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wider perspectives.

The ability to learn efficiently is a fascinating aspect of biological
intelligence. Humans can learn new tasks or behaviours in an often
predictably fast manner — with limited data. Machines can reach and
periodically surpass human performance in specific contexts [e.g., Atari
games, or chess (Lake et al., 2015; Sorokin et al., 2015)]. Yet, the way in
which humans and machines learn and approach problems remains (for
the most part) strikingly different, and particularly so for complex be-
haviours. Recent empirical and theoretical work suggests inductive
abilities (Lake et al., 2015; Tenenbaum et al., 2011) and higher cognitive
functions such as attention, episodic memory as well as metacognition
and consciousness, may be crucial ingredients to augment artificial
agents and accelerate learning (Behrens et al., 2018; Bengio, 2017;
Botvinick et al., 2019; Cortese et al., 2019; Niv, 2019).

The focus of this review will be on the intersection between meta-
cognition and learning. Metacognition, or cognition about cognition, is
the ability to reflect upon and report one’s own mental states (Fleming
et al., 2012; Metcalfe and Son, 2012). Interestingly, although many
other animals have some form of metacognition, it appears to be
uniquely developed in humans (Metcalfe, 2008). Given its
self-monitoring nature, metacognition is well positioned to integrate
feedback loops over behaviour and influence learning processes. It could
take part in generating meta-representations — summarised re-repre-
sentations of ongoing sensory or memory representations (Brown et al.,

2019; Dehaene et al., 2017; Lau and Rosenthal, 2011). This feature
seems inherently important in a functional architecture of hierarchical
learning systems such as the brain (Kawato et al., 1987; Wang et al.,
2018), since it provides direct substrate for computations at high
abstraction levels. Recent work has begun to unravel how metacognition
interacts with reinforcement learning, and how this interaction could be
one key solution to learn flexible behavioural policies in complex and
noisy environments (Cortese et al., 2021, 2020; Lak et al., 2020; Leb-
reton et al., 2019). In this paper I will briefly cover how metacognition is
operationalized, the neural and computational underpinnings, to then
focus on its relevance for learning algorithms. Finally, I will introduce
novel ways to study neural representations and meta-representations
related to learning and metacognition, and discuss outstanding ques-
tions and directions for future research.

1. Metacognition: from perception and memory to high level
reasoning and strategies

How do we operationalize metacognition? In neuroscience and
psychology, metacognition is often measured through confidence. Yet
‘confidence’ is remarkably broad. It can relate to one’s overall self-
confidence (I am confident that I will do well in today’s un-
dertakings), to decisions (I don’t know whether choosing to turn left was
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the correct choice), perception (it is foggy, and I am unsure whether
what I see in the distance is an animal or an object), or memory (I am
certain I locked the door when I left).

In human experiments, confidence is generally recorded as an
explicit judgement / report, through likert rating scales (Rahnev et al.,
2020). More sophisticated metrics may be used, such as wagering on the
outcome of a choice (Kepecs and Mainen, 2012; Persaud et al., 2007). In
other animals, in the absence of verbal reports, implicit measures are
more common. Studies in monkeys tend to use opt-out tasks, whereby
the animal can choose a safe option instead of a more rewarding but
riskier discrimination (Kiani and Shadlen, 2009; Komura et al., 2013).
The intuition behind this approach is that with low confidence, the
monkey will choose to opt-out more often. In rodents, similar wagering
paradigms are used, where confidence is indexed as the animal’s will-
ingness to wait for a reward (Kepecs et al., 2008; Miyazaki et al., 2018;
Stolyarova et al., 2019).

It is worthwhile to make a distinction at this point on the definition of
confidence, as research has partially evolved along parallel trajectories.
Work in animals has privileged a probabilistic view of confidence, with
strong computational undertones. In this normative definition, confi-
dence directly reflects the sensory evidence, or the noisy probability that
the decision was correct (Kepecs et al., 2008; Kiani and Shadlen, 2009;
Meyniel et al., 2015). Human studies have, instead, tended to incorpo-
rate broader views, focusing on both normative definitions of confidence
(Sanders et al., 2016) as well as on psychological, cognitive aspects
grounded in signal detection theory (Fleming and Lau, 2014; Rounis
et al., 2010). Nevertheless, the past few years have seen a blur of this
cross-species distinction, with substantial benefits for the field. In terms
of the terminology used - e.g., certainty vs confidence (Dehaene et al.,
2017; Pouget et al., 2016), the computational approaches used to
determine the basis of confidence judgements (Maniscalco et al., 2021;
Meyniel et al., 2015; Peters and Lau, 2015; Pouget et al., 2016), and on
the crucial yet overlooked issue of confounding variables (Fleming and
Lau, 2014; Maniscalco and Lau, 2016; Morales et al., 2019).

