

1 Paving the way for precision treatment of psychiatric 2 symptoms with functional connectivity neurofeedback

3

4 Taylor JE^{1*†}, Oka T^{1,2†}, Murakami M¹, Motegi T^{1,3}, Yamada T^{1,4,5}, Kawashima T⁶, Kobayashi Y⁶,
5 Yoshihara Y⁶, Miyata J^{6,7}, Murai T⁶, Kawato M¹, & Cortese A¹.

6

7 ¹ The Department of Decoded Neurofeedback, Computational Neuroscience Laboratories, Advanced Telecommunications
8 Research Institute International, Kyoto, Japan

9 ² The Department of Clinical Psychology, Graduate School of Human Sciences, Osaka University, Suita, Japan

10 ³ Saint-Pierre Hospital, Takasaki, Japan

11 ⁴ Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka,
12 Suita, Osaka, 565-0871, Japan

13 ⁵ Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan

14 ⁶ Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan

15 ⁷ Department of Psychiatry, Aichi Medical University, Aichi, Japan

16 * correspondence: jessie.elizabeth.taylor@gmail.com

17 † Dr. Taylor and Dr. Oka contributed to this work equally.

18

19 Short Title: FCNef for Precision Psychiatry

20

21 Corresponding Author: Jessica Elizabeth Taylor

22 E-mail address: jessie.elizabeth.taylor@gmail.com

23

24 Keywords: Precision psychiatry, real-time fMRI neurofeedback, Major Depressive Disorder, Rumination

25

26

27 Abstract

28 **Introduction:** Major depressive disorder (MDD) remains challenging to treat, with many patients failing
29 to respond adequately to existing therapies. Patients with MDD have heterogeneous subsets of symptoms
30 with differing underlying neural aberrations. Treatment response may improve if treatments become more
31 individualised. We recently showed preliminary evidence that normalisation of a neural network and a
32 corresponding reduction in related symptoms can be achieved using a Brain Machine Interface (BMI)
33 called real-time fMRI functional connectivity neurofeedback (FCNef). However, the robustness of this
34 effect, and the best FCNef parameters for optimising therapeutic outcomes remained unknown. **Methods:**
35 We ran additional participants, with a final dataset of $N = 68$, in our FCNef protocol. Functional
36 connectivity between the dorsolateral prefrontal cortex (DLPFC) and posterior cingulate cortex/precuneus
37 (PCC) was targeted with the goal of reducing brooding rumination symptoms. Core FCNef parameters
38 (experimental schedule and reward) were manipulated between participants. **Results:** We replicated
39 findings that normalisation of DLPFC-PCC connectivity with FCNef correlates significantly with
40 reductions in brooding rumination, but not with changes in anxiety, which is associated with different
41 neural circuits. The difference between these correlations was significant, highlighting the precision of
42 this effect. Finally, we found that successful DLPFC-PCC normalisation and corresponding changes in
43 brooding rumination depended on specific FCNef parameters. The most effective protocol involved
44 consecutive training days with greater external reward. **Conclusions:** These results highlight the potential
45 of FCNef for precision medicine in psychiatry and underscore the importance of optimising parameters to
46 enhance feasibility of BMI-based clinical interventions.

47

48

49

50

51

52

53

54 1. Introduction

55 The World Health Organization estimates that major depressive disorders will become the top
56 cause of global disease burden by 2030 [1]. Of patients who do receive treatment, an estimated 30-50%
57 do not respond fully [2,3]. Patients with the same clinical diagnosis can have heterogeneous subsets of
58 symptoms that relate to different underlying neural mechanisms [4]. Nonetheless, they usually receive
59 relatively homogenous treatment. For example, all or most clinical practice guidelines recommend
60 selective serotonin reuptake inhibitors as first-line treatment for depression [5]. To improve response
61 rates, individual differences clearly need to be considered. Future treatment may become more
62 individualised using Brain-Machine Interfaces (BMIs) to identify and target underlying patient neural
63 aberrations. However, medical regulatory approval presents serious challenges to this [6]. To date, only a
64 handful of BMIs have received approval from local medical regulatory agencies for human trials [7-9],
65 and even fewer have received full market authorisation [10,11]. A key step toward approval of a given
66 BMI technique by regulatory agencies is demonstrating the optimality of chosen parameters. Here, we
67 extend previous results to better examine the robustness of a promising form of BMI called Functional-
68 Connectivity Neurofeedback (FCNef) [12], and to systematically investigate a specific set of its
69 parameters.

70 FCNef is a functional magnetic resonance imaging (fMRI) neurofeedback technique in which
71 participants receive real-time feedback about the current state of functional connectivity between targeted
72 brain regions (measured as the correlation between time-courses of BOLD activity from these regions).
73 This feedback is used to train participants to make a targeted functional connection more positive or
74 negative, a result that has been demonstrated in multiple studies [12-19]. Showing promise for precision
75 medicine, recent FCNef studies have reported precise correspondence between normalisation of
76 functional connections and reductions in specifically related symptoms [12,17,18,20]. Consistent with
77 these results, we previously found that normalisation of functional connectivity between the dorsolateral
78 prefrontal cortex (DLPFC) and the precuneus/posterior cingulate cortex (PCC) that occurred with FCNef
79 was related to reductions in brooding rumination, but not anxiety symptoms. Importantly, these effects
80 persisted at least 1-2 months after FCNef [12]. Nonetheless these results were reported from only a small
81 sample. We have since continued to collect data and here we examine the robustness of these effects by
82 testing for their replication in the newly collected data. Furthermore, because combining the new and old
83 data provides sufficient statistical power to properly compare correlation coefficients, for the first time,
84 we are able to directly examine the specificity of this effect.

FCNef for Precision Psychiatry

85 Given its potential use as a medical tool, FCNef should maximise health outcomes while
86 minimising patient burden. Here, we operationalised FCNef success as the normalisation of DLPFC/PCC
87 functional connectivity and a related reduction in brooding (but not anxiety) symptoms. We sought to find
88 parameters that would best enhance this, while also keeping participant fatigue to a minimum (because
89 preliminary testing in a clinical sample caused fatigue-related drop-out of one out of six patients [21]). To
90 accomplish our objective, we focused on the following parameters: (1) Reward schedule: During real-
91 time neurofeedback tasks, feedback has conventionally been provided simply as scores that reflect how
92 similar the induced brain activity is to the target brain activity [22–24]. However, recent evidence
93 suggests that target neural activity may be better reinforced during neurofeedback when external reward,
94 such as money, is also used [25]. Here, we manipulated how bonus money was assigned to feedback
95 scores so that different groups of participants could earn less/more overall external reward. (2)
96 Experimental schedule. Most FCNef studies [15], including our own [12,19], have required participants to
97 come in for multiple consecutive days of experimentation. This can be exhausting and requires motivation
98 and organisation skills that can be diminished in psychiatric disorders [26]. Therefore, we tested whether
99 a more flexible schedule, over non-consecutive days, could yield similar results to the consecutive
100 training schedule.

101 Overall, we ran 68 participants in our FCNef for depression paradigm while manipulating reward
102 schedule (low/high) and experimental schedule (consecutive/non-consecutive training days). Our goals
103 were twofold: (1) using a larger sample size to examine the robustness of our previously reported results
104 and more precisely examine the specificity of the FCNef effect, and (2) to fine-tune underlying
105 parameters.

106 2. Methods

107 2.1. Participants

108 Participants were screened twice using the Beck Depression Inventory-II (BDI) questionnaire
109 [27] (see Supplementary Methods for more detail). Only those with an average score ≥ 8 , who indicated
110 no intention of committing suicide, who spoke Japanese, who held no current clinical diagnosis, and who
111 were not currently receiving treatment for a psychiatric illness were invited to participate. Overall, 69
112 people passed the screening and participated in the main experiment. However, experimental data of one
113 participant was subsequently excluded from data analysis because it was revealed, subsequent to
114 experimentation, that that subject held a current clinical diagnosis. Of the 68 participants whose data were

FCNef for Precision Psychiatry

115 used for analyses, the average BDI score over the two screening measurements was 14.33, with a standard
116 deviation (STD) of 5.26. This puts them generally in the category of “mild depression” [27]. For this
117 reason and because these participants lacked current clinical diagnoses, we considered them “subclinical”.

118 2.2. Experimental Conditions

119 We wished to examine the overall success of our paradigm and to determine whether it is
120 influenced by reward and experimental schedules. However, due to financial and time constraints (it takes
121 10 days of experimentation to screen and run just one participant in this paradigm), we could only run
122 participants in three experimental groups: those with consecutive days of experimentation and a high-
123 reward schedule (hereafter, “Consec/High-Rew”), those with consecutive days of experimentation and a
124 low-reward schedule (hereafter, “Consec/Low-Rew”), and those with non-consecutive days of
125 experimentation and a low-reward schedule (hereafter, “Non-Consec/Low-Rew”) (see Table 1 for sample
126 size details). Participants in the three groups did not differ significantly in baseline levels of our main
127 measures of interest: (1) DLPFC-PCC resting-state functional-connectivity (rs-FC), (2) BDI scores, and
128 (3) brooding scores (measured on a subscale of the Rumination Response Scale [28,29]) (see
129 Supplementary Table 7). However, we found that baseline anxiety levels (measured with the trait anxiety
130 subscale of the State-Trait Anxiety Inventory [30]) differed significantly between the Consec/Low-Rew
131 and Non-Consec/Low-Rew groups (see Supplementary Table 7). This is unlikely to have had a large
132 impact on results because: (a) the rs-FC we targeted is not thought to relate to anxiety, and (b) results
133 showed that differences in FCNef success were not greatest between these two groups (as can be seen
134 further down).

135 Participant group assignments were determined by concurrent availability of participants,
136 experimenters, and MR machine facilities. This allocation method reflects real-world constraints in
137 neuroimaging research, though we acknowledge it could have introduced potential self-selection effects.
138 To address possible allocation bias, we conducted analyses to compare baseline demographic
139 measurements between groups (age, sex): No meaningful differences were found (see Supplementary
140 Results). It should be noted that data of 19 participants (9/21 from the Consec/High-Rew group and 10/23
141 from the Consec/Low-Rew group) have been reported elsewhere [12]. Further details about recruitment,
142 participant demographics, and payment can be found in the Supplementary Methods.

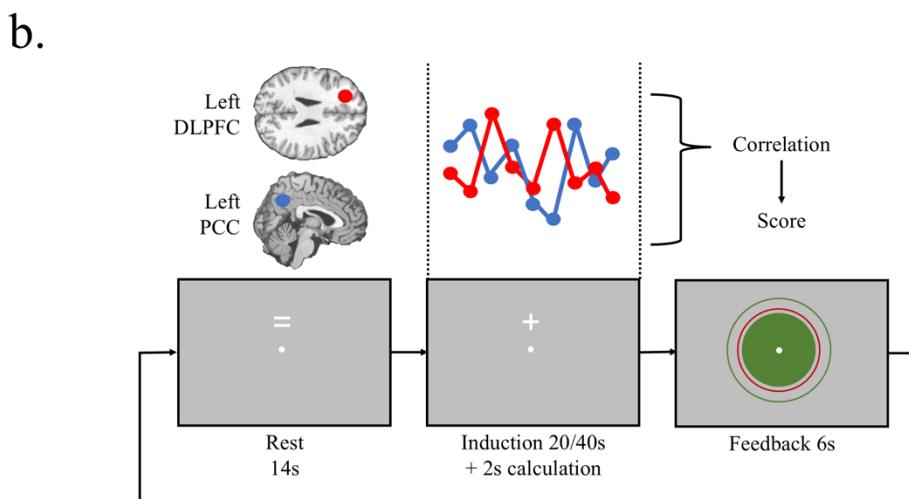
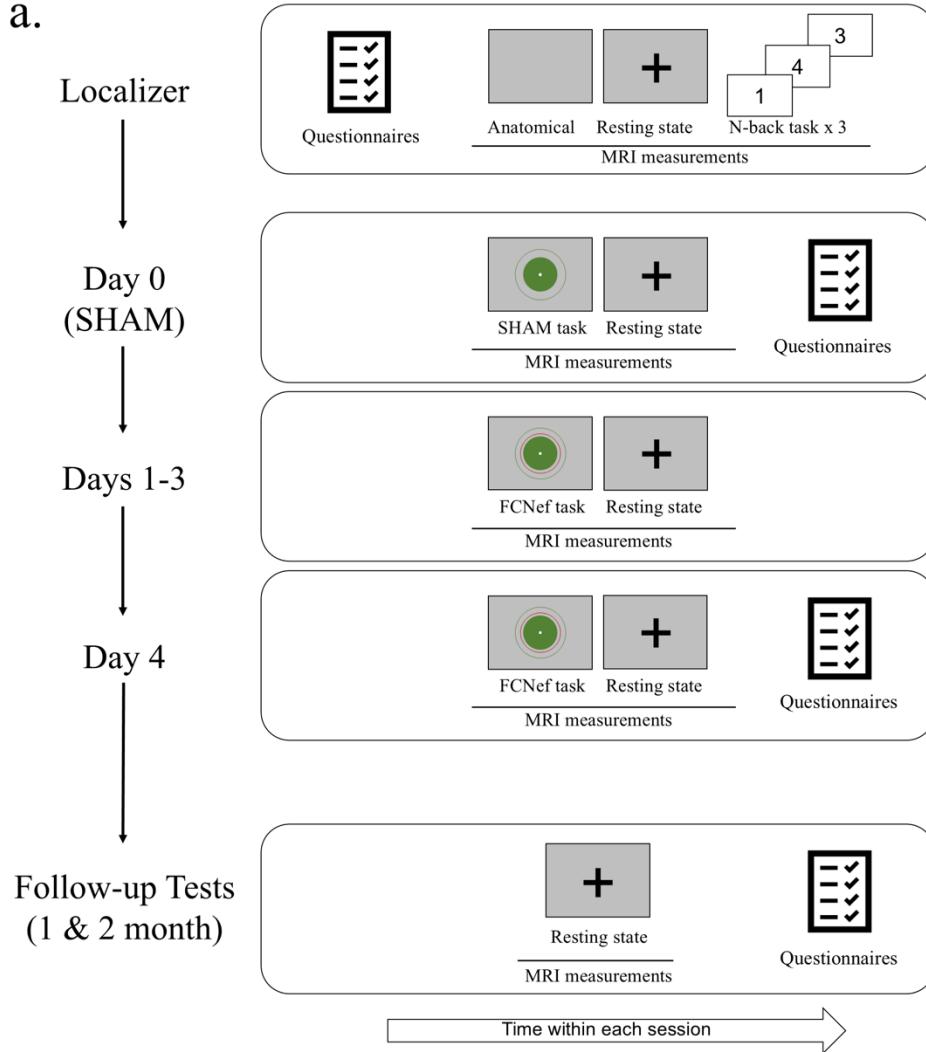
143

Group	Main Experiment Sample Size	1-Month Follow-up Sample Size	2-Month Follow-up Sample Size
Consec/High-Rew	21	11	9
Consec/Low-Rew	23	20	17
Non/Low-Rew	24	22	20
144 Total	68	53	46

145 **Table 1. Sample sizes for three groups of participants.**

146 *This table shows the sample sizes for: (1) participants run in consecutive days of FCNef with the high-reward*
147 *schedule (the “Consec/High-Rew group”), (2) those run in consecutive days of FCNef with the low-reward schedule*
148 *(the “Consec/Low-Rew group”), and (3) those run over non-consecutive days of FCNef with the low-reward*
149 *schedule (the “Non-Consec/Low-Rew group”). No participants were run over non-consecutive days of FCNef with*
150 *the high-reward schedule (no “Non-Consec/High-Rew” group). Sample sizes are shown for the main experiment*
151 *and for one- and two-month follow-up tests. There were fewer participants for the follow-up tests for the*
152 *Consec/High-Rew group because the long-term tests were not included in the earliest stages of this experiment, so*
153 *only 12 participants from this group were invited back.*

154



155 2.3. Experimental procedure, materials, and imaging data acquisition

156 An outline of the experimental procedure is shown in Figure 1 alongside details of the FCNef
157 task. These were largely the same as in our previous report [12], except for specific experimental
158 conditions of interest. These experimental conditions are described in the sub-section below entitled
159 “Differences in experimental conditions.” The protocol and imaging data acquisition details are identical
160 to those in our previous report [12] and are summarised in the Supplementary Methods.

