstractions: simplified repre
sentations, or schematics, of more complex information (Fleming, 
2020). Crucially, these representations should be found in the prefrontal 
cortex, as a relevant higher-order representation that directly stems 
from an inner monitoring system (Brown et al., 2019). Because rein
forcement learning processes would need immediate access to these 
meta-representations to be efficient, there appears here an interesting 
overlap – if not functionally, at least in anatomical terms – on the neural 
structure of parallel loops between the basal ganglia and the neocortex 
discussed earlier. These loops connect reinforcement learning with 
confidence and metacognitive signals, but also with 
meta-representations and other high cognitive functions. A speculation 
here is that confidence is involved in the construction of 
meta-representations. But could it be rather that confidence is involved 
in the way reinforcement learning selects and operates on 
meta-representations? An exciting avenue of research here is the pos
sibility that the interaction between metacognition and reinforcement 
learning, over longer time scales, results in the construction of schemas 
and cognitive maps (i.e., internal world models) through assembly of 
meta-representations. 

Relatedly, once multiple internal models have been constructed, 
confidence could still be part of the selection / arbitration mechanism 
favouring one rather than the other strategy. Considering this arbitra
tion mechanism, what kind of representational architecture is the most 
‘efficient’? That is, should the brain track multiple strategies simulta
neously - as in a mixture-of-experts architecture, or should it represent 
only the best strategy at any point in time, keeping the rest latent? In 
both cases confidence can help in selecting the most relevant or useful 
strategy, but each approach has benefits and limitations. A mixture-of- 
experts architecture means that a more complex problem can be 
broken down into simpler components, and is very useful when data is 
sparse and there is parallel computational power, since with a single 
data point multiple internal models can be updated simultaneously. It is 
also computationally costly and has the downside of computing 
behavioural trajectories that may never be used. Conversely, a 
hypothesis-testing regime, where the best strategy or internal model is 
actively represented, probably allows faster computing when resources 
are limited, or the environment is noisy but also incorporates exploitable 

statistical regularities. Unfortunately, this also means that the agent 
could be slower to update its course of action when environmental 
conditions change suddenly, because the alternatives are not all up-to- 
date. What is implemented by the brain? Evidence to date indicates 
both solutions are plausible (Badre and Frank, 2012; Donoso et al., 2014; 
Frank and Badre, 2012). The brain may capitalize on both types of 
computational approaches, separately or in hybrid fashion depending on 
the circumstances. 

While this review covered at length the points of contact between 
metacognition and reinforcement learning from the viewpoint of con
fidence affecting learning parameters, it is important to stress here that 
the interaction is most likely bidirectional. Confidence is biased by 
previous prediction errors (Cortese et al., 2020), context and rewards 
(Lebreton et al., 2019, 2018), choice history (Benwell et al., 2019), 
post-decisional information (Navajas et al., 2016), priors (Locke et al., 
2020) and learning itself (Chen et al., 2019). 

One interesting point that deserves deeper investigation in the future 
is the intersection between inductive biases – especially acquired ones – 
and metacognition in the context of learning. Inductive biases are the set 
of assumptions, at the architecture or functional level, that guide the 
way an agent will apply knowledge to novel situations. In machine 
learning, and especially in deep learning algorithms, integrating high- 
level inductive biases is now viewed as a critical step to build AI sys
tems that enjoy similar levels of flexibility and generalization as humans 
(Goyal and Bengio, 2020; Tenenbaum et al., 2011). A compelling 
example of inductive bias is compositionality, whereby simpler building 
blocks are combined at will to create more complex structure, which 
allow agents to make strong inference for generalization with small 
amounts of data. When humans learn new concepts, compositionality is 
a ubiquitous strategy (Goodman et al., 2008; Kemp, 2012). Although 
inductive biases do not need metacognition to operate (Tenenbaum 
et al., 2011), recent work in cognitive neuroscience has shown how 
humans have metacognitive access into their own concept learning 
process (Stojic et al., 2018), opening a first link between inductive biases 
and metacognition. 

Intriguingly, we often discuss humans in terms of intelligence, 
extreme generalization abilities and flexible behaviours; but humans are 
also beguiled by habits, irrational choices, and in general behaviours 
that appear rather inflexible. A strong example in this context is 
confirmation bias, whereby we seek or interpret evidence in ways that 
are partial to our existing beliefs or expectations (Nickerson, 1998). Why 
this tension? Perhaps some answers are to be found in the specifics of 
metacognition and self-monitoring abilities. Here the link develops over 
two levels: confidence itself relying more on the information that sup
ports the decision made (Michel and Peters, 2020; Zylberberg et al., 
2012), or the latest choices (Talluri et al., 2018), as well as a more 
general tendency of individuals with alterations in metacognition to 
display high confirmation bias (Rollwage et al., 2018). In fact, when 
confirmation bias is a built-in part of a metacognitive agent, it can 
become adaptive (Rollwage and Fleming, 2021). That is, an agent 
showing high levels of self-awareness and confirmation bias performs 
better than an unbiased agent. Intuitively, such an agent should better 
distinguish situations in which errors are more likely – confidence would 
be low – and situations in which responses are mostly correct (high 
confidence), thus allowing selective information processing. In this 
context, it would be interesting to uncover the interactions between 
neural systems dedicated to learning new information, skills or behav
iours, those involved in metacognition and self-monitoring, and those 
tailored to exploit a certain situation or knowledge. This way we may 
understand how the brain actively ignores information (especially when 
only some information is central to the problem or behavioural demand 
at hand), and how confirmation bias can be adaptive or maladaptive for 
high level strategic behaviour. 

In sum, the goal of this manuscript was to shine a light on the 
fascinating computational properties of metacognition and confidence 
in learning. Particularly, highlighting points of discussion that may be 
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useful stepping stones to further study the nature of adaptive behav
iours, efficient learning, and intelligence. Findings from these lines of 
research will have profound implications for our appreciation of high 
level brain functions, for understanding maladaptive learning processes, 
but also for the development of novel artificial agents. The decoded 
neurofeedback approach will further allow novel experiments that reach 
beyond the standard logic of neuroscience and psychology experiments, 
by using the brain as its own canvas. 
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