The eclectic range of confidence definitions and measures leaves us
with many unanswered questions, despite decades of research. Is re-
ported confidence a simple translation of statistical confidence? Simi-
larly, is confidence unidimensional or are there multiple signals
converging into a final experience and reported judgement? At the
neural level, is there a core brain circuit responsible for primary self-
monitoring functions? Or rather, are there basic neuro-computational
motifs repeated throughout the brain, each module tuned to different
aspects of monitoring / evaluation? Answering these questions will help
us understand the function of confidence in learning. Behavioural and
neuroimaging studies in humans, as well as electrophysiological studies
in non-human primates and rodents, have begun to resolve these ques-
tions. Research has identified neural correlates of confidence operating
in a single domain (e.g., perceptual only vs. memory only), as well as
more abstract (e.g., both perception and memory) (McCurdy et al.,
2013; Miyamoto et al., 2017; Morales et al., 2018). While there are
distinct neuro-anatomical substrates of confidence at different levels of
abstraction, the underlying computations may not differ drastically —
although this remains to be shown.

From a computational standpoint, several recent studies have found
confidence to interact with reinforcement learning (Cortese et al., 2020;
Lak et al., 2019, 2017), as well as guiding future choices (De Martino
et al., 2012; Folke et al., 2016), and operating on reasoning / credit
assignment (Sarafyazd and Jazayeri, 2019). Intriguing perspectives are
arising, and a closer look at the computational value of confidence will
help lay the ground for future investigations on the very nature of
adaptive behaviours.

2. The computational value of metacognition and confidence in
reinforcement learning

Intuitively, confidence reflects the certainty or uncertainty in one’s
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decision, skill, or knowledge. Keeping internal certainty / uncertainty
signals can be useful to shape one’s future choices (Folke et al., 2016) —
e.g., if I was not confident and the outcome was negative, next time I
might consider another option; or in controlling how much an agent
needs to learn (the learning rate) (Nassar et al., 2010) — e.g., I am
confident, therefore I don’t need drastic updates in my beliefs. These
examples provide a first layer of qualitative evidence for the adaptive
function of confidence.

To establish how confidence can affect learning (and vice-versa too,
how e.g., choice outcomes may affect confidence) in a quantitative
manner, we need the formalism of mathematical models. In this context,
reinforcement learning is a very successful framework that explains
learning and particularly, learning from experience (Doya, 2007; Sutton
and Barto, 1998). In classic reinforcement learning, agents learn a policy
through reward and / or punishment. Essentially, learning a set of
conditions (states), under which certain actions are better than others (e.
g., more likely to lead to reward). While this is a drastic simplification of
the interactions any biological organism will have with their environ-
ment, reinforcement learning encapsulates a set of seemingly universal
rules (Dayan and Niv, 2008; Sutton and Barto, 1998). Formally, rein-
forcement learning is described by a set of ‘states’ (the description of the
environment, such as conditions, locations, etc), ‘actions’ (what the
agent can do, such as choosing between options A, B, C, or moving right,
left, front, back, etc), and ‘outcomes’ (whether the action taken results in
a small or big reward, punishment, etc). The agent therefore learns —
often through a sort of look-out table called the Q value function
(Watkins and Dayan, 1992) — a policy that maximizes long-term returns
by taking the most valuable action given a certain state. It is important to
stress here this notion of policy; the best action might not necessarily be
the one that leads to the highest immediate return, but the one that
would do so in the long-term. While there exist a panoply of more
complex models, two basic parameters govern the way an agent learns
through reinforcement. The learning rate (a) controls how much the
mismatch between an outcome and the agent’s prediction (the predic-
tion error [PE]) will affect the agent’s value estimates. Stochasticity (5,
inverse temperature) instead regulates the amount of ‘randomness’ in
the agent’s action selection (how much the value estimates will influ-
ence action selection). We will next look at how confidence intersects
with learning (Fig. 1A), from the accumulation of evidence to model
parameters, value estimates, prediction errors and model selection.

2.1. Evidence accumulation

A crucial step in any learning scenario is to acquire the right amount
of information. Confidence has been shown to play a key function in
controlling evidence accumulation online (Balsdon et al., 2020; Brosnan
et al., 2020; Lim et al., 2020). Intuitively, if I am already sure that my
decision, or action, is correct, then there is no need for me to spend
additional time / resources accumulating more evidence. It is worth
mentioning that evidence accumulation can mean momentary evidence
(subsecond range, accumulating evidence for a single choice), as well as
evidence over longer time scales across entire episodes.