161 Details of the symptom questionnaires can be found in the Supplementary Methods, but overall
162 general depressive symptoms were measured with the BDI [27]. Brooding rumination symptoms were
163 measured with a subscale of the Rumination Response Scale (RRS) [28,29], and trait anxiety symptoms
164 were measured with the trait anxiety subscale of the State-Trait Anxiety Inventory (STAI-Y2) [30]. As
165 can be seen in Figure 1, because there would be limited clinical meaning, these symptom questionnaire
166 scores were not measured on all days of the main experiment. Instead, they were only measured on the
167 first day (Day 0) and last day (Day 4) of the main experiment and during one- and two-month follow-up
168 tests.

169

FCNef for Precision Psychiatry

171 **Figure 1. Experimental procedure and example FCNef trial.**

172 *a. The order of events on each day of experimentation. Questionnaires = the Beck Depression Inventory-II [27],*
173 *the Rumination Response Scale [28], and the State-Trait Anxiety Inventory [30]. Anatomical = T1-weighted*
174 *structural MRI. N-back = a well-known executive control task [54], used here as a functional localiser[12]. b. An*
175 *example FCNef trial. During the rest period, participants were to simply relax. During the induction period, they*
176 *were asked to “somehow” manipulate their brain activity to get the best possible feedback. Participants were told*
177 *that different strategies of brain activity manipulation might work for different people. Unbeknown to participants*
178 *(nothing changed on screen), there was a 2s calculation period at the end of the induction period. During FCNef,*
179 *DLPFC-PCC connectivity (from the induction period) was calculated during the calculation period and this*
180 *determined the feedback presented during the feedback period. During SHAM, however, feedback was just random.*
181 *Feedback was presented on screen as a green circle and participants had been clearly instructed that the larger this*
182 *was, the more monetary reward they would receive on that trial. During FCNef, they were instructed to try to make*
183 *the green circle bigger than the red circle that was also presented on screen. The circumference of this red circle*
184 *represented the participant's baseline DLPFC-PCC connectivity (the average from SHAM). During SHAM, there*
185 *was no red circle and participants were simply instructed to try to make the green circle as big as possible. Modified*
186 *with permission from Taylor et al. (2022)[12].*

187

188 2.4. Differences in experimental conditions

189 The following parameters were manipulated, such that some participants were run under
190 conditions different from those reported in our previous papers [12,19].

191 2.4.1. Reward schedule:

192 All participants received a baseline reward bonus of ¥500 on each day of the SHAM and FCNef
193 sessions. This is the maximum reward they could receive in the SHAM task, but they could get an
194 additional reward bonus in the FCNef task depending on their average FCNef scores from that day.
195 Importantly, two calculation methods were used to determine this additional reward bonus. Participants in
196 the low-reward schedule conditions could achieve an additional reward bonus of ¥100 for each average
197 FCNef score point over 75. Instead, participants in the high-reward schedule condition could achieve an
198 additional reward bonus of ¥50 for each average FCNef score point over 50. See Supplementary Table 2
199 for specific examples. The way in which scores were calculated in the SHAM and FCNef tasks was
200 identical across conditions. This was the same method as in our previous report [12] and is described in
201 the Supplementary Methods.

FCNef for Precision Psychiatry

202 2.4.2. Experimental schedule:

203 Two groups of participants completed Days 0-4 over 5 consecutive days (Monday-Friday). The
204 third group completed Days 0-4 over 5 non-consecutive days, which took place over a period of several
205 weeks to months (mean of 18.5 days \pm STD of 15.3 days).

206 2.4.3. Induction time-window:

207 Consistent with earlier versions of our FCNef for depression paradigm [12,19], about half of the
208 participants from each group completed FCNef and SHAM with a 40 sec induction time-window (see
209 Supplementary Table 1). Because re-analysis of pilot data suggested it would not affect results (see
210 Supplementary Results, Supplementary Table 3, and Supplementary Figure 1), the other half of
211 participants completed FCNef and SHAM with a 20 sec induction time-window. We included this
212 manipulation with the goal of improving our paradigm. Using a 20 sec time-window reduces the overall
213 experiment by about 10 mins each day, which could be crucial for patients who tire easily. Indeed, when
214 we checked the data of our three groups of participants, we found that our measure of FCNef success did
215 not change in any meaningful way that depended on the induction time-window (see Supplementary
216 Results and Supplementary Tables 4-6). Therefore, in the main text of this report, we did not split the data
217 by induction time-window because (a) it is hard to draw strong conclusions about null effects, and (b)
218 splitting the data further like this would make sample sizes in each cell even smaller, making it hard to
219 draw conclusions about other parameters of interest.

220 2.5. Data analyses

221 2.5.1. Correlations to extend previously reported results

222 We previously reported correlations between rs-FC and symptom changes using data from 19
223 participants who were run over consecutive days of FCNef [12]. Ten of these participants were run with
224 the high-reward schedule and the other nine were run with the low-reward schedule, but overall their
225 combined data showed promising results. Since then, we have collected data from 25 more participants
226 under the same experimental conditions (consecutive days of FCNef with low/high-reward schedules),
227 which gives us an overall dataset with 44 participants run under these conditions (see Table 1). Note that
228 this does not include the data of the Non-Consec/Low-Rew group, which has also been collected since
229 our previous report. This is because this group was run with a different experimental parameter to our
230 previous report (non-consecutive days of experimentation) and so its data cannot contribute directly to our
231 replication test. One goal of collecting this additional data was to assess the robustness of previously

FCNef for Precision Psychiatry

232 reported results in a larger dataset. Before doing this in the 44 participants, however, we first re-ran
233 relevant correlations using only data of the additional 25 participants to ensure that we were not
234 introducing bias by adding new data to the existing pool. After this test, we then re-ran the previously
235 reported correlations with the larger pooled dataset. To check the adequacy of the sample size for
236 statistical tests, we conducted post-hoc power analyses with G*Power version 3.1.9.7 (Franz Faul, Kiel
237 University, Germany). The significance threshold was set at $\alpha = 0.05$, and we input relevant correlational
238 values to calculate statistical power.

239 2.5.2. Linear Mixed Effect (LME) models to examine parameters of interest

240 We ran multiple LME models to examine how multiple measures related to FCNef success were
241 impacted by our manipulated parameters (see Table 2). Dependent variables (DVs) in these models were
242 taken from the task (e.g. average task score) or from the resting-state scans (e.g. changes in resting-state
243 functional connectivity from before to after FCNef). All 3 groups of participants ($N = 68$) were included
244 in these analyses so we could best examine parameters of interest.

245 We were unable to run a Non/High-Rew group (see Table 1). This means we could not run full
246 factorial analyses to investigate all possible interactions between parameters that we manipulated,
247 although we had no reason to expect interactions anyway. Instead, in all models reported here, we
248 included “Group” as a categorical Independent Variable (IV) with 3 levels. By nature, this type of
249 analysis compares the variance related to the second two levels with the variance related to the first level
250 (the reference), so it is important to consider what data will be input at what level. Here, we decided to set
251 the Consec/High-Rew group as the first level because this group had parameters that we used in the initial
252 pilot experiment [19] and we wanted to examine whether changes to these initial parameters would
253 improve or worsen FCNef success.

254 In addition to Group, the LME models also included other relevant IVs, which differed between
255 models depending on the DV. In models examining how brain changes predicted symptom changes, this
256 was changes in resting-state functional connectivity from before to after FCNef. In other models, this was
257 the relevant experimental days.

258 For each DV, to explore the data, we ran LME models with and without the interaction term
259 between IVs. We then tested these against one another to see which best fit the data.

260 No interaction term: ‘ $DV \sim X + Group + (I | Subject)$ ’

261 With interaction term: ‘ $DV \sim X * Group + (I | Subject)$ ’

FCNef for Precision Psychiatry

262 Likelihood ratio tests were used to compare models with and without interaction terms for all
263 DVs. If there was a significant difference between models, the best-fit model was always selected based
264 on the lowest Akaike Information Criterion (AIC, a measure of goodness of fit, which can be used to
265 assess a model's relative quality [31]). If there was no significant difference between models then the
266 simplest model, that without interaction, was selected as best-fit. Detailed information about the best-fit
267 of each of these pairs of models can be found in tables in the Supplementary Results (Supplementary
268 Tables 8, 9, 11-17, 19-24), with all significant main effects and interactions from the best-fit models
269 additionally being reported in the Results Section below.

270 2.5.3. Follow-up statistical testing

271 Significant main effects and interactions from the best-fit models, as well as effects that we had
272 specific hypotheses about, were followed up with t-tests or correlations. We applied False Discovery Rate
273 (FDR) correction [32] whenever there were multiple comparisons. We had strong directional hypotheses
274 that symptoms would decrease from before to after FCNef and that rs-FC would become more negative,
275 aligning with patterns observed in healthy individuals. Therefore, we conducted the related t-tests using a
276 one-tailed approach. Similarly, based on our strong directional hypothesis that symptoms would decrease
277 as rs-FC became more negative (indicating a positive correlation between changes in symptoms and
278 changes in rs-FC), we also used a one-tailed approach for the related correlation analyses.

279 3. Results

280 3.1. Extension of past results

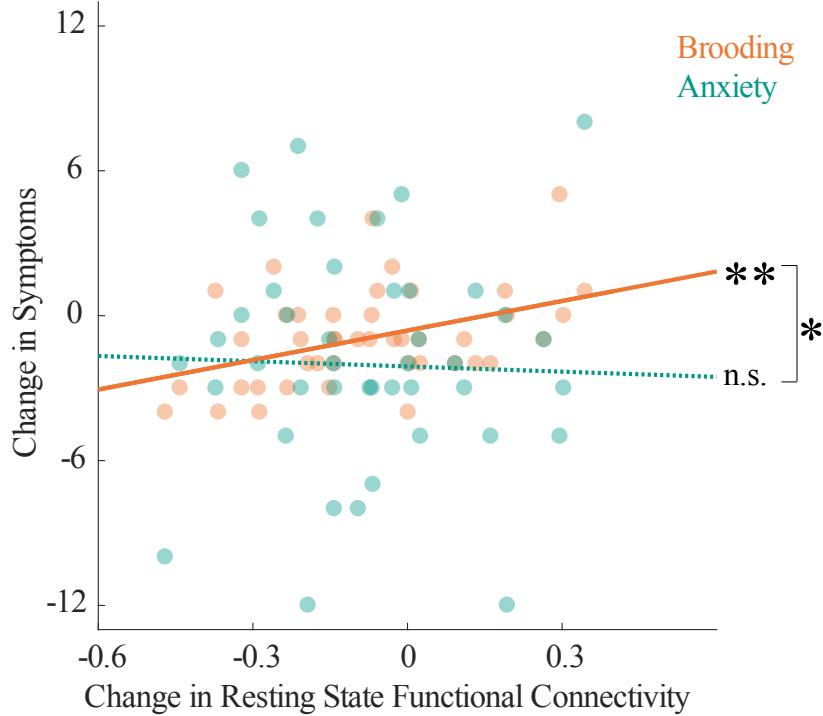
281 3.1.1. Previously reported data

282 In our previous publication [12], we reported correlations between rs-FC and symptom changes
283 using combined data of 9 participants from the current Consec/High-Rew group and 10 participants from
284 the current Consec/Low-Rew group. We found a significant positive relationship between general
285 depression change and rs-FC change ($r = 0.78, p_{FDR} = 0.0001, 95\% \text{ CI} [0.51, 0.91]$) and between brooding
286 change and rs-FC change ($r = 0.43, p_{FDR} = 0.048, 95\% \text{ CI} [-0.27, 0.74]$), but a non-significant negative
287 relationship between anxiety change and rs-FC change ($r = 0.11, p_{FDR} = 0.32, 95\% \text{ CI} [-0.36, 0.54]$) (note
288 that we previously only reported correlation coefficients and uncorrected p -values). Because we
289 specifically hypothesised that changes in DLPFC-PCC rs-FC from before to after FCNef should relate to
290 changes in brooding but not anxiety symptoms, here we calculated Z-tests to compare these correlation
291 coefficients [33]. These were run with one tail due to our directional hypothesis, and no significant

FCNef for Precision Psychiatry

292 difference was found ($z = 0.88, p = 0.16$). A post-hoc power analysis was conducted using correlation
293 coefficients used for this Z-test ($r = 0.43$ and $r = 0.11$) and the coefficient for the correlation between
294 brooding and anxiety changes ($r = -0.03$). This revealed a post-hoc power of 0.25, suggesting that the
295 sample size ($N = 19$) was statistically insufficient to detect an effect of this magnitude.

296 3.1.2. Newly collected data


297 We have since collected more data for each of these groups (12 more participants for the
298 Consec/High-Rew group and 13 more participants for the Consec/Low-Rew group) with the goal of
299 testing robustness of the aforementioned findings in a larger dataset. To ensure that we were not adding
300 bias or overestimating effects, before testing results for the pooled larger dataset, we first ran a replication
301 test using just the newly collected data ($N = 25$). Consistent with the aforementioned results, we found a
302 positive relationship between general depression change and rs-FC change ($r = 0.26, p_{FDR} = 0.16, 95\% \text{ CI}$
303 $[-0.16, 0.60]$) and between brooding change and rs-FC change ($r = 0.40, p_{FDR} = 0.08, 95\% \text{ CI} [-0.01,$
304 $0.69]$), although these did not reach significance here. We found a non-significant negative relationship
305 between anxiety change and rs-FC change ($r = -0.17, p_{FDR} = 0.80, 95\% \text{ CI} [-0.53, 0.24]$).

306 3.1.3. Pooled data

307 Overall, we consider the previously reported effects to be replicated in the newly collected data
308 because confidence intervals overlapped and effect sizes were comparable. When we next pooled these
309 data (total $N = 44$) we found a significant correlation between general depression change and rs-FC
310 change ($r = 0.48, p_{FDR} = 0.002, 95\% \text{ CI} [0.21, 0.68]$), and between brooding change and rs-FC change (r
311 $= 0.42, p_{FDR} = 0.004; 95\% \text{ CI} [0.13, 0.64]$), but not between anxiety change and rs-FC change ($r = -0.03,$
312 $p_{FDR} = 0.57; 95\% \text{ CI} [-0.32, 0.27]$). Demonstrating the specificity achieved when targeting the
313 DLPFC/PCC functional connection, we found a significant difference between coefficients from brooding
314 change/rs-FC change and anxiety change/rs-FC change correlations ($z = 2.15, p = 0.016$) (see Figure 2). A
315 post-hoc power analysis was conducted using correlation coefficients employed in this Z-test ($r = 0.42$
316 and $r = -0.03$) and the coefficient for the correlation between brooding and anxiety changes ($r = 0.23$).
317 This revealed a power of 0.79, suggesting that the sample size ($N = 44$) was sufficient to detect an effect
318 of this magnitude with high probability.

319

FCNef for Precision Psychiatry

320

321 **Figure 2. Comparison of rs-FC/Brooding and rs-FC/anxiety correlations**

322 *Promising for precision medicine, changes in DLPFC-PCC resting state functional connectivity (rs-FC) from before*
323 *to after FCNef were significantly correlated with changes in brooding, but not anxiety symptoms. Pooling*
324 *participants from consecutive conditions (to be consistent with conditions used in our previous report) provided us*
325 *with the statistical power to compare these correlation coefficients. The significant difference found, highlights the*
326 *precision of FCNef targeting this functional connection. Note that this same data, but split by condition, is presented*
327 *again in Figure 5a and 5b. ** = $p_{FDR} < 0.01$, * = $p < 0.05$.*

328

329

330

331

332

333

334

FCNef for Precision Psychiatry

335 3.2. Parameter Investigations

336

Analyses	Formulae DV	IV1	IV2	Random Intercept	AICs +	AICs x
FCNef Scores	Mean FCNef Score	~ FCNef Day	+ or x Group	+ (1 Subject)	2109.2	2108.7
	STD FCNef Score	~ FCNef Day	+ or x Group	+ (1 Subject)	1599.8	1593
Symptoms	General Depressive Scores	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	776.72	779.13
	Brooding Scores	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	681.4	682.68
	Anxiety Scores	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	913.86	914.62
	General Depressive Score Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	926.03	925.45
	Brooding Score Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	766.01	769.92
	Anxiety Score Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	1095.7	1095
rs-FC	rs-FC	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	-22.99	-23.67
	rs-FC Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	-58.77	-55.47
337 Symptom Change/ rs-FC Change Relationship	General Depressive Score Changes (D4)	~ rs-FC Change	+ or x Group	+ (1 Subject)	316.57	-153.29
	Brooding Score Changes (D4)	~ rs-FC Change	+ or x Group	+ (1 Subject)	287.8	287.52
	Anxiety Score Changes (D4)	~ rs-FC Change	+ or x Group	+ (1 Subject)	408.46	410.45

338 **Table 2. The models used to examine dependent variables from the FCNef experiment.**

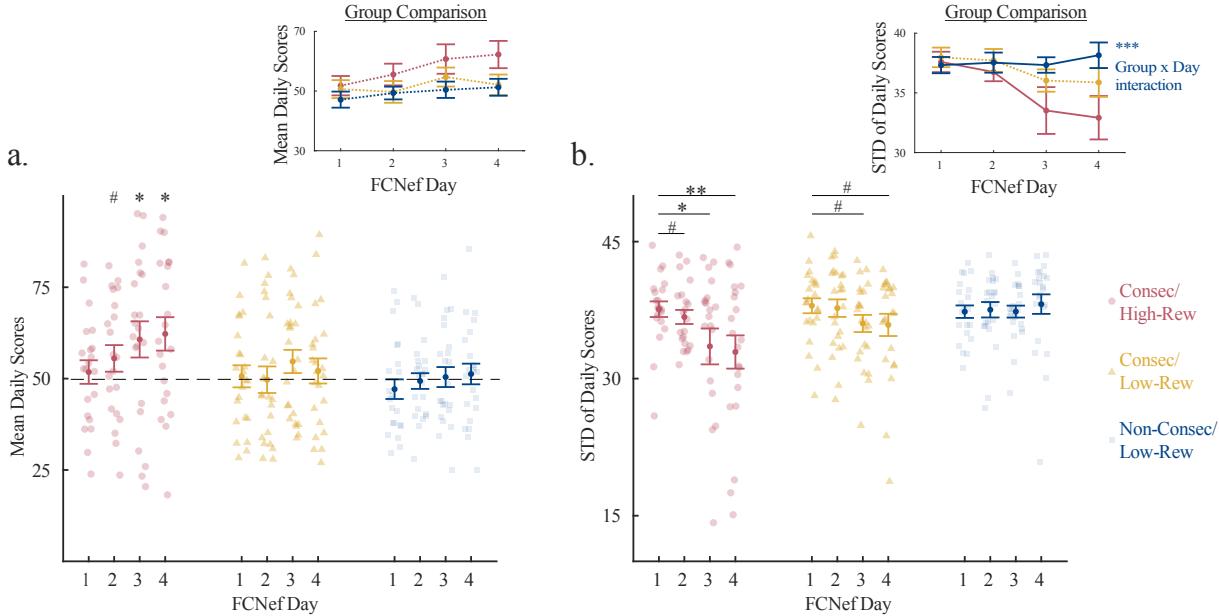
339 *Models with and without interactions between independent variables (IVs) were compared to see which would best*
340 *predict each dependent variable (DV). Akaike Information Criteria (AIC) are displayed in columns labelled ‘+’ (for*
341 *models without interactions) and ‘x’ (for models with interactions). These are highlighted in bold in cases in which*
342 *likelihood ratio testing showed the corresponding model to be significantly better fit than the alternative model. If*
343 *there was no significant difference, then the model without the interaction was selected as best-fit because it was the*
344 *simplest. FCNef Day = Days 1-4; Subject = experimental participant; STD = standard deviation; First/last FCNef*
345 *Day = Days 0 and 4; Post-Day = Day 4, and the 1- and 2-month follow-up test days; Changes = data from the day*
346 *indicated in brackets (e.g. D4) minus data from Day 0; rs-FC = resting state functional connectivity between the*
347 *DLPFC-PCC.*

348

349 3.2.1. FCNef scores

350 In the total dataset (N = 68), while comparing groups, we first examined whether mean FCNef
351 scores increased significantly across training days, because this would indicate that participants
352 successfully modified the target functional connection in the trained direction. Additionally, we assessed
353 whether variance in FCNef scores decreased significantly across training days, because this would
354 indicate that participants had gained better control of the DLPFC-PCC functional connection.

355 The best-fit LME model to predict means of average daily FCNef scores was the model with no
356 interaction (Table 2 and Supplementary Table 8). This model showed a significant main effect of FCNef
357 day ($p = 0.0009$). In short, mean scores increased over training days (see Figure 3), which indicates that


FCNef for Precision Psychiatry

358 participants could do the task. There was also a significant effect of the Non-Consec/Low-Rew group ($p =$
359 0.046): Overall scores were lower for this group than for the reference Consec/High-Rew group (see
360 Figure 3a), who were the only group capable of raising their scores significantly above baseline.

361 The best-fit model to explain variance in FCNef scores did include the interaction term (see Table
362 2 and Supplementary Table 9). This model showed a significant main effect of FCNef day ($p < 0.0001$),
363 which was qualified by a significant interaction between the Non-Consec/Low-Rew group and FCNef day
364 ($p = 0.001$). This interaction indicates that changes in FCNef score variance over FCNef days did not
365 follow the same trajectory for the Non-Consec/Low-Rew group as it did for the reference Consec/Low-
366 Rew group; As can be seen in Figure 3b- the variance decreased over days for the reference group, but not
367 for the Non-Consec/Low-Rew group. No such significant interaction was found between the
368 Consec/Low-Rew group and FCNef Day ($p = 0.11$), which indicates that the Consec/Low-Rew group's
369 trajectory did not differ from that of the reference group. Indeed, the data for the Consec/Low-Rew group
370 lay between that of the other two groups, showing a trend for a decrease in variance over days (see Figure
371 3b).

372
373
374
375
376

FCNef for Precision Psychiatry

377

378 **Figure 3. Means and Standard Deviations of FCNef scores**

379 **(a)** Mean daily FCNef scores. Investigative t-tests were conducted separately for each group to examine whether
380 scores on each FCNef day were higher than a baseline score of 50 (which was the average score given during
381 SHAM on Day 0). Scores improved significantly over FCNef days only for the Consec/High-Rew group. The Group
382 Comparison inset shows the mean ± standard error of mean daily scores overlaid for the different groups. **(b)** Daily
383 STDs in FCNef scores. Investigative t-tests were conducted separately for each group to examine whether variance
384 in scores on each subsequent day of FCNef was lower than that on the Day 1 of FCNef. Score variance decreased
385 significantly over FCNef days only for the Consec/High-Rew group, but a similar trend was found for the
386 Consec/Low-Rew group. The Group Comparison inset shows the mean ± standard error of STD daily scores
387 overlaid for the different groups; This highlights the Group x Day interaction found in the best-fit model for the
388 Non-Consec/Low-Rew group relative to the reference Consec/High-Rew group. *** represents $p = 0.001$, **
389 represents $p_{FDR} < 0.01$, * represents $p_{FDR} < 0.05$, # represents $p_{FDR} < 0.1$, STD = standard deviation.

390

391 3.2.2. Self-report symptom scores

392 We analysed symptom questionnaire scores and compared these between the three groups as a
393 secondary measure related to FCNef effects (Supplementary Table 10). We did not include symptom
394 changes from before to after FCNef and into the long-term in our operationalisation of FCNef success
395 because symptom reduction could occur for multiple reasons, including the placebo effect. Symptom
396 reduction would be meaningful here only if specifically related to changes in the targeted brain activity.

FCNef for Precision Psychiatry

397 Nonetheless, we monitored symptom changes to ensure they had not worsened over the course of the
398 study. Based on preliminary results [12], we predicted that symptoms should decrease from before to after
399 FCNef and then remain lower across post-days. Therefore, we used separate LME models to examine
400 initial and long-term effects.

401 3.2.2.1. Symptoms: The initial effect

402 For the best-fit models to predict both general depressive symptoms and brooding symptoms (see
403 Table 2 and Supplementary Tables 11 and 12), we found main effects of first/last FCNef day ($p < 0.0001$
404 for general depressive symptoms, $p = 0.0003$ for brooding symptoms), but no main effects of group ($ps >$
405 0.05). Follow-up t-tests showed that these symptoms were lower on day 4 than on day 0 ($t(67) = 4.78$,
406 $p_{FDR} < 0.0001$ for general depressive symptoms; $t(67) = 4.33$, $p_{FDR} < 0.0001$ for brooding symptoms). For
407 the best-fit models to predict anxiety symptoms (see Table 2 and Supplementary Table 13), we found a
408 significant main effect of first/last FCNef day ($p = 0.003$). A follow-up t-test showed that overall, anxiety
409 symptoms were lower on day 4 than on day 0 ($t(67) = 2.95$, $p_{FDR} = 0.007$). In this model there was also a
410 significant main effect of the Non-Consec/Low-Rew group ($p = 0.042$), and a trend for a main effect of
411 the Consec/Low-Rew group ($p = 0.0995$). Compared to the reference Consec/High-Rew group,
412 participants in the Non-Consec/Low-Rew group had higher anxiety and participants in the Consec/Low-
413 Rew group had lower anxiety (on Days 0 and 4) (see Supplementary Table 10). If anxiety has any effect
414 on overall FCNef success, then we should see deviations from the reference group in opposite directions
415 for these two groups, which we did not.

416 3.2.2.2. Symptoms: Changes in the long-term

417 Next, we examined whether any post-changes in symptoms differed or remained stable over the
418 long-term. For all symptom types, the best-fit model (see Table 2 and Supplementary Tables 14-17) had
419 no significant main effect of post-day or group ($ps > 0.05$). This may mean that after symptoms decreased
420 from day 0 to day 4, they remained at this new reduced level in the long-term. To examine this possibility,
421 we used t-tests to compare symptoms from follow-up tests with symptoms from day 0. Indeed, we found
422 that relative to symptoms from day 0, general depressive and brooding symptoms from the 1-month and
423 2-month follow-up tests were significantly reduced ($t(52) = 4.28$, $p_{FDR} = 0.0001$ for general depressive at
424 1-month, $t(52) = 4.28$, $p_{FDR} < 0.0001$ for brooding at 1-month, ($t(45) = 2.24$, $p_{FDR} = 0.015$ for general
425 depressive symptoms at 2-months, $t(45) = 5.60$, $p_{FDR} < 0.0001$ for brooding symptoms at 2-months). We
426 found a similar pattern, but non-significant, for anxiety symptoms ($t(52) = 4.28$, $p_{FDR} = 0.061$ at 1-month,
427 $t(45) = 0.92$, $p_{FDR} = 0.18$ at 2-months). Overall, these results show that general depressive and brooding

FCNef for Precision Psychiatry

428 symptoms significantly decreased from before to after FCNef and remained at this new reduced level in
429 the long-term. Anxiety symptoms also decreased significantly from before to after FCNef and remained
430 in this same direction in the long-term, albeit not significantly. There was no persuasive evidence that
431 group, and therefore the manipulated parameters, influenced these results.

432 3.2.3. Resting-state functional connectivity

433 If FCNef is successful, then we predict that participant rs-FC should become more negative with
434 FCNef, which was the trained direction, and that it should remain so across the post-days. Therefore, we
435 used separate LME models to examine rs-FC initial and long-term effects for the three groups of
436 participants. Note that we measured rs-FC on all days (0-4) of the main experiment. However, we only
437 included data from days 0 and 4 in LME models to examine the initial effect. This is because rs-FC on
438 days 1-3 may be subject to homeostatic and/or compensatory mechanisms, causing overshoots [12] or
439 rebounds [34] in brain activity. Average rs-FC for each group for each day of experimentation can be seen
440 in Supplementary Table 18.