2.2. Learning rate

Confidence can control the learning rate - low confidence would
engage higher learning rates because little is known about the envi-
ronment or the current situation (Nassar et al., 2012, 2010). High con-
fidence would have the opposite effect whereby the learning rate will
shrink - if an agent is confident about its choices, behaviour, or strategy,
then there should be little need to cause large updates to one’s value
estimates. More recent theoretical work has further shown how the
learning rate is proportional (inversely proportional) to confidence for
incorrect (correct) decisions (Drugowitsch et al., 2019). Importantly, an
open question is whether these effects take place at global and / or local
levels, depending on the learning horizon and environment factors (such
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2.3. Stochasticity

Relatedly, confidence may control global behavioural variables such
as exploitation-exploration states. In the wild, biological organisms
periodically shift from explorative states to states of exploitation, where
the agent can use a set of learned rules or trajectories, to optimize
returns. Algorithms using variance estimates (upper confidence bound)
to regulate the exploration-exploitation trade-off have been shown to be
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Fig. 1. The diverse computational and neu-
ral substrates of confidence. A — Schematic of
a simple reinforcement learning algorithm,
with each model operation potentially affected
by confidence indicated by a red arrow. X:
integration, @: learning rate, f: stochasticity
(randomness), &: prediction error, r: outcome /
reward, a: selected action, Q: value function /
prediction. B - Neural circuits of confidence —
highlighted in orange, reinforcement learning —
highlighted in black, and their potential in-
teractions — highlighted with red contour. Cir-
cuits for metacognition and confidence include
subregions of the prefrontal cortex (e.g., frontal
poles, DLPFC, OFC, vmPFC), parietal, pre-
cuneus, ACC, pgACC, as well as basal ganglia
and thalamus (pulvinar). Areas associated with
reinforcement learning are in the PFC (value

a
—_—>
action / choice

Q(s)
predicted value

r estimates: vmPFC, frontal poles, SMA), in the
< basal ganglia (prediction errors, action selec-
tion), cerebellum (prediction errors), SMA (ac-

outcome

tion selection), parietal cortex (state
representations), OFC / ACC (model selection).
Potential interactions can happen directly
within regions codings for both confidence and
reinforcement learning variables, and through
deep parallel loops linking subcortical areas
with neocortex. Abbreviations: DLPFC =
dorsolateral prefrontal cortex, OFC = orbito-
frontal cortex, vmPFC = ventromedial prefron-
tal cortex, ACC = anterior cingulate cortex,
PgACC = pregenual ACC, SMA = supplemen-
tary motor area, FPC: frontopolar cortex, PC /
LIP: parietal cortex, lateral intraparietal sulcus,
PreC: precuneus, Pul: pulvinar, dMB: dopami-
nergic midbrain, Pu: putamen, Cd: caudate.

Model selection

Value signals:
unchosen option

Value signals:
chosen option

efficient and effective in multi-armed bandit problems (Audibert et al.,
2009). People too tend to use uncertainty to arbitrate between explo-
ration and exploitation, using low confidence about value estimates to
signal a switch to explorative behaviour (Boldt et al., 2019).

2.4. Value estimates

Standard reinforcement learning algorithms update the value func-
tion for the ‘state’ visited and the ‘action’ selected. This rests on the
strong assumption that the state is implicitly or explicitly known.
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However, in the real-world information about the state is often ambig-
uous and noisy, and the outcome of one’s action may not be immediately
known. It is thus often impossible to be sure about which state to update,
especially when the number of possible states is high. Confidence could
play a critical function (Lak et al., 2017): when the agent is confident,
the value prediction update can be sharp at or around the relevant state.
On the other hand, if the agent is not confident about the decision, or the
state information, then the update may take a distributed form, whereby
the value of neighbouring or conceptually related states may undergo
partial updates. The spread of the update function towards alternative
states may in itself also depend on confidence.

2.5. Prediction errors

Beyond value estimates and learning rates, confidence could also
directly influence prediction errors. For example by modulating their
magnitude (Lak et al., 2019), or as a step-function determining whether
the prediction error should be considered at all. More complicated
reinforcement learning architectures may afford additional venues for
confidence computations related to prediction errors. In hierarchical
models with mixture-of-experts architectures, an agent takes a global
action as the weighted average, or product, of individual experts (Doya
et al., 2002; Jacobs et al., 1991; Sugimoto et al., 2012). Each expert is
effectively a simpler learning algorithm, tracking a specific subset of the
environment or the representational space, or implementing a unique
policy. Usually, prediction errors from each expert are used to weigh the
experts and select the agent’s global action. An exciting question here is
how much confidence and metacognition can gauge these internal
representations or strategies, affecting the way prediction error signals
are used to select the best expert (Cortese et al., 2021).

2.6. Model selection

Cognitive control and strategic behaviour can provide further, fertile
grounds to investigate higher order properties of confidence. In hierar-
chical fashion, multiple confidence signals tracking trial-by-trial de-
cisions, evidence, and their outcomes could be summarised into more
abstract forms of metacognition to monitor the effectiveness, or use-
fulness, of a certain behavioural strategy. When the reliability of the
current world model - i.e., how well it predicts events in the world, or
choice outcomes — goes down (Donoso et al., 2014), confidence could
trigger changes in the course of action (Sarafyazd and Jazayeri, 2019).
Here, reliability is strictly a variable related to the model: it is computed
based on its parameters, similar to prediction errors. Confidence instead
is more “general”, since it can be in multiple dimensions, such as
perception (e.g., about the input stimuli that are used by the model),
decisions (e.g., the action selected by the model). Note the arrow of
causality from reliability, to confidence, to behavioural switches re-
mains speculative, since previous studies did not investigate confidence
directly. Model reliability and confidence may evolve in parallel and
affect behaviour as indicated above or, in other circumstances,
orthogonally.

Are these influences of confidence (Fig. 1A) distinguishable empiri-
cally? Experimental manipulations and computational modelling of
behaviour can provide insight into these different hypotheses and which
parameter is most likely controlled by confidence under a given set of
conditions. For example, under high volatility in outcomes’ probabili-
ties, the main effect of confidence would likely be seen on evidence
accumulation or learning rate. That is, to sample information longer or
to limit the horizon of relevant past experience to the last few trials. In
situations of high uncertainty in the states — either because of ambiguous
stimuli, or the high dimensionality of states, confidence would affect
mainly evidence accumulation and value estimates. These are just two
examples, a better characterization of the conditions and the uniqueness
(or not) of confidence influences on reinforcement learning variables is
necessary. But besides experimental manipulations, computational
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modelling and simulations will prove crucial to gain quantitative insight
and make progress in assessing the different influences (Palminteri et al.,
2017; Wilson and Collins, 2019). Computational modelling of behav-
ioural data, possibly including neural data [as in e.g., (Leong et al.,
2017)1, will allow the quantification of each influence. Model compar-
isons will indicate which models are most likely to represent the un-
derlying processes. Simulations across multiple candidate models (e.g.,
with and without confidence influence on specific learning parameters)
using a range of parameter values, as well as using parameter estimates
from participants’ choices, will further enable the falsification of specific
models that may initially appear legitimate (Palminteri et al., 2017).

Finally, it is important to note that confidence itself can be integrated
as a prediction error signal in the absence of external feedback (Daniel
and Pollmann, 2012; Guggenmos et al., 2016; Stolyarova et al., 2019).
Thus, in perceptual learning (but other learning scenarios too, prob-
ably), confidence itself can act as the teaching signal.

3. Neural substrates at the intersection of learning and
metacognition

The neural circuits that support reinforcement learning, confidence
computations, and their interaction are surprisingly diverse. In rein-
forcement learning, research has traditionally aligned the neural ar-
chitecture onto separate regions that track task and environment states —
PFC and parietal cortex; prediction errors — caudate / striatum / puta-
men; and action selection — supplementary motor area and basal ganglia
(Fig. 1B, black notes). Yet, this picture has changed as more studies
examined the neural underpinnings of reinforcement learning under a
wider variety of conditions. Rather than having general reinforcement
learning modules that are anatomically and functionally segregated, the
brain implements (1) single learning variables encoded in parallel across
multiple regions, (2) a diversity of variables encoded by single neurons
[i.e., as in mixed selectivity (Fusi et al., 2016; Rigotti et al., 2013)]1, (3)
different variables encoded by different neurons within localized cir-
cuits. Prediction errors offer a great example: correlates have been found
in almost every region of the brain, from the cerebellum (Heffley and
Hull, 2019; Schlerf et al., 2012) to the frontopolar cortex (Boorman
et al., 2011). Crucially, these prediction errors appear distributed ac-
cording to their target behavioural dimension: sensory, motor, social,
counterfactuals, etc. Moreover, even within a single task, prediction
errors about different task features are encoded across a broad fronto-
parietal network (Oemisch et al., 2019). Yet somewhere, most likely the
ventral striatum in the basal ganglia, neurons code for general predic-
tion errors [as an abstract signal, arising from any dimension (Schultz
and Dickinson, 2000)].

Similarly, is the computation of confidence unequivocally linked to
one central circuit, or is it driven by a distributed neural coding scheme
(Fig. 1B, orange notes)? In humans, the PFC - and particularly the ros-
trolateral and dorsolateral PFC (r]PFC/DLPFC) - is a central component
of the explicit metacognitive / confidence circuitry (Cortese et al., 2016;
Fleming et al., 2010; Lau and Passingham, 2006; Rounis et al., 2010).
Recent studies have sought to disentangle different components that
contribute to the construction of confidence. DLPFC activity correlated
with the reported scalar confidence, while the pregenual anterior
cingulate cortex (pgACC) contributed by forming an estimate of the
probability of making a correct choice (Bang and Fleming, 2018; Mo-
rales et al., 2018). Interestingly, activity in the pgACC has also been
shown to correlate with the uncertainty in pain controllability (Zhang
et al., 2020). This area may thus code a general certainty monitoring
signal reflecting the current behavioural demand or goal: e.g., about the
correctness of a choice in decision-making; about controllability in a
control problem, etc.