441 3.2.3.1. rs-FC: The initial effect

442 Likelihood ratio testing showed that models to predict rs-FC from days 0 and 4 did not differ
443 significantly, depending on whether an interaction term was included. Therefore, we selected the model
444 without the interaction term as best-fit, because it was simpler (see Table 2 and Supplementary Table 19).
445 This model showed a trend for a main effect of first/last FCNef day ($p = 0.094$), but no main effect of
446 group ($ps > 0.05$). Nonetheless, Figure 4 clearly shows that rs-FC on day 4 was more negative relative to
447 baseline for the Consec/High-Rew group, but not for the Non-Consec/Low-Rew group. rs-FC changes
448 from day 0 to day 4 for the Consec/Low-Rew group lay in between those of the other 2 groups (see Figure
449 4). Evidence for these between-group differences may be found at the LME model level if this experiment
450 is run with greater sample sizes; This is suggested by the fact that the model with the interaction term
451 trended toward being better than the model without, despite this not reaching full significance ($\chi^2(2) =$
452 4.69, $p = 0.096$). The model with the interaction term had a significant first/last FCNef day x Non-
453 Consec/Low-Rew group interaction ($p = 0.036$) which indicates that the trajectory for rs-FC from day 0 to
454 day 4 differed for the Non-Consec/Low-Rew group compared to the reference Consec/Low-Rew group
455 (see Supplementary Table 20 and for visualisation of this see the Group Comparison inset in Figure 4).

456 3.2.3.2. rs-FC: Changes in the long-term

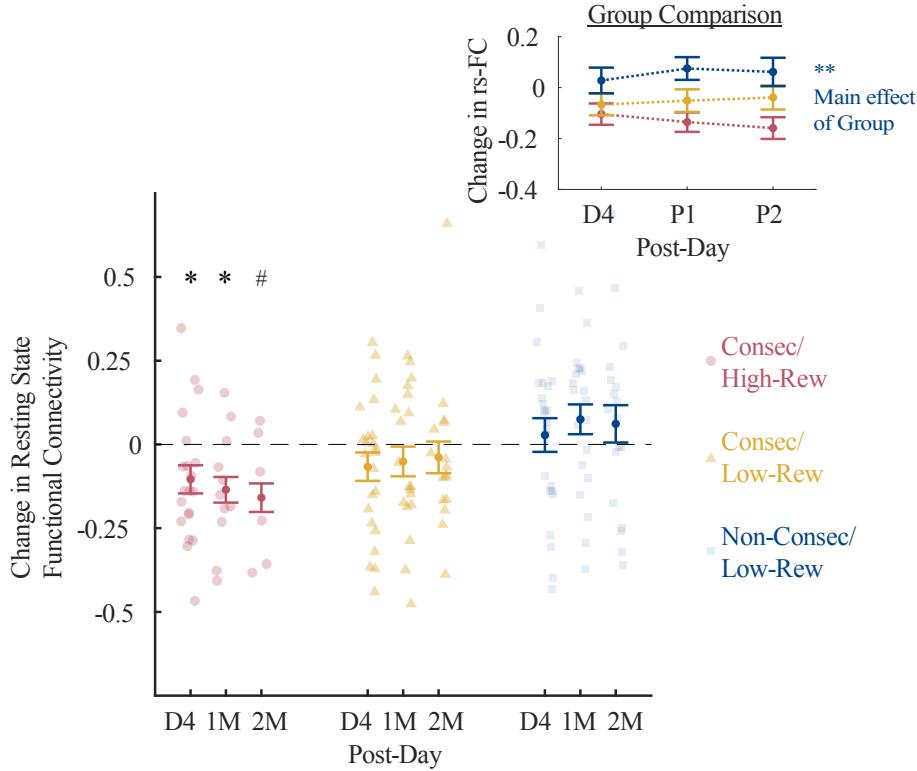
457 We next examined whether any post-changes in DLPFC-PCC rs-FC differed or remained stable
458 over time. In the best-fit model, which had no interaction term (see Table 2 and Supplementary Table 21),
459 no significant main effect of post-day was found. This indicates that changes from baseline remained
460 stable across post-days. A significant main effect of the Non-Consec/Low-Rew group was found ($p =$
461 0.007), indicating that post-changes in rs-FC differed for the Non-Consec/Low-Rew group and the
462 reference Consec/High-Rew group. Specifically, post-changes were more negative, which was the trained
463 direction, for the Consec/High-Rew group versus the Non-Consec/Low-Rew group (see Figure 4). Post-
464 changes for the Consec/Low-Rew group lay between those of the other two groups (see Figure 4).

465

466

467

468


469

470

471

472

FCNef for Precision Psychiatry

473

474 **Figure 4. Long-term changes in rs-FC.**

475 *Investigative t-tests revealed that for the Consec/High-Rew group, overall DLPFC-PCC resting state functional*
476 *connectivity (rs-FC) was significantly more negative than baseline immediately after FCNef had been completed*
477 *(D4) and one-month later (M1), and that it trended toward this even two-months later (M2). Nothing of significance*
478 *was found for either of the other groups, although visually, the rs-FC appears to shift in the non-targeted direction*
479 *(positive) for the Non-Consec/Low-Rew group. These results should be further explored using larger sample sizes*
480 *for long-term data. Note that bars for each Group represent different sample sizes because not all participants came*
481 *back for long-term testing (see Table 1). The Group Comparison inset shows the mean \pm standard error of the*
482 *change in rs-FC, over different post-days, overlaid for the different groups. Changes = data from each post-day*
483 *minus data from Day 0; D = Day, M = Month, * represents $p_{FDR} < 0.05$, # represents $p_{FDR} = 0.051$.*

484

485 3.2.4. Relationship between changes in self-report symptom scores and changes in rs-FC

486 Finally, in the three groups of participants, we examined how changes in participant DLPFC-PCC
487 rs-FC from before to after FCNef related to changes in general depressive, brooding, and anxiety
488 symptoms. Here, changes were defined as day 0 data subtracted from day 4 data. If the FCNef paradigm

FCNef for Precision Psychiatry

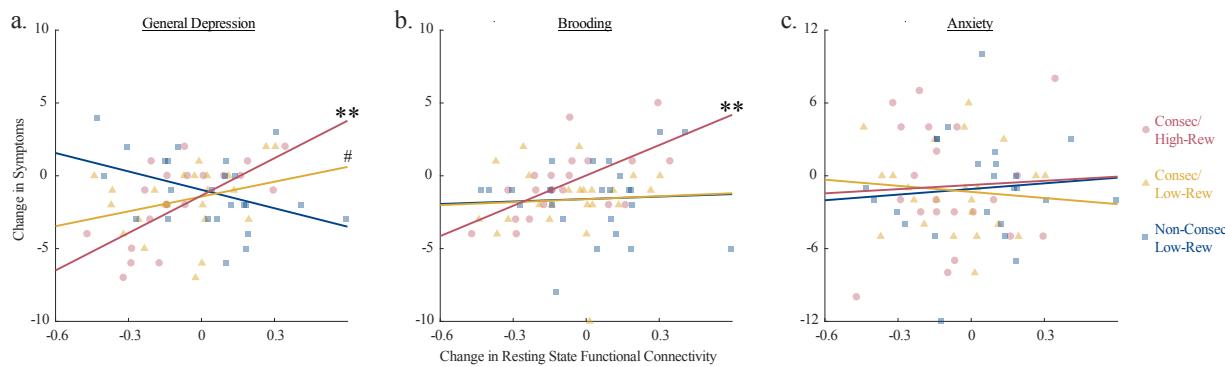
489 was successful, then we would expect changes in the DLPFC-PCC rs-FC to be positively related to
490 changes in general depressive symptoms. This would mean that the more negative the rs-FC became, the
491 more depressive symptoms decreased. If, as previously hypothesised [12], the targeted functional
492 connection (FC) is specifically related to maladaptive symptoms of rumination, then we would expect
493 changes in the DLPFC-PCC rs-FC to be positively related to changes in brooding symptoms, but not to
494 changes in anxiety symptoms (which we used as a control). Importantly, by including Group as a factor in
495 the models, we examined whether these effects were impacted by manipulated parameters.

496 3.2.4.1. Relationships between symptom changes and rs-FC changes

497 The best-fit model to explain changes in general depressive scores (see Table 2 and
498 Supplementary Table 22) had a significant interaction between rs-FC change and group ($p = 0.0001$).
499 Follow-up correlations revealed a significant positive correlation between general depression change and
500 rs-FC change for the Consec/High-Rew group ($r = 0.66, p_{FDR} = 0.002$), a positive, but non-significant
501 relationship for the Consec/Low-Rew group ($r = 0.30, p_{FDR} = 0.13$), and a negative, non-significant
502 relationship for the Non-Consec/Low-Rew group ($r = -0.41, p_{FDR} = 0.98$).

503 The best-fit model to explain changes in brooding scores (see Table 2 and Supplementary Table
504 23) showed no significant main effects. However, hypothesis-driven follow-up correlations revealed a
505 significant positive correlation between brooding change and rs-FC change for the Consec/High-Rew
506 group ($r = 0.63, p_{FDR} = 0.003$), but nothing even approaching significance for the other two groups ($r =$
507 $0.18, p_{FDR} = 0.31$ for the Consec/Low-Rew group; $r = 0.05, p_{FDR} = 0.40$ for the Non-Consec/Low-Rew
508 group).

509 The best-fit model to explain changes in anxiety scores (see Table 2) had no significant main
510 effects or interactions ($ps > 0.05$; see Supplementary Table 22). Follow-up correlations also showed
511 nothing of significance ($r = 0.05, p_{FDR} = 0.63$ for the Consec/High-Rew group; $r = -0.08, p_{FDR} = 0.65$ for
512 the Consec/Low-Rew group; $r = 0.34, p_{FDR} = 0.63$ for the Non-Consec/Low-Rew group).

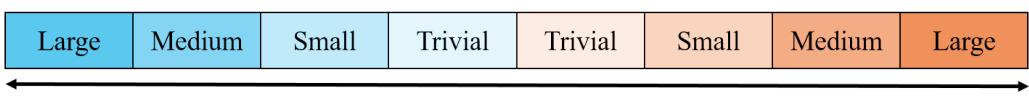

513 The relationship between symptom changes and rs-FC changes for all groups can be seen in
514 Figure 5. Data of one participant whose general depression change was more than 3 STD lower than the
515 group general depression change mean was excluded from the general depression change analysis (and
516 Figure 5a). Data of another participant whose brooding change was more than 3 STD lower than the
517 group mean was excluded from the brooding change analysis (and Figure 5b). This was because, although
518 inclusion of these participants did not change the results, it meant the data failed to meet a crucial
519 assumption underlying LME models (normal distribution of the residuals).

FCNef for Precision Psychiatry

520 3.2.4.2. Specificity of the targeted functional connection

521 We specifically hypothesised that changes in DLPFC-PCC rs-FC from before to after FCNef
522 should relate to changes in brooding, but not anxiety symptoms. Z-tests to compare correlation
523 coefficients [33], run with one tail due to our directional hypothesis, demonstrated a significant difference
524 for the Consec/High-Rew group ($z = 2.08, p = 0.019$), but not for the other groups ($z = 0.83, p = 0.21$ for
525 the Consec/Low-Rew group; $z = 0.11, p = 0.46$ for the Non-Consec/Low-Rew group).

526


527

528 **Figure 5. How changes in rs-FC relate to changes in symptomatology.**

529 *Changes in DLPFC-PCC resting state functional connectivity (rs-FC) are plotted against (a) changes in General*
530 *Depression Scores, (b) changes in Brooding scores, and (c) changes in Anxiety scores. Overall, promisingly for*
531 *precision medicine, the Consec/High-Rew group showed significant positive correlations between changes in rs-FC*
532 *and changes in related (General Depression and Brooding), but not unrelated (Anxiety) symptoms. These effects*
533 *were in the same direction (reaching a trend with the uncorrected p-value for the General Depression change*
534 *correlation) for the Consec/Low-Rew group. On the contrary, promising results were not found for the Non-*
535 *Consec/Low-Rew group, for whom the relationship between rs-FC changes and General Depression score changes*
536 *were actually numerically in the opposite direction to expectation. ** represents pFDR < 0.01, # represents pUNCORR*
537 *= 0.085.*

538

Expected Effects	Consec/ High-Rew	Consec/ Low-Rew	Non-Consec/ Low-Rew
Increase in mean FCNef score	$d = -0.58$	$d = -0.09$	$d = -0.31$
Decrease in FCNef score STD	$d = 0.72$	$d = 0.42$	$d = -0.19$
Normalization of rs-FC	$d = 0.47$	$d = 0.30$	$d = -0.11$
Positive relationship between BDI changes and rs-FC changes	$r = 0.66$	$r = 0.30$	$r = -0.41$
Positive relationship between Brooding changes and rs-FC changes	$r = 0.62$	$r = 0.21$	$r = 0.05$

A horizontal scale with arrows at both ends. Inside the scale, there are eight boxes arranged from left to right: Large (darkest blue), Medium (medium blue), Small (light blue), Trivial (lightest blue), Trivial (lightest blue), Small (light orange), Medium (medium orange), and Large (darkest orange). The first four boxes are under the label "Hypothesized direction" and the last four are under the label "Non-hypothesized direction".

539

540 **Table 3: Effect sizes summarized.**

541 “Expected effects” are effects that we expect to see if FCNef training is successful. Comparisons for “Increase in
 542 mean FCNef scores” and “Decrease in FCNef score STD” were t-tests comparing data from the first and the last
 543 day of FCNef (Days 1 and 4). Comparisons for “Normalization of rs-FC” were t-tests comparing rs-FC from before
 544 to after FCNef (Days 0 and 4). The two “Positive relationship...” comparisons were correlations calculated
 545 between changes in rs-FC and changes in symptoms, where “changes” were defined as Day 4 - Day 0 data. Effect
 546 sizes for each comparison are shown in the relevant cell. These are shown here as Cohen’s d (d) for t-tests and
 547 Pearson’s correlation coefficient (r) for correlations. Following convention, these can be described on a scale
 548 ranging from trivial ($d < |0.2|$ or $r < |0.1|$), small ($0.2 \leq |d| < 0.5$ or $|0.1| \leq r < |0.3|$), medium ($|0.5| \leq d < |0.8|$ or
 549 $|0.3| \leq r < |0.5|$), to large ($d \geq |0.8|$ or $r \geq |0.5|$). Effects in the hypothesized direction are shown in shades of blue
 550 and effects in the non-hypothesized direction are shown in shades of orange. The larger the effect size, the stronger
 551 the shade of the colour in the relevant cell.