In monkeys, neurons in the area LIP code for implicit confidence
signals (Kiani et al., 2014; Kiani and Shadlen, 2009). In rodents, the ACC
has been found critical for confidence in visual modality (Stolyarova
et al., 2019), while the orbitofrontal cortex (OFC) in olfactory modality



A. Cortese

(Kepecs et al., 2008; Lak et al., 2014). More recent work has shown that
single OFC neurons compute abstract confidence, across sensory (ol-
factory and auditory) modalities (Masset et al., 2020).

Beside the neocortex, subcortical regions are also very relevant for
confidence. Given the wiring patterns of these areas with brain regions
involved in reinforcement learning, the subcortical coding of confidence
offers an interesting path to explore the points of contact between
confidence and learning (Fig. 1B). Neurons in the pulvinar (a set of
thalamic nuclei) explicitly signal decision confidence: their firing rates
vary linearly with the degree of confidence, and their inactivation im-
pairs confidence behaviour without affecting performance (Jaramillo
et al., 2019; Komura et al., 2013). In the basal ganglia (caudate, puta-
men), a confidence prediction error occurs when humans learn without
feedback (Daniel and Pollmann, 2012; Guggenmos et al., 2016). Dopa-
minergic neurons in the neighbouring midbrain signal confidence as a
belief state about choice accuracy in rats (Lak et al., 2017). Disruption of
dopaminergic neurons’ normal coding affects the animal’s future
choices, consistent with an effect of confidence on prediction errors (Lak
et al., 2019).

Thus, what is the exact substrate for the interaction between confi-
dence and reinforcement learning? For one, there are striking parallels
in terms of the brain regions involved in both computation streams.
Within the basal ganglia, the caudate and putamen represent prediction
errors that go beyond reward prediction errors to also include confidence
prediction errors. The vmPFC linearly encodes values (in reinforcement
learning, expected value), but also confidence quadratically (Lebreton
et al., 2015). Furthermore, top down projections from prefrontal cortex,
parietal and cingulate cortices may directly pair neurons computing
confidence with reinforcement learning circuits. Confidence signals
could be integrated as feedback terms by different subsets of rein-
forcement learning-related neurons (coding prediction errors, value,
action selection).

One appealing hypothesis along this line of thought is that parallel
loops linking basal ganglia with cortical regions (especially the pre-
frontal cortex) (Haruno and Kawato, 2006; Jeon et al., 2014; Lee et al.,
2020; Nakahara et al., 2001) support these interactions (Cortese et al.,
2019). Anatomically, the DLPFC - implicated in explicit metacognitive
reports, is richly connected to the rostral and caudal parts of the puta-
men and caudate, as well as the ventral striatum (Draganski et al., 2008),
which represent different types of prediction errors, cached values, and
commands for action selection. The parallel loops could allow the in-
teractions to take place at multiple levels of specificity or abstraction.

These ideas bring the discussion surprisingly close to the proposal
that the brain is composed of learner and meta-learner modules (Doya,
2002). Broadly speaking, the learner integrates information, associa-
tions, outcomes or behavioural trajectories that map onto limited time
steps, such as a single action-outcome pair. The meta-learner instead
“learns to learn™ it is dedicated to extracting regularities and structure
over longer time horizons, so as to tune the free parameters of the
learner (Buschman and Miller, 2014; Doya, 2002; Wang et al., 2018). In
the brain, the meta-learner loosely maps onto the PFC, while the learner
onto the basal ganglia (Buschman and Miller, 2014; Doya, 2002). Given
the ways in which confidence has been shown to affect the update of
several reinforcement learning parameters (evidence accumulation,
learning rates, etc), an attractive idea is that some elements of meta-
cognitive confidence are part of a meta-learning system. Confidence
could negotiate adjustments in behavioural policies via parameter up-
dates in reinforcement learning modules. Note that this meta-learning
system, although generally mapping onto the PFC, is not necessarily
restricted to the PFC alone.

4. Measuring, modulating, and generating neural meta-
representations

A critical question concerns how to investigate the neural represen-
tations and neural circuitry that support the interaction between
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confidence / metacognition and learning. In this context multivoxel
neural reinforcement (also known as decoded neurofeedback) is an
attractive causal approach (Shibata et al., 2011; Taschereau-Dumouchel
et al., 2020), which has evolved with recent developments in neuro-
imaging (Feinberg et al., 2010; Haxby et al., 2014, 2011; Xu et al.,
2013). Combining machine learning approaches and real-time fMRI,
multivoxel neural reinforcement has high content specificity (Lubia-
niker et al., 2019), which enables researchers to reinforce or modify
connections between two or more brain regions, specific neural repre-
sentations, and even psychological processes.