552

553 **4. Discussion**

554 Overall, we found that the more participant DLPFC-PCC rs-FCs normalised over consecutive
 555 days of Functional Connectivity Neurofeedback (FCNef), the greater their corresponding decrease in
 556 brooding rumination, which we expected to relate to this functional connection. No such correlation was
 557 shown for changes in DLPFC-PCC rs-FC and anxiety, which is thought to relate to different underlying
 558 neural circuitry [35,36]. Importantly, here we found these results in new participants (run with

FCNef for Precision Psychiatry

559 consecutive days of FCNef to be consistent with our past report). Combining this newly collected data
560 with the previously reported data provided us with sufficient statistical power for direct comparison of
561 these correlation coefficients and a significant difference was found. When we looked at data from three
562 groups of participants (see Table 3), we found the most promising results for the group run with a higher-
563 reward schedule to reinforce the targeted shift in functional connectivity, and an experimental schedule
564 with consecutive days. Weaker results were found for the group of participants that completed FCNef
565 over consecutive days, but who were reinforced with a lower reward schedule. FCNef did not seem to
566 have any effect on the group of participants who attended over non-consecutive days and that were
567 reinforced with a lower reward schedule.

568 4.1. FCNef for precision medicine.

569 The current results strengthen our previous finding that when FCNef is run over consecutive
570 days, normalisation of a target functional connection relates to a specific reduction in only related
571 symptoms (see Figure 2). This replication of previous results with an independent sample of newly
572 collected data shows their robustness and indicates that previous results were unlikely to have been
573 spurious [12]. Furthermore, the finding that changes in the targeted rs-FC correlated significantly more
574 with changes in related than unrelated symptoms highlights the precision of the FCNef technique. This
575 brings us one step closer to a future in which patients may one day enter a clinic, have their brains
576 scanned, and then have targeted treatment to normalise specific neural aberrations related to their own
577 subset of symptoms.

578 4.2. The DLPFC-PCC functional connection and rumination.

579 Not only do our results have implications for precision medicine in general, but also specifically
580 for understanding and treating brooding rumination symptoms. We previously hypothesised, based on
581 both data- and hypothesis-driven evidence from past studies, that the DLPFC-PCC functional connection
582 is likely to relate to brooding rumination [11]. Our initial study found preliminary support consistent with
583 this proposal. Specifically, we found that changes in connectivity between these regions relate to changes
584 in brooding rumination [12]. There has since been at least one other report that also showed increased
585 connectivity between the PCC and PFC related to ruminative symptoms [37]. We here find even stronger
586 support that brooding rumination relates to the DLPFC-PCC functional connection, by showing that the
587 correlation between changes in these is significantly stronger than the correlation between changes in the
588 same functional connection and a type of symptom thought to be unrelated (anxiety). Evidence from

FCNef for Precision Psychiatry

589 previous studies using repetitive transcranial magnetic stimulation to target the DLPFC [38,39] and using
590 real-time neurofeedback to target the PCC [40], have also shown promising results for amelioration of
591 depressive and brooding rumination symptoms. This could be because targeting these regions affects the
592 functional connection between them, which if true, could mean that targeting the functional connection
593 itself more directly (as we did here) could be of even further advantage.

594 4.3. Parameter testing.

595 The current report extends our previous report by clarifying some of the parameters under which
596 FCNef for depression can best be achieved. These results should help guide the design of future
597 neurofeedback and other BMI studies. When selecting parameters for neurofeedback, past studies have
598 tended to follow convention or have gone with what seemed best in terms of cost/benefit trade-offs and/or
599 in terms of making things easy for participants. Often, this is the only feasible way to design a BMI study
600 because the cost of testing all possible parameters is enormous. However, our current results show that
601 certain parameters can make a difference in BMI effectiveness. This means that without knowing the
602 optimal parameters for a given BMI design, researchers may be finding null results simply because they
603 are not running their designs in the most effective way. There is no simple solution to this problem,
604 especially because optimal parameters may differ for different populations, target neural activities,
605 experimental goals, etc. Nonetheless, the current results provide initial evidence that can be used to help
606 future designs. Below, we discuss specific results for these parameter analyses, as well as their
607 implications.

608 *Reward schedule.* Participants run with the high-reward schedule had better FCNef success than
609 those run with the low-reward schedule (see Table 3 and Figures 3, 4, and 5). These results support the
610 proposal that external reward might work as reinforcement that is additional to that provided by feedback
611 scores during neurofeedback [41]. Based on these results, we recommend using liberal external reward in
612 future neurofeedback studies. Furthermore, because BMIs generally do not use external rewards for
613 reinforcement, this result might be worthy of consideration beyond the realm of neurofeedback.

614 Of course, disturbances to reward circuitry and disturbances in reward processing (usually
615 reductions) are commonly reported in depressive and other psychiatric disorders [42–49]. This means that
616 the effect of external reward on reinforcement of the target neural activity might be diminished when
617 neurofeedback is conducted in patients with such disorders. Here, our results with subclinical patients did
618 not corroborate this, but it remains worthy of further investigation in clinically depressed patients.

FCNef for Precision Psychiatry

619 *Experimental schedule.* FCNef appears to be more effective when participants come for
620 consecutive, as opposed to non-consecutive, days of FCNef. All expected effects were strongest in the
621 consecutive condition with high reward, in the same direction (albeit with less strength) in the consecutive
622 condition with low reward, and weak or in the opposite direction for the non-consecutive condition (see
623 Table 3). Of course, the non-consecutive condition that we tested was with low reward and it would have
624 been nice to fully balance this by also testing the non-consecutive condition with high reward. While
625 these results are therefore not fully conclusive, they do not appear promising for using non-consecutive
626 days of FCNef. They indicate that, although possibly more tiring for participants, consecutive days of
627 FCNef may be necessary to achieve positive outcomes. It is possible that consecutive days of
628 reinforcement are needed to drive learning effectively and/or that more non-controllable confounding
629 personal circumstances can occur between non-consecutive days of training (an idea that researchers
630 designing future BMIs and clinical treatments ought to consider).

631 Another point to consider is the possibility that neural plasticity related to learning might cause
632 dynamic rs-FC fluctuations in strength and direction that occur before settling into a new pattern (similar
633 to the rebound effect first documented by Kluetsch et al., 2014 [34]). If so, then our analyses may not
634 have fairly tested consecutive versus non-consecutive conditions. Learning could begin from Day 1; but,
635 post-FCNef measurements (from Day 4, and 1- and 2- months later) differed in the number of
636 days after Day 1 for consecutive/non-consecutive conditions (and even for different participants in the
637 non-consecutive condition). This may mean that measurements were taken at different
638 points during ongoing dynamic rs-FC fluctuations for these different conditions. If so then comparisons
639 between these conditions may actually have compared different snapshots of learning effects. Other
640 researchers using neurofeedback over non-consecutive days should also consider this possibility.

641 4.4. Limitations of the current design.

642 One limitation of our study is that it involved participants who had only subclinical levels of
643 depression. Nonetheless, preliminary studies using this FCNef technique with patients diagnosed with
644 MDD have shown promise [19,21]. Results with clinical patients may be improved if the right parameters
645 are employed. The most effective parameter that we found was high(er) monetary reward. We used
646 money because we wanted to test the effects of reward schedule with a type of reward that is well known
647 to strongly activate the human reward system. However, now that proof-of-concept has been provided,
648 this idea should be further tested more creatively with other types of reward that might be more
649 appropriate for a clinical setting. For example, revealing consecutive puzzle pieces for each successful

FCNef for Precision Psychiatry

650 trial of neuromodulation (see Ramot et al., 2017 [16]). A second limitation of our study is the absence of a
651 control group or within-subject control condition. Therefore, it is possible that our target rs-FC changed
652 and that symptoms improved for reasons such as the placebo or Hawthorne effects. However, only
653 changes in relevant (depressive and brooding rumination, but not anxiety) symptoms changed parallel to
654 the targeted FC, which would be unlikely to occur merely from such nonspecific effects. A third
655 limitation of our study is the incomplete factorial design due to practical constraints, as discussed in the
656 Experimental Conditions section. While this limits our ability to examine potential interaction effects
657 between the experimental schedule and reward schedule parameters, the current design still allows us to
658 investigate main effects of these parameters separately, which was our main aim. Future research should
659 include all factorial combinations to provide a comprehensive understanding of parameter interactions.

660 4.5. Future directions.

661 Although different symptoms are likely to arise from aberrations in wider brain networks
662 involving multiple FCs, our current FCNef approach can directly target only one FC. In that sense,
663 connectome-based FCNef [50] or neurofeedback targeting an estimation of the dynamic weighted linear
664 sum of FCs might be more effective. Some promise for such types of neurofeedback has been found,
665 including when targeting an estimation of the dynamic weighted linear sum of FCs from the greater
666 biomarker from which we identified the DLPFC-PCC FC [T. Ogawa , personal communication, 27th
667 January, 2025; 51]. However, the authors have also reported increased difficulty for participants with
668 regard to the credit assignment (they report that it is difficult to target multiple functional connections and
669 to know what actually worked) and overall experimental interpretability [T. Ogawa, personal
670 communication, 27th January, 2025]. Furthermore, FCNef itself affects broader brain networks than just
671 the targeted functional connection anyway [15,16], so it remains possible that our simple FCNef approach
672 might be best at ameliorating symptoms without the need for added complexity and burden for patients.
673 Future studies should attempt to directly compare effectiveness of these types of neurofeedback.

674 Our current results are promising for precision medicine, but they were shown with functional
675 connectivity in fMRI, which can be costly and impractical (but not impossible) for real clinical treatment.
676 In the future, we expect FCNef to evolve further so that it may be conducted using electroencephalogram
677 (EEG) signatures (see Keynan et al., 2019 [52]) of target FCs or so that it may be conducted using EEG
678 signatures of weighted linear sums of multiple FCs. If successful, then this would allow neurofeedback
679 targeting functional connections to eventually be conducted with portable EEG headsets, possibly even

FCNef for Precision Psychiatry

680 away from the clinic in the privacy of the patient's own home (for more detailed discussion see Taylor et
681 al., 2021 [53]).

682 4.6. Conclusion

683 Overall, we have extended previous results to show that normalisation of the targeted neural
684 network (DLPFC-PCC) correlated significantly more with reductions in symptoms thought to relate to
685 this neural circuitry (brooding rumination) than to changes in symptoms thought to relate to different
686 neural circuitry (anxiety). This highlights the precision of the FCNef technique and brings us one step
687 closer to a future where psychiatric treatment might be tailored to the individual patient. Here, we
688 additionally extended our previous work by investigating parameters under which our FCNef for
689 depression paradigm is most effective. We found that FCNef effectiveness changes depending on those
690 parameters with which it was run. Specifics and implications of some parameter-related results may be
691 relevant beyond neurofeedback to BMIs in general. Furthermore, some of our results highlight benefits of
692 testing conventional parameters. Overall, these results should be informative for design of future BMI
693 testing and for inspiring new interpretations of existing data. For example, previously found null results
694 should be considered in the context of the parameters under which the BMI was run. More broadly, by
695 documenting how parameter optimisation can increase beneficial outcomes and reduce patient burden, we
696 hope to inspire more of this in the future, with the ultimate goal of bringing optimised BMIs to the
697 medical clinic.

698 Acknowledgements

699 We thank Kaori Nakamura for help in scheduling and conducting the experiments, Rumi Yorizawa for
700 help in screening participants, and Toshinori Yoshioka for continued support with regard to experimental
701 scripts.

702 Statement of ethics

703 Participants all provided written informed consent on each day of screening and experimentation prior to
704 commencement. This research was approved by the Ethics Committee of the Review Board of Advanced
705 Telecommunications Research Institute International, Japan (Ethics No. 132, 172) and by the Kyoto
706 University Certified Review Board (YC0849) and the Committee on Medical Ethics of Kyoto University
707 (C0849). All experiments were performed in accordance with the guidelines and regulations of these
708 Ethics Committees. This research was conducted in association with research registered with the Japan

FCNef for Precision Psychiatry

709 Registry of Clinical Trials (jRCTs052180169) and the University Hospital Medical Information Network
710 Clinical Trials Registry (UMIN000015249).

711 Conflict of interest statement

712 MK is an inventor of patents related to functional connectivity neurofeedback. The original assignee of
713 the patents is ATR, with which the authors are affiliated. We have no other conflicts of interest.

714 Funding Sources

715 This research was supported by the Japan Agency for Medical Research and Development (AMED) under
716 Grant Numbers JP18dm0307008, JP21dm0307102 and JP17dm0107044, by the Japan Society for the
717 Promotion of Science (JSPS) KAKENHI under Grant Number 24K22822, and by the Innovative Science
718 and Technology Initiative under Security Grant Number JPJ004596, ATLA, Japan.

719 Author Contributions

720 JET, TM, TY and MK designed experiments; JET, TO, MM and TM acquired data; JET analysed
721 data; JET prepared the original draft; TO, MM, MT, TY, TK, YK, YY, JM, TM, MK, and AC reviewed
722 and edited the manuscript. All authors gave final approval for submission and agreed to take
723 responsibility for the manuscript.

724 Data accessibility

725 Data and code supporting this study's findings will be publicly available on our GitHub at publication.

726

727

728

729

730

731

732

733

734 References

735 1 Patel V, Chisholm D, Parikh R, Charlson FJ, Degenhardt L, Dua T, et al. Addressing the burden of
736 mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd
737 edition. *Lancet*. 2016 Apr;387(10028):1672–85.

738 2 Fava M, Davidson KG. Definition and epidemiology of treatment-resistant depression. *Psychiatr
739 Clin North Am*. 1996 Jun;19(2):179–200.

740 3 McIntyre RS, Alsuwaidan M, Baune BT, Berk M, Demyttenaere K, Goldberg JF, et al. Treatment-
741 resistant depression: definition, prevalence, detection, management, and investigational
742 interventions. *World Psychiatry*. 2023 Oct;22(3):394–412.

743 4 Herrman H, Patel V, Kieling C, Berk M, Buchweitz C, Cuijpers P, et al. Time for united action on
744 depression: a Lancet–World Psychiatric Association Commission. *Lancet*. 2022
745 Mar;399(10328):957–1022.

746 5 Gabriel FC, de Melo DO, Frágua R, Leite-Santos NC, Mantovani da Silva RA, Ribeiro E.
747 Pharmacological treatment of depression: A systematic review comparing clinical practice guideline
748 recommendations. *PLoS One*. 2020 Apr;15(4):e0231700.

749 6 Schalk G, Brunner P, Allison BZ, Soekadar SR, Guan C, Denison T, et al. Translation of
750 neurotechnologies. *Nat Rev Bioeng*. 2024 May;2(8):637–52.