In multivoxel neural reinforcement the experimenter first builds a
machine learning decoder using brain activity patterns acquired with
fMRI (or EEG, MEG) while participants engage in a task or are at rest. For
example, while participants discriminate the movement direction of a
cloud of dots. A trained decoder (e.g., that predicts left vs right motion
from brain activity patterns), will be able to compute the likelihood that
a new brain activity pattern represents each original class (left and right
motion). Because the calculation can be done in real-time and partici-
pants need not be aware of the procedure, this approach provides a
powerful means of accessing ongoing conscious or nonconscious neural
representations. The output of the decoder (the probability of, say, left
motion) can then be used to provide a commensurate reward and teach
the brain to reinforce specific activity patterns (Fig. 2A). This way, one
can induce perceptual learning (Amano et al., 2016; Shibata et al.,
2011), change confidence (Cortese et al., 2017, 2016; Koizumi et al.,
2017), reduce fears (Koizumi et al., 2016; Taschereau-Dumouchel et al.,
2018), and - presumably — elicit more complex secondary associations.
Importantly, the vast majority of participants do not have conscious
access to the information represented in their momentary brain activity
patterns during decoded neurofeedback (Shibata et al., 2019).

Richer designs can be considered in which task conditions are
directly determined by high-dimensional multivoxel patterns of activity
(Chew et al., 2019; Cortese et al., 2020). Thus, this kind of paradigm
provides a useful way to study the mechanisms by which the brain re-
solves dimensionality issues with limited amounts of training data (the
“curse of dimensionality”). In a recent study by Cortese et al., an action
(e.g., choosing option A) was paired with a particular latent brain state
(e.g., a nonconscious representation of leftward motion) (Cortese et al.,
2020). Among a huge number of possible ongoing patterns of neural
activity (with additional noise since measured indirectly through fMRI),
the brain had to learn to selectively associate the output of a locally
restricted neural population (e.g., within the visual cortex), with an
action, through trial-and-error. The problem faced by the brain is
effectively equivalent to searching a needle in a haystack. Yet, partici-
pants displayed learning evidence.

Crucially, Cortese and colleagues found that perceptual confidence
indexed reinforcement learning at multiple levels (Cortese et al., 2020).
Across participants, initial metacognitive sensitivity (Maniscalco and
Lau, 2012) — defined as the ability to discriminate between correct and
incorrect responses — predicted subsequent learning performance in the
high-dimensional reinforcement learning task. Second, decision confi-
dence was positively correlated with reinforced choice accuracy, and
negatively correlated with the trial-by-trial magnitude of prediction
errors obtained from reinforcement learning modeling. On trials in
which participants’ confidence was lowest, they exhibited large learning
uncertainty (Fig. 2B). That is, prediction errors had large magnitude
indicating large mismatches between expectations and actual outcomes.
This relationship was supported by the neural coupling between the
DLPFC and the basal ganglia. Specifically, with learning, DLPFC activity
patterns representing perceptual confidence became increasingly asso-
ciated with basal ganglia activity patterns representing prediction error
magnitude (Fig. 2C). Moreover, the functional connectivity measured at
rest between the basal ganglia and a subregion of the DLPFC also
increased as learning progressed, further supporting the finding of an
association between metacognition and reinforcement learning at the
neural level. Taken together, these results support a model of the brain
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Fig. 2. Multivoxel neural reinforcement and
closed-loop experiments for confidence and
learning. A - The decoded neurofeedback pro-
* tocol. A participant’s brain activity is measured

with fMRI, and the data is used in real-time to

compute a score with a machine learning
decoder. This score signals the likelihood that
the current activity pattern represents the
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in which metacognition (confidence) is causally important for rein-
forcement learning. Although the demonstration was not direct because
it was based on observational data, analysis on time lag effects, as well as
additional analyses ruling out alternative interpretations, make it highly
plausible that metacognition plays a causal function in reinforcement
learning.

While this study established the role of metacognition in high-
dimensional reinforcement learning problems, the actual mechanism
remains essentially unclear. Parallel loops between the basal ganglia and
the prefrontal cortex (and probably elsewhere in the brain too) provide a
strong candidate neural substrate, but it remains unclear what is the
actual implementation at the neuronal (and representational) levels.

Taking a more speculative stance, these results may suggest that
metacognition accelerates reinforcement learning processes by gener-
ating low-dimensional meta-representations. When confidence is
computed about a choice (as in this experiment, but it could be about
something else such as a memory, or the sensory stimulus itself), the
brain may re-represent the content of the primary (first-order) repre-
sentation as a meta-representation. That is, suppose the choice is about
motion direction, then there should be a primary motion representation,
in area V5 of the visual cortex. By computing confidence about the
relevant choice, the brain could re-represent this motion information in