751 7 The tech: Restore [Internet]. Synchron. 2021 Dec [cited 2023 Oct 12]. Available from:
752 <https://synchron.com/technology/brain-io>

753 8 Neuralink announces first-in-human clinical trial of BCI device [Internet]. [cited 2023 Oct 12].
754 Available from: <https://www.fdanews.com/articles/211989-neuralink-announces-first-in-human->
755 [clinical-trial-of-bci-device?v=preview](#)

756 9 Paradromics. Paradromics raises \$33 million in funding, achieves breakthrough medical device
757 designation from FDA [Internet]. PR Newswire. 2023 May [cited 2023 Oct 12]. Available from:
758 <https://www.prnewswire.com/news-releases/paradromics-raises-33-million-in-funding-achieves->
759 [breakthrough-medical-device-designation-from-fda-301827969.html?tc=eml_cleartime](#)

FCNef for Precision Psychiatry

760 10 Neurolutions Receives FDA De Novo Market Authorization for IpsiHand™ [Internet]. Neurolutions.
761 2021 Apr [cited 2023 Oct 12]. Available from: <https://www.neurolutions.com/post/neurolutions-receives-u-s-food-and-drug-administration-de-novo-market-authorization-for-ipsihand>

763 11 Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface
764 Therapy Induces Broad Upper Extremity Motor Recovery in Chronic Stroke. medRxiv. 2023 Aug
765 DOI: 10.1101/2023.08.26.23294320

766 12 Taylor JE, Yamada T, Kawashima T, Kobayashi Y, Yoshihara Y, Miyata J, et al. Depressive
767 symptoms reduce when dorsolateral prefrontal cortex-precuneus connectivity normalizes after
768 functional connectivity neurofeedback. Sci Rep. 2022 Feb;12(1):2581.

769 13 Koush Y, Rosa MJ, Robineau F, Heinen K, W Rieger S, Weiskopf N, et al. Connectivity-based
770 neurofeedback: dynamic causal modeling for real-time fMRI. Neuroimage. 2013 Nov;81:422–30.

771 14 Koush Y, Meskaldji D-E, Pichon S, Rey G, Rieger SW, Linden DEJ, et al. Learning Control Over
772 Emotion Networks Through Connectivity-Based Neurofeedback. Cereb Cortex. 2017
773 Feb;27(2):1193–202.

774 15 Megumi F, Yamashita A, Kawato M, Imamizu H. Functional MRI neurofeedback training on
775 connectivity between two regions induces long-lasting changes in intrinsic functional network. Front
776 Hum Neurosci. 2015 Mar;9:160.

777 16 Ramot M, Kimmich S, Gonzalez-Castillo J, Roopchansingh V, Popal H, White E, et al. Direct
778 modulation of aberrant brain network connectivity through real-time NeuroFeedback. eLife. 2017
779 Sep;6. DOI: 10.7554/eLife.28974

780 17 Tsuchiyagaito A, Misaki M, Zoubi OA, Tulsa 1000 Investigators, Paulus M, Bodurka J. Prevent
781 breaking bad: A proof of concept study of rebalancing the brain's rumination circuit with real-time
782 fMRI functional connectivity neurofeedback. Hum Brain Mapp. 2021 Mar;42(4):922–40.

783 18 Tsuchiyagaito A, Misaki M, Kirlic N, Yu X, Sánchez SM, Cochran G, et al. Real-Time fMRI
784 Functional Connectivity Neurofeedback Reducing Repetitive Negative Thinking in Depression: A
785 Double-Blind, Randomized, Sham-Controlled Proof-of-Concept Trial. Psychother Psychosom. 2023
786 Jan;92(2):87–100.

FCNef for Precision Psychiatry

787 19 Yamada T, Hashimoto R-I, Yahata N, Ichikawa N, Yoshihara Y, Okamoto Y, et al. Resting-State
788 Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for
789 Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers. *Int J*
790 *Neuropsychopharmacol.* 2017 Oct;20(10):769–81.

791 20 Zhao Z, Yao S, Li K, Sindermann C, Zhou F, Zhao W, et al. Real-time functional connectivity-based
792 neurofeedback of amygdala-frontal pathways reduces anxiety. *bioRxiv*. 2018 Apr;308924.

793 21 Takamura M, Okada G, Kamishikiryo T, Itai E, Kato M, Motegi T, et al. Application of functional
794 connectivity neurofeedback in patients with treatment-resistant depression: A preliminary report.
795 *Journal of Affective Disorders Reports*. 2023 Dec;14:100644.

796 22 deCharms RC, Christoff K, Glover GH, Pauly JM, Whitfield S, Gabrieli JDE. Learned regulation of
797 spatially localized brain activation using real-time fMRI. *Neuroimage*. 2004 Jan;21(1):436–43.

798 23 deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, et al. Control over brain
799 activation and pain learned by using real-time functional MRI. *Proc Natl Acad Sci U S A*. 2005
800 Dec;102(51):18626–31.

801 24 Scharnowski F, Rosa MJ, Golestani N, Hutton C, Josephs O, Weiskopf N, et al. Connectivity
802 changes underlying neurofeedback training of visual cortex activity. *PLoS One*. 2014
803 Mar;9(3):e91090.

804 25 Sepulveda P, Sitaram R, Rana M, Montalba C, Tejos C, Ruiz S. How feedback, motor imagery, and
805 reward influence brain self-regulation using real-time fMRI. *Hum Brain Mapp*. 2016
806 Sep;37(9):3153–71.

807 26 Grahek I, Shenhav A, Musslick S, Krebs RM, Koster EHW. Motivation and cognitive control in
808 depression. *Neurosci Biobehav Rev*. 2019 Jul;102:371–81.

809 27 Beck, A.T., Steer, R.A., & Brown, G.K. *Beck Depression Inventory (BDI-II): Manual and
810 Questionnaire*. The Psychological Corporation.; 1996.

811 28 Treynor W, Gonzalez R, Nolen-Hoeksema S. Rumination Reconsidered: A Psychometric Analysis.
812 *Cognit Ther Res*. 2003 Jun;27(3):247–59.

FCNef for Precision Psychiatry

813 29 Hasegawa A. Translation and initial validation of the Japanese version of the Ruminative Responses
814 Scale. *Psychol Rep.* 2013 Jun;112(3):716–26.

815 30 Spielberger CD, Gorsuch RL, Lushene R, Vagg PR. Manual for the State-Trait Anxiety Inventory;
816 Palo Alto, CA, Ed. Palo Alto: Spielberger. 1983

817 31 Akaike H. Information theory and an extension of the maximum likelihood principle. In: Csáki
818 BNP&., editor. 2nd international symposium on information theory. Akadémia Kiadó.; 1973; pp
819 267–81.

820 32 Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach
821 to multiple testing. *J R Stat Soc.* 1995 Jan;57(1):289–300.

822 33 Takeuchi RF. Comparison test of two correlation coefficient: `corr_rtest(ra, rb, na, nb)`.
823 2023 Available from: https://au.mathworks.com/matlabcentral/fileexchange/61398-comparison-test-of-two-correlation-coefficient-corr_rtest-ra-rb-na-nb

825 34 Kluetsch RC, Ros T, Théberge J, Frewen PA, Calhoun VD, Schmahl C, et al. Plastic modulation of
826 PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. *Acta Psychiatr
827 Scand.* 2014 Aug;130(2):123–36.

828 35 Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. *Lancet
829 Psychiatry.* 2016 May;3(5):472–80.

830 36 Williams LM. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction:
831 a theoretical review of the evidence and future directions for clinical translation. *Depress Anxiety.*
832 2017 Jan;34(1):9–24.

833 37 Mısı̄r E, Alıcı YH, Kocak OM. Functional connectivity in rumination: a systematic review of
834 magnetic resonance imaging studies. *J Clin Exp Neuropsychol.* 2023 Nov;45(9):928–55.

835 38 Chu SA, Tadayonnejad R, Corlier J, Wilson AC, Citrenbaum C, Leuchter AF. Rumination
836 symptoms in treatment-resistant major depressive disorder, and outcomes of repetitive Transcranial
837 Magnetic Stimulation (rTMS) treatment. *Transl Psychiatry.* 2023 Sep;13(1):293.

838 39 Richieri R, Jouvenoz D, Verger A, Fiat P, Boyer L, Lançon C, et al. Changes in dorsolateral

FCNef for Precision Psychiatry

839 prefrontal connectivity after rTMS in treatment-resistant depression: a brain perfusion SPECT study.
840 Eur J Nucl Med Mol Imaging. 2017 Jun;44(6):1051–5.

841 40 Kirlic N, Cohen ZP, Tsuchiyagaito A, Misaki M, McDermott TJ, Aupperle RL, et al. Self-regulation
842 of the posterior cingulate cortex with real-time fMRI neurofeedback augmented mindfulness training
843 in healthy adolescents: A nonrandomized feasibility study. Cogn Affect Behav Neurosci. 2022
844 Aug;22(4):849–67.

845 41 Watanabe T, Sasaki Y, Shibata K, Kawato M. Advances in fMRI Real-Time Neurofeedback. Trends
846 Cogn Sci. 2017 Dec;21(12):997–1010.

847 42 Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol
848 Psychiatry. 2006 Jun;59(12):1151–9.

849 43 Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013
850 Sep;14(9):609–25.

851 44 Zhang W-N, Chang S-H, Guo L-Y, Zhang K-L, Wang J. The neural correlates of reward-related
852 processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging
853 studies. J Affect Disord. 2013 Nov;151(2):531–9.

854 45 Baskin-Sommers AR, Foti D. Abnormal reward functioning across substance use disorders and
855 major depressive disorder: Considering reward as a transdiagnostic mechanism. Int J Psychophysiol.
856 2015 Nov;98(2 Pt 2):227–39.

857 46 Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression,
858 bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015 Jan;28(1):7–12.

859 47 Keren H, O'Callaghan G, Vidal-Ribas P, Buzzell GA, Brotman MA, Leibenluft E, et al. Reward
860 Processing in Depression: A Conceptual and Meta-Analytic Review Across fMRI and EEG Studies.
861 Am J Psychiatry. 2018 Nov;175(11):1111–20.

862 48 Knowland D, Lim BK. Circuit-based frameworks of depressive behaviors: The role of reward
863 circuitry and beyond. Pharmacol Biochem Behav. 2018 Nov;174:42–52.

864 49 Fox ME, Lobo MK. The molecular and cellular mechanisms of depression: a focus on reward

FCNef for Precision Psychiatry

865 circuitry. *Mol Psychiatry*. 2019 Dec;24(12):1798–815.

866 50 Scheinoist D, Hsu TW, Avery EW, Hampson M, Constable, RT, Chun MM, Rosenberg MD.
867 Connectome-based neurofeedback: A pilot study to improve sustained attention. *NeuroImage*. 2020
868 May;15(212):116684.

869 51 Ichikawa N, Lisi G, Yahata N, Okada G, Takamura M, Hashimoto R-I, et al. Primary functional
870 brain connections associated with melancholic major depressive disorder and modulation by
871 antidepressants. *Sci Rep*. 2020 Feb;10(1):3542.

872 52 Keynan JN, Cohen A, Jackont G, Green N, Goldway N, Davidov A, et al. Electrical fingerprint of
873 the amygdala guides neurofeedback training for stress resilience. *Nat Hum Behav*. 2019 Jan;3(1):63–
874 73.

875 53 Jessica Elizabeth Taylor, Itamar Jalon, Toshinori Chiba, Tomokazu Motegi, Mitsuo Kawato, and
876 Talma Hendler. Chapter 12: Translation to the clinic and other modalities. In: Hampson M, editor.
877 *fMRI Neurofeedback*. Academic Press, Elsevier; 2021; pp 265–86.

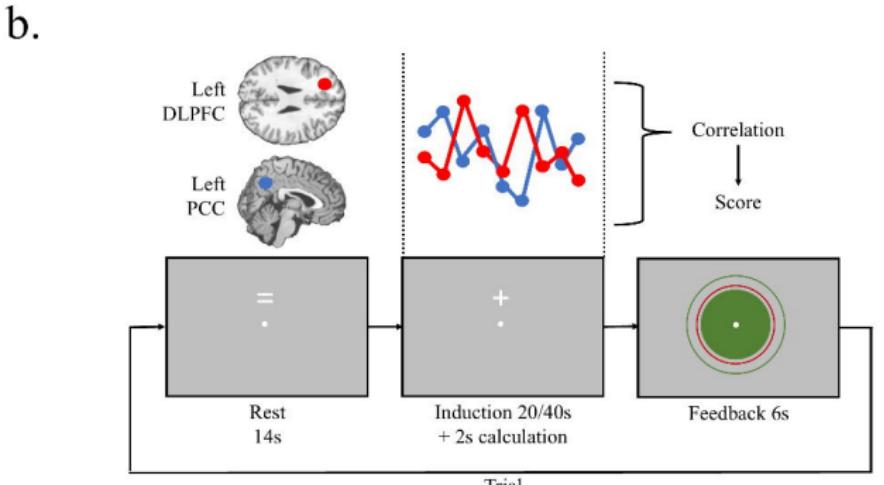
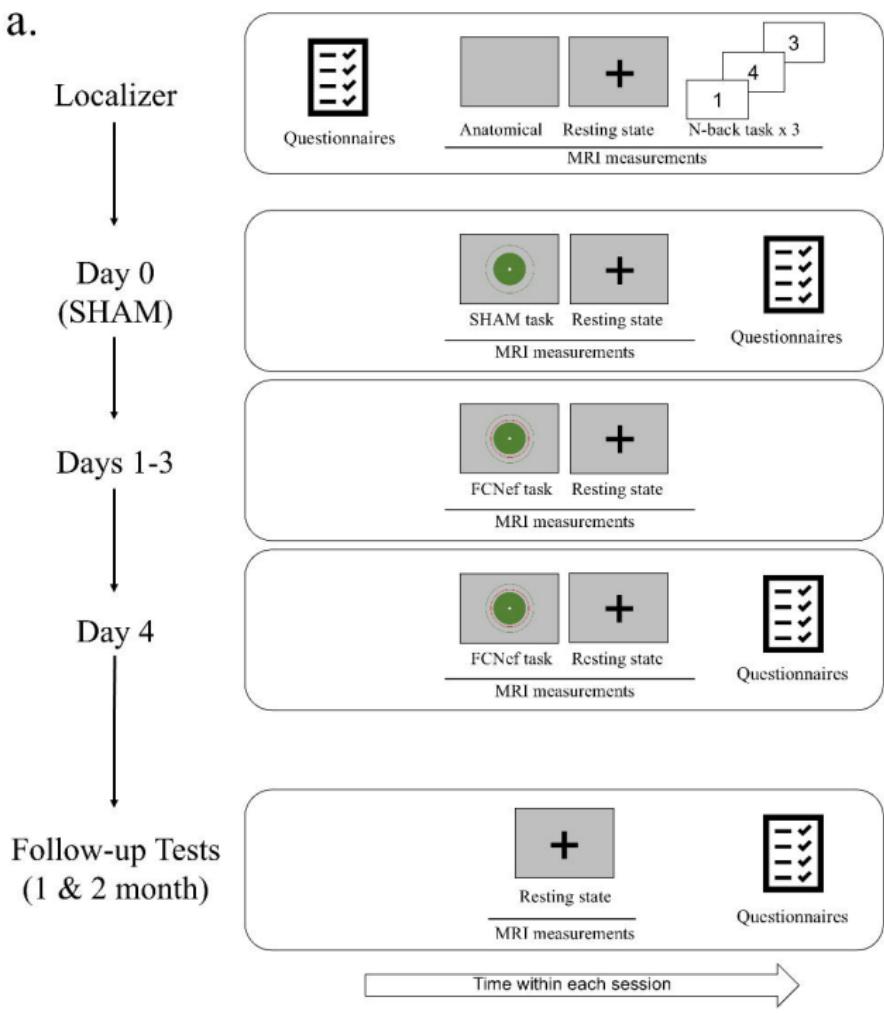
878 54 Kirchner WK. Age differences in short-term retention of rapidly changing information. *J Exp
879 Psychol*. 1958 Apr;55(4):352–8.