The coupling between DLPFC and BG increases with learning

target, such as an object, a task feature, or a
psychological variable. In the neurofeedback
{> experiment, the score is fed back to participants
in the form of a visual cue (a circle). Partici-
pants are instructed that the larger the feedback
circle, the larger the monetary reward. The
% same setting can be utilized to define task
‘I’ conditions. That is, instead of using the decoder
score to provide visual feedback, the score can
be used to determine the contingency for an
optimal choice, or to modify a visual stimulus
presented on the screen, or to determine the
task difficulty, in real-time. Image modified
from (Cortese et al., 2021). B - confidence was
associated with prediction error magnitude in a
study where participants had to learn a
high-dimensional mapping between patterns of
brain activity and a 1-d (2 options) action
space. That is, the contingency for the optimal
choice was defined by a brain activity pattern.
The results show that the higher the confidence,
the smaller the learning uncertainty in the form
of smaller prediction errors. * p<0.05, ***
p<0.001. Image modified from (Cortese et al.,
2020). C - In parallel with confidence - predic-
tion error magnitude correlation at the behav-
ioural and computational levels, the same study
found increased neural coupling between the
DLPFC and the basal ganglia. This coupling was
specific for the information represented in these
areas: confidence in DLPFC, and uncertainty
(prediction error magnitude) in the basal
ganglia, and it increased with learning. Image
modified from (Cortese et al., 2020).

session 2 session 3

(medium)
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the prefrontal cortex, as a meta-representation. Such meta-
representations are void of irrelevant information, and are construed
in a low-dimensional space. If reinforcement learning operates on these
low-dimensional folds, it would be faster, bypassing the bottlenecks that
arise in high-dimensional sensory space.

The use of closed-loop neuroimaging and machine learning decoders
provides a unique opportunity to quantify the function of neural rep-
resentations (conscious or nonconscious), meta-representations, in
metacognition and learning.

5. Discussion, perspectives, and the many open questions

This paper aimed to provide an overview of the burgeoning area of
research on metacognition and learning, at the intersection of cognitive
sciences, psychology and computational neuroscience. It is becoming
increasingly clear that confidence can affect learning processes at
various levels: by controlling how evidence is accumulated, by directly
biasing value estimates, by modulating learning rates, by affecting
prediction errors and their integration, and by changing the amount of
exploration drive for the selection of new strategies. From a more
speculative viewpoint, metacognition could also accelerate learning by
generating meta-representations, essential building blocks of
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summarised abstract states in the brain.

Do we now know where in the brain confidence signals originate? In
the quest to characterize the neural and computational origins of con-
fidence, invariably there will be differences across studies (as discussed
in the section about neural correlates, Fig. 1B). Similar to other fields in
decision-making research (Wallis, 2011), some of the differences in the
literature might arise because of complex functional homologies be-
tween areas across species (humans, non-human primates, rodents, ...).
This may be particularly true between rodents and non-human primates
or humans (Wise, 2008), as the latter two display high anatomical and
functional homology in terms of brain areas related to reward-guided
learning and decisions (Neubert et al., 2015). The primary decision to
record from a given area might have an impact too — we might be
recording from the ACC, but neurons in the OFC are perhaps also related
to the same experimental variable(s). Yet, differences probably also arise
from the type of confidence measured (reflecting statistical confidence
or a metacognitive evaluation), or the tasks used. As mentioned earlier,
humans are often asked to report confidence as an explicit judgement on
a linear scale, while in other animals confidence is measured as the
willingness to wait for a reward or choosing an opt-out safe option.
Although all these tasks clearly measure confidence signals, the under-
lying computations and the behavioural endpoint can subtly differ.
Future work could capitalize on the use of closely matched tasks and
conditions in different species (Odegaard et al., 2018; Stolyarova et al.,
2019) to disentangle these issues.

From a more conceptual angle, can we really talk about meta-
representations (re-representations of ongoing sensory or memory rep-
resentations)? In a way, from a purely mechanistic viewpoint, meta-
representations are here equivalent to abstractions: simplified repre-
sentations, or schematics, of more complex information (Fleming,
2020). Crucially, these representations should be found in the prefrontal
cortex, as a relevant higher-order representation that directly stems
from an inner monitoring system (Brown et al., 2019). Because rein-
forcement learning processes would need immediate access to these
meta-representations to be efficient, there appears here an interesting
overlap - if not functionally, at least in anatomical terms — on the neural
structure of parallel loops between the basal ganglia and the neocortex
discussed earlier. These loops connect reinforcement learning with
confidence and metacognitive  signals, but also with
meta-representations and other high cognitive functions. A speculation
here is that confidence is involved in the construction of
meta-representations. But could it be rather that confidence is involved
in the way reinforcement learning selects and operates on
meta-representations? An exciting avenue of research here is the pos-
sibility that the interaction between metacognition and reinforcement
learning, over longer time scales, results in the construction of schemas
and cognitive maps (i.e., internal world models) through assembly of
meta-representations.

Relatedly, once multiple internal models have been constructed,
confidence could still be part of the selection / arbitration mechanism
favouring one rather than the other strategy. Considering this arbitra-
tion mechanism, what kind of representational architecture is the most
‘efficient’? That is, should the brain track multiple strategies simulta-
neously - as in a mixture-of-experts architecture, or should it represent
only the best strategy at any point in time, keeping the rest latent? In
both cases confidence can help in selecting the most relevant or useful
strategy, but each approach has benefits and limitations. A mixture-of-
experts architecture means that a more complex problem can be
broken down into simpler components, and is very useful when data is
sparse and there is parallel computational power, since with a single
data point multiple internal models can be updated simultaneously. It is
also computationally costly and has the downside of computing
behavioural trajectories that may never be used. Conversely, a
hypothesis-testing regime, where the best strategy or internal model is
actively represented, probably allows faster computing when resources
are limited, or the environment is noisy but also incorporates exploitable
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statistical regularities. Unfortunately, this also means that the agent
could be slower to update its course of action when environmental
conditions change suddenly, because the alternatives are not all up-to-
date. What is implemented by the brain? Evidence to date indicates
both solutions are plausible (Badre and Frank, 2012; Donoso et al., 2014;
Frank and Badre, 2012). The brain may capitalize on both types of
computational approaches, separately or in hybrid fashion depending on
the circumstances.

While this review covered at length the points of contact between
metacognition and reinforcement learning from the viewpoint of con-
fidence affecting learning parameters, it is important to stress here that
the interaction is most likely bidirectional. Confidence is biased by
previous prediction errors (Cortese et al., 2020), context and rewards
(Lebreton et al., 2019, 2018), choice history (Benwell et al., 2019),
post-decisional information (Navajas et al., 2016), priors (Locke et al.,
2020) and learning itself (Chen et al., 2019).

One interesting point that deserves deeper investigation in the future
is the intersection between inductive biases — especially acquired ones —
and metacognition in the context of learning. Inductive biases are the set
of assumptions, at the architecture or functional level, that guide the
way an agent will apply knowledge to novel situations. In machine
learning, and especially in deep learning algorithms, integrating high-
level inductive biases is now viewed as a critical step to build Al sys-
tems that enjoy similar levels of flexibility and generalization as humans
(Goyal and Bengio, 2020; Tenenbaum et al., 2011). A compelling
example of inductive bias is compositionality, whereby simpler building
blocks are combined at will to create more complex structure, which
allow agents to make strong inference for generalization with small
amounts of data. When humans learn new concepts, compositionality is
a ubiquitous strategy (Goodman et al., 2008; Kemp, 2012). Although
inductive biases do not need metacognition to operate (Tenenbaum
et al., 2011), recent work in cognitive neuroscience has shown how
humans have metacognitive access into their own concept learning
process (Stojic et al., 2018), opening a first link between inductive biases
and metacognition.

Intriguingly, we often discuss humans in terms of intelligence,
extreme generalization abilities and flexible behaviours; but humans are
also beguiled by habits, irrational choices, and in general behaviours
that appear rather inflexible. A strong example in this context is
confirmation bias, whereby we seek or interpret evidence in ways that
are partial to our existing beliefs or expectations (Nickerson, 1998). Why
this tension? Perhaps some answers are to be found in the specifics of
metacognition and self-monitoring abilities. Here the link develops over
two levels: confidence itself relying more on the information that sup-
ports the decision made (Michel and Peters, 2020; Zylberberg et al.,
2012), or the latest choices (Talluri et al., 2018), as well as a more
general tendency of individuals with alterations in metacognition to
display high confirmation bias (Rollwage et al., 2018). In fact, when
confirmation bias is a built-in part of a metacognitive agent, it can
become adaptive (Rollwage and Fleming, 2021). That is, an agent
showing high levels of self-awareness and confirmation bias performs
better than an unbiased agent. Intuitively, such an agent should better
distinguish situations in which errors are more likely — confidence would
be low - and situations in which responses are mostly correct (high
confidence), thus allowing selective information processing. In this
context, it would be interesting to uncover the interactions between
neural systems dedicated to learning new information, skills or behav-
iours, those involved in metacognition and self-monitoring, and those
tailored to exploit a certain situation or knowledge. This way we may
understand how the brain actively ignores information (especially when
only some information is central to the problem or behavioural demand
at hand), and how confirmation bias can be adaptive or maladaptive for
high level strategic behaviour.

In sum, the goal of this manuscript was to shine a light on the
fascinating computational properties of metacognition and confidence
in learning. Particularly, highlighting points of discussion that may be



A. Cortese

useful stepping stones to further study the nature of adaptive behav-
iours, efficient learning, and intelligence. Findings from these lines of
research will have profound implications for our appreciation of high
level brain functions, for understanding maladaptive learning processes,
but also for the development of novel artificial agents. The decoded
neurofeedback approach will further allow novel experiments that reach
beyond the standard logic of neuroscience and psychology experiments,
by using the brain as its own canvas.
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