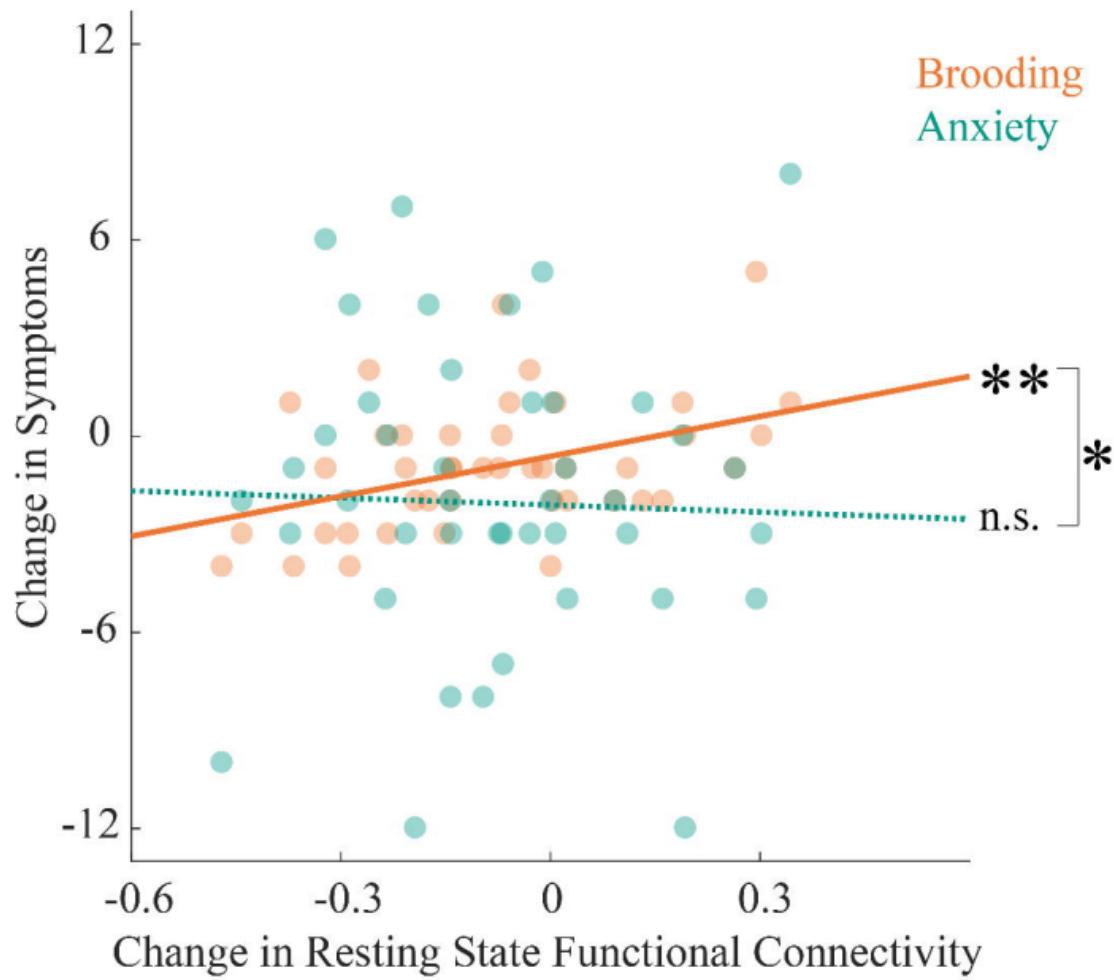
Group	Main Experiment Sample Size	1-Month Follow-up Sample Size	2-Month Follow-up Sample Size
Consec/High-Rew	21	11	9
Consec/Low-Rew	23	20	17
Non/Low-Rew	24	22	20
Total	68	53	46

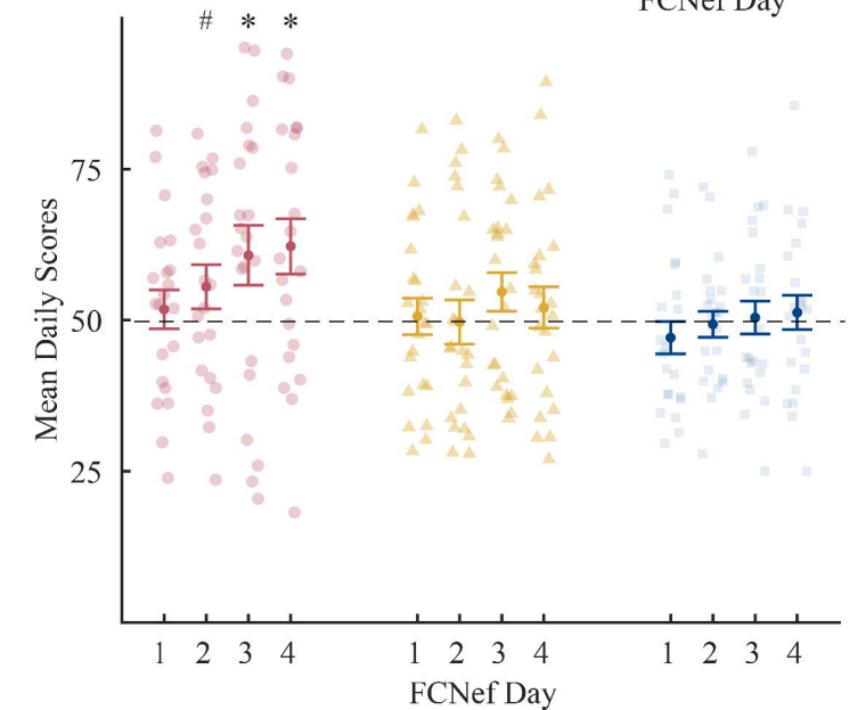
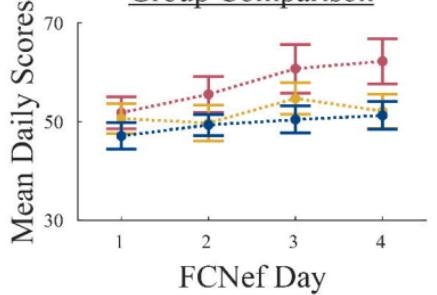
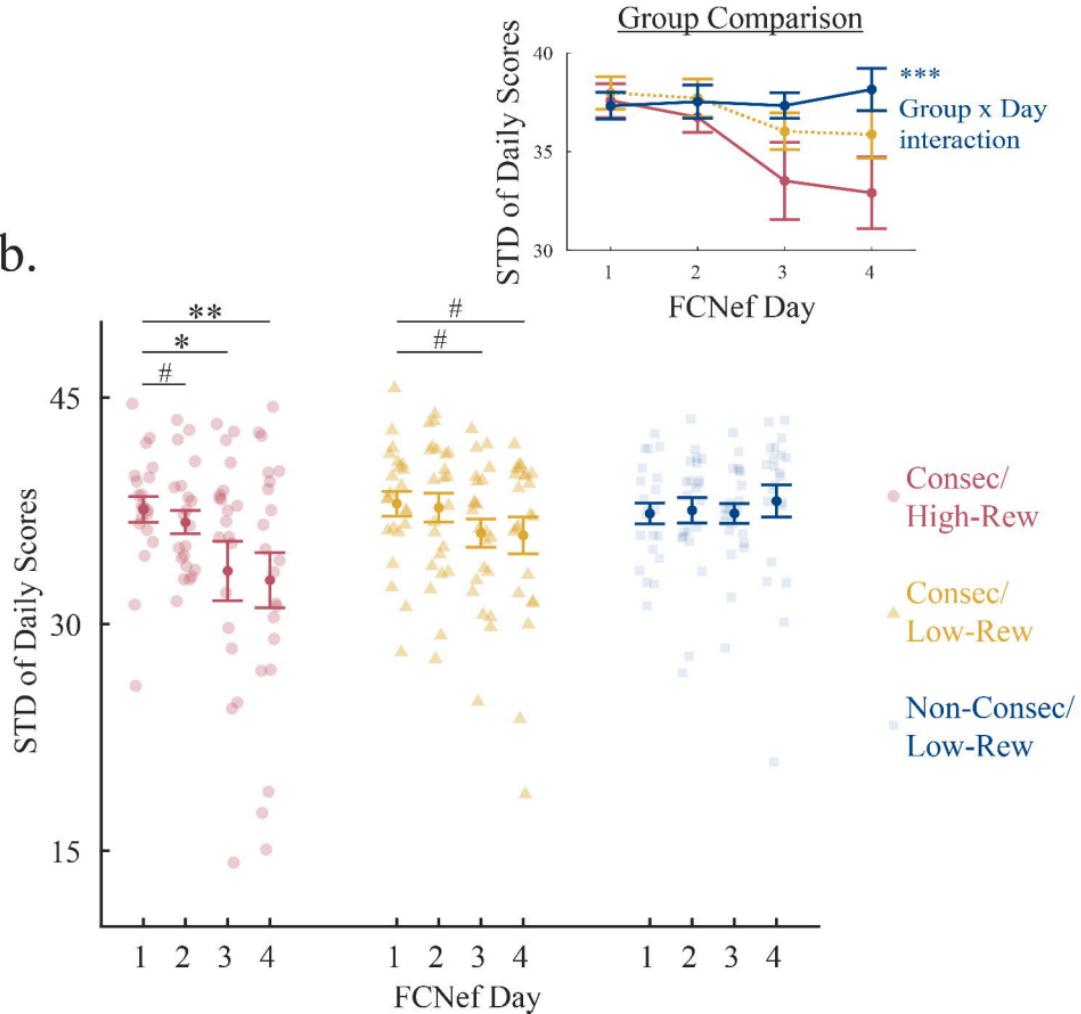
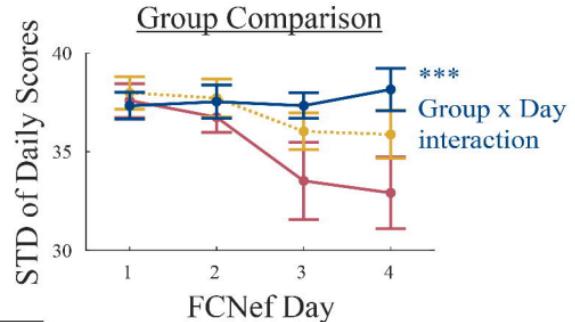
Table 1. Sample sizes for three groups of participants.

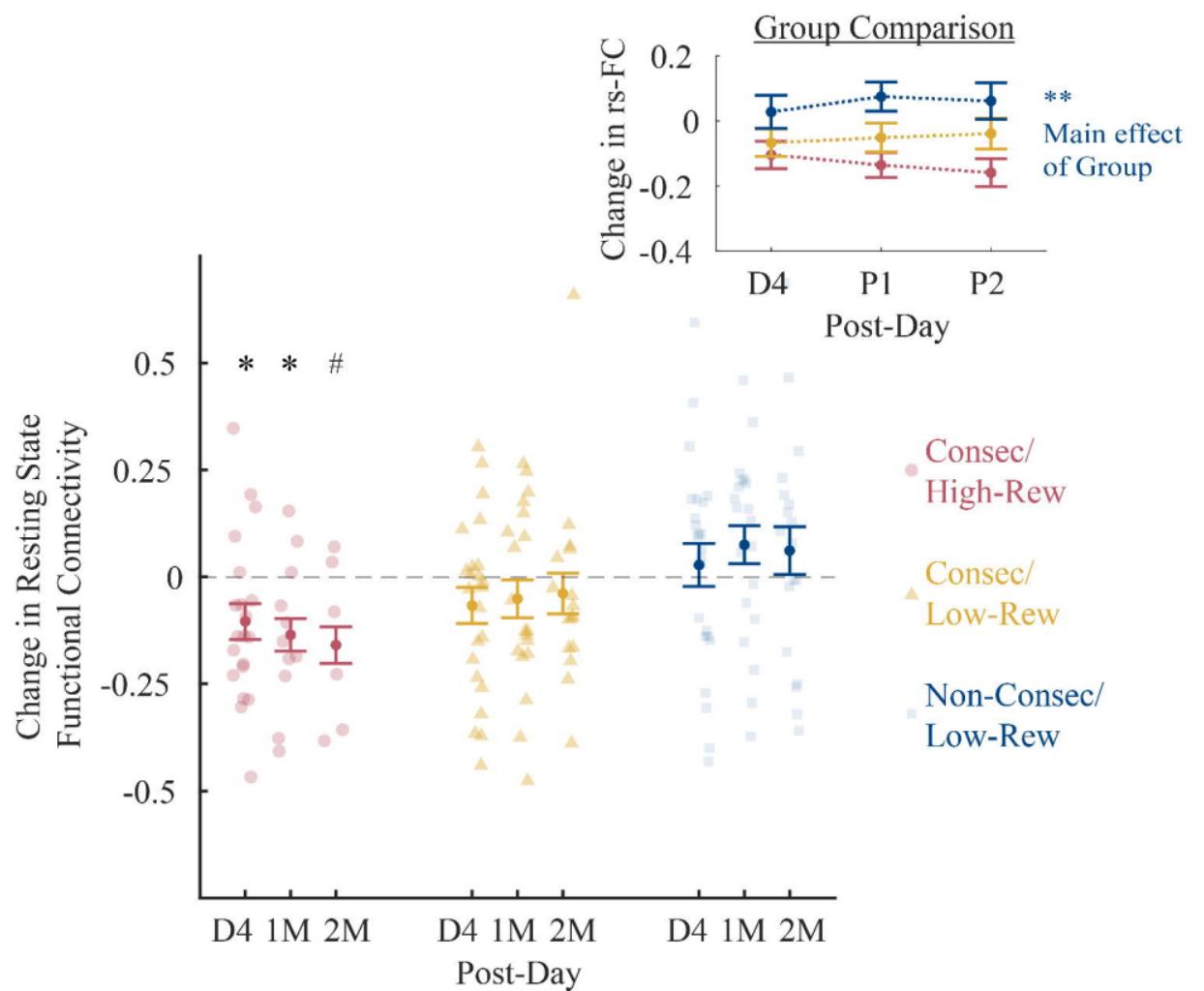
This table shows the sample sizes for: (1) participants run in consecutive days of FCNef with the high-reward schedule (the “Consec/High-Rew group”), (2) those run in consecutive days of FCNef with the low-reward schedule (the “Consec/Low-Rew group”), and (3) those run over non-consecutive days of FCNef with the low-reward schedule (the “Non-Consec/Low-Rew group”). No participants were run over non-consecutive days of FCNef with the high-reward schedule (no “Non-Consec/High-Rew” group). Sample sizes are shown for the main experiment and for one- and two-month follow-up tests. There were fewer participants for the follow-up tests for the Consec/High-Rew group because the long-term tests were not included in the earliest stages of this experiment, so only 12 participants from this group were invited back.

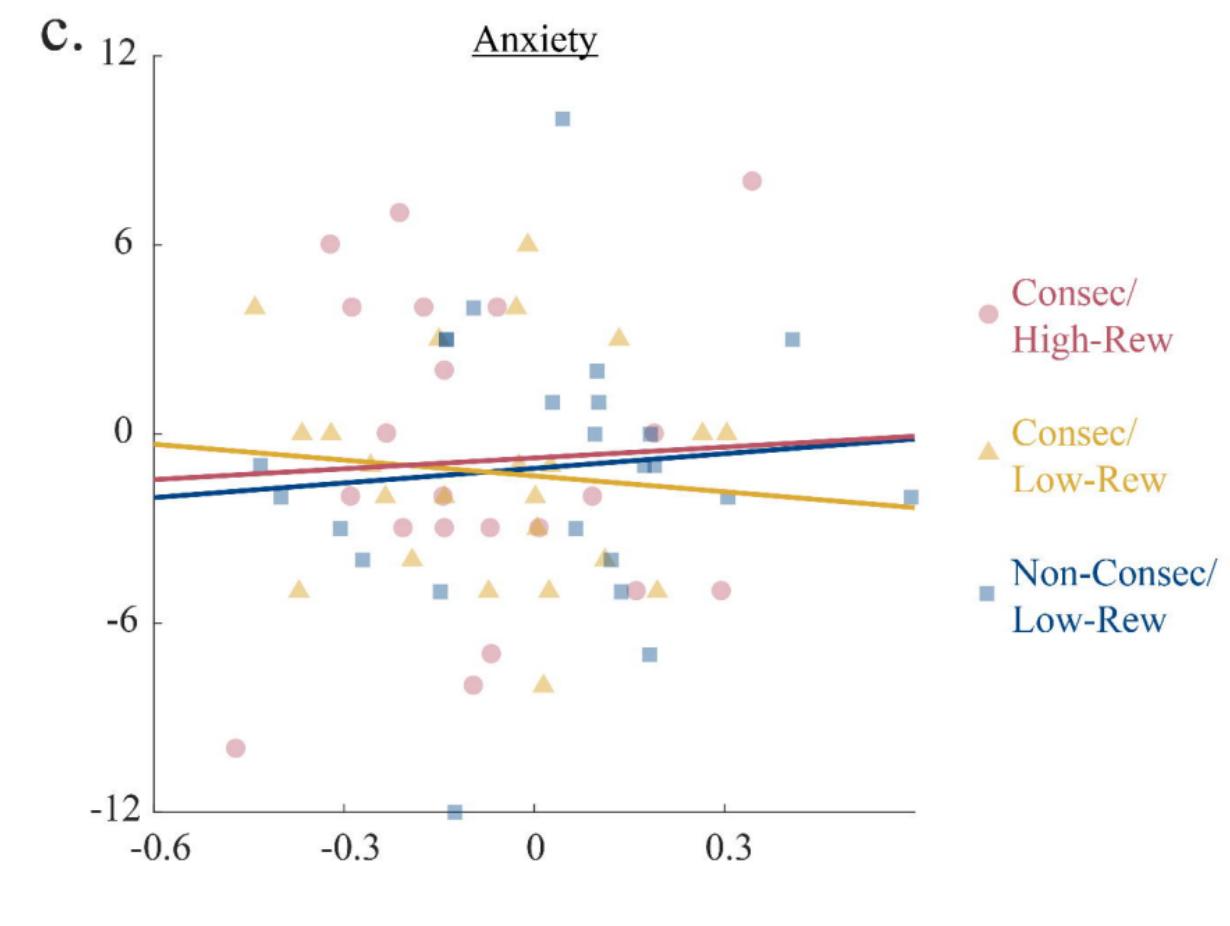
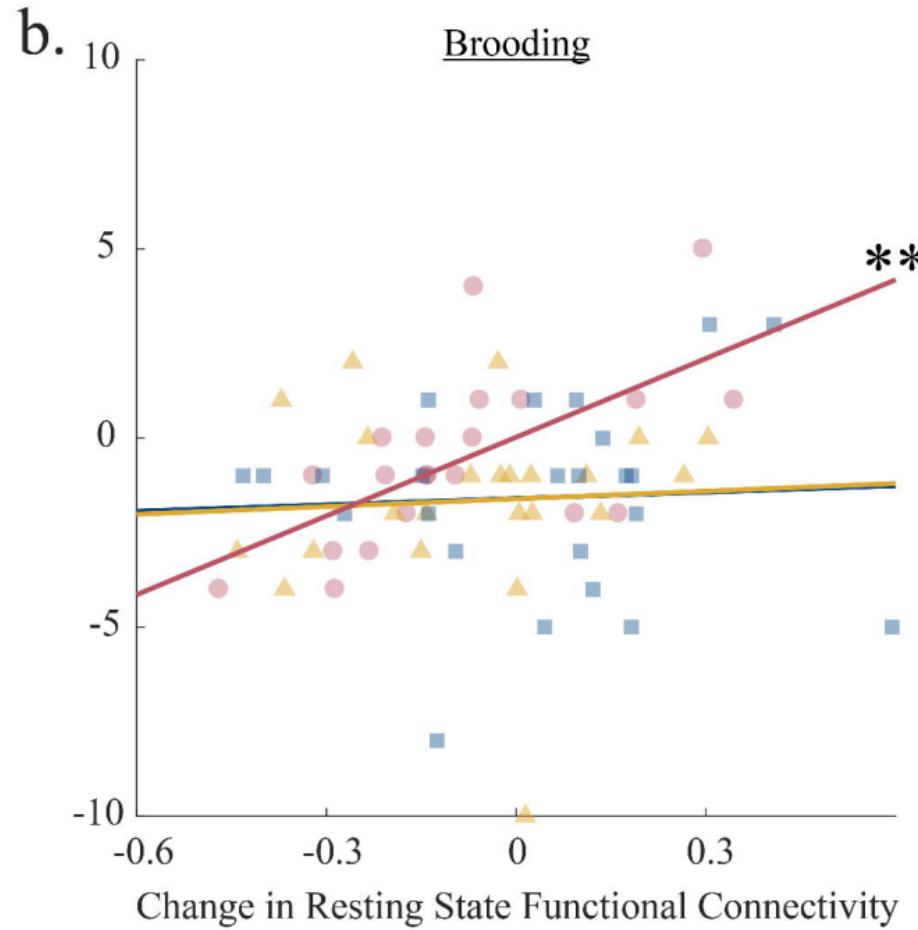
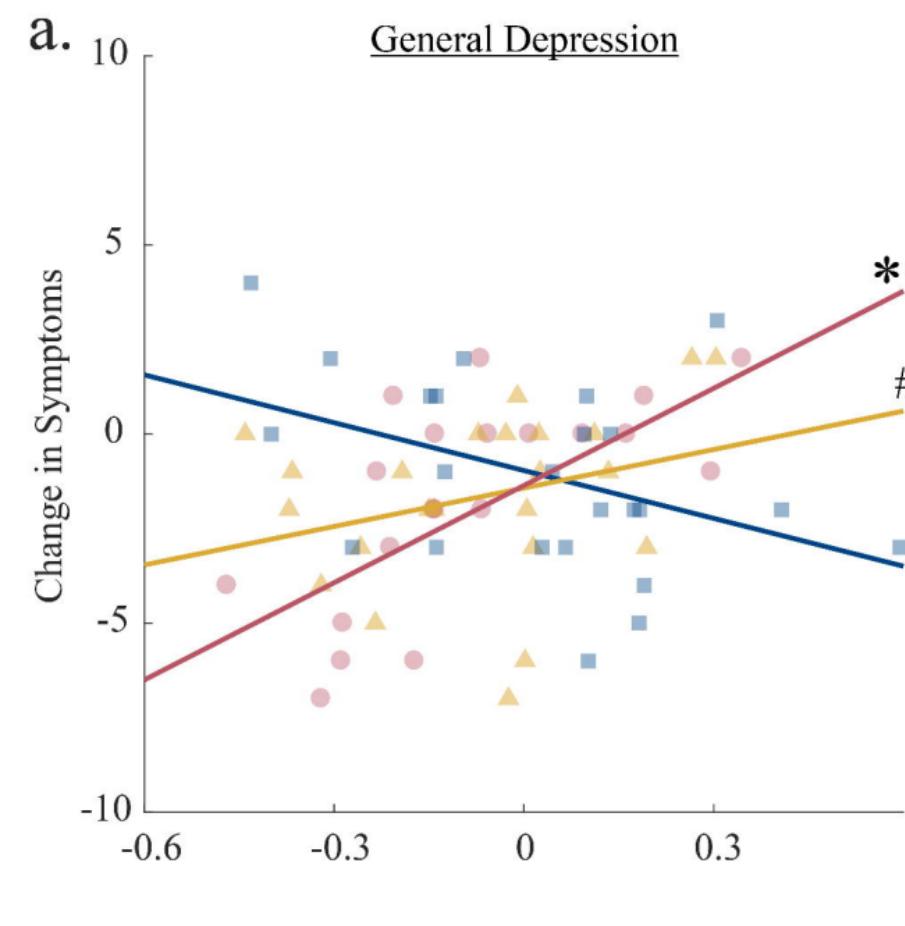
Analyses	Formulae DV	IV1	IV2	Random Intercept	AICs +	x
FCNef Scores	Mean FCNef Score	~ FCNef Day	+ or x Group	+ (1 Subject)	2109.2	2108.7
	STD FCNef Score	~ FCNef Day	+ or x Group	+ (1 Subject)	1599.8	1593
Symptoms	General Depressive Scores	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	776.72	779.13
	Brooding Scores	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	681.4	682.68
	Anxiety Scores	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	913.86	914.62
	General Depressive Score Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	926.03	925.45
	Brooding Score Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	766.01	769.92
	Anxiety Score Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	1095.7	1095
rs-FC	rs-FC	~ first/last FCNef Day	+ or x Group	+ (1 Subject)	-22.99	-23.67
	rs-FC Changes (D4, 1M, 2M)	~ Post-Day	+ or x Group	+ (1 Subject)	-58.77	-55.47
Symptom Change/ rs-FC Change Relationship	General Depressive Score Changes (D4)	~ rs-FC Change	+ or x Group	+ (1 Subject)	316.57	-153.29
	Brooding Score Changes (D4)	~ rs-FC Change	+ or x Group	+ (1 Subject)	287.8	287.52
	Anxiety Score Changes (D4)	~ rs-FC Change	+ or x Group	+ (1 Subject)	408.46	410.45



Table 2. The models used to examine dependent variables from the FCNef experiment.


Models with and without interactions between independent variables (IVs) were compared to see which would best predict each dependent variable (DV). Akaike Information Criteria (AIC) are displayed in columns labelled '+' (for models without interactions) and 'x' (for models with interactions). These are highlighted in bold in cases in which likelihood ratio testing showed the corresponding model to be significantly better fit than the alternative model. If there was no significant difference, then the model without the interaction was selected as best-fit because it was the simplest. FCNef Day = Days 1-4; Subject = experimental participant; STD = standard deviation; First/last FCNef Day = Days 0 and 4; Post-Day = Day 4, and the 1- and 2-month follow-up test days; Changes = data from the day indicated in brackets (e.g. D4) minus data from Day 0; rs-FC = resting state functional connectivity between the DLPFC-PCC.





Expected Effects	Consec/ High-Rew	Consec/ Low-Rew	Non-Consec/ Low-Rew
Increase in mean FCNef score	$d = -0.58$	$d = -0.09$	$d = -0.31$
Decrease in FCNef score STD	$d = 0.72$	$d = 0.42$	$d = -0.19$
Normalization of rs-FC	$d = -0.47$	$d = -0.30$	$d = -0.11$
Positive relationship between BDI changes and rs-FC changes	$r = 0.66$	$r = 0.30$	$r = -0.41$
Positive relationship between Brooding changes and rs-FC changes	$r = 0.62$	$r = 0.21$	$r = 0.05$
Large	Medium	Small	Trivial
Trivial	Small	Medium	Large
Hypothesized direction		Non-hypothesized direction	


Table 3: Effect sizes summarized.




“Expected effects” are effects that we expect to see if FCNef training is successful. Comparisons for “Increase in mean FCNef scores” and “Decrease in FCNef score STD” were t-tests comparing data from the first and the last day of FCNef (Days 1 and 4). Comparisons for “Normalization of rs-FC” were t-tests comparing rs-FC from before to after FCNef (Days 0 and 4). The two “Positive relationship...” comparisons were correlations calculated between changes in rs-FC and changes in symptoms, where “changes” were defined as Day 4 - Day 0 data. Effect sizes for each comparison are shown in the relevant cell. These are shown here as Cohen’s d (d) for t-tests and Pearson’s correlation coefficient (r) for correlations. Following convention, these can be described on a scale ranging from trivial ($d < |0.2|$ or $r < |0.1|$), small ($0.2 \leq |d| < 0.5$ or $|0.1| \leq r < |0.3|$), medium ($|0.5| \leq d < |0.8|$ or $|0.3| \leq r < |0.5|$), to large ($d \geq |0.8|$ or $r \geq |0.5|$). Effects in the hypothesized direction are shown in shades of blue and effects in the non-hypothesized direction are shown in shades of orange. The larger the effect size, the stronger the shade of the colour in the relevant cell.

a.**Group Comparison****b.****Group Comparison**

