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Recent advances in machine learning and artificial neural
networks have enabled us to build robots and virtual agents that can
learn a variety of behavioral tasks. However, their learning
capabilities are strongly dependent on a number of hyperparameters,
such as learning rates and model complexity. The permissible
ranges of such hyperparameters are dependent on particular tasks
and environments, making it necessary for a human expert to tune
them, usually by trial and error. This is why most learning robots
and agents to date can only work in the laboratories.

This is in a marked contrast with learning in even the most
primitive animals, which can readily adjust themselves to
unpredicted environments without any help by a supervisor. This
commonsense observation suggests that the brain has a certain
mechanism for metalearning, a capability of dynamically adjusting its
own hyperparameters of learning. A candidate of such a regulatory
mechanism in the brain is the diffuse neuromodulator systems that
project from the midbrain and the brainstem toward the entire brain
including the cerebral cortex and the cerebellum. Most notable of
such neuromodulators are dopamine, serotonin, noradrenaline, and
acetylcholine.

In order to understand the mechanism of metalearning in natural
behaving systems, the theory of reinforcement learning (RL), which
has been developed for artificial agents that learn to optimize their
behaviors through interaction with the environment, could provide
a comprehensive computational framework.

Central to the theory of reinforcement learning is the value
function of a state:

V(s(t)) = E[ r(t) +  r(t+1) + 2 r(t+2) + …]
where r(t), r(t+1), r(t+2),… denote the reward acquired by following
a certain action policy s → a starting from the initial state s(t). The
discount factor 0 ≤  ≤ 1 specifies how far into the future rewards are
taken into account. The optimal policy that maximizes the above
expectation of cumulative reward is obtained by solving the
Bellman equation:

V(s) = argmaxa [ r(s,a) +  V(s’(s,a))]
where s’(s,a) is the state reached by taking an action a at state s.
What this equation says is that when taking an action a, both the
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immediate reward r(s,a) and the future cumulative reward V(s’(s,a))
should be taken into account.

The relative merit of taking an action a at state s
(s,a) = r(s,a) +  V(s’(s,a)) – V(s),

which is called the temporal difference (TD) signal, can be used both
for action selection and value function learning. A common way of
stochastic action selection to facilitate exploration is the Gibbs
sampling method:

Prob( a(t)=ai) = exp[  (s(t),ai)]/Σj exp[  (s(t),aj)],
where  is a parameter that controls the randomness of action choice,
called the inverse temperature.

The estimate of the value function is updated by
V(s(t)) := V(s(t)) +  (s(t),a(t))

where  is the learning rate.
Based on a large body of neurobiological data and computational

modeling studies, I propose the following hypotheses:
1) The dopaminergic system encodes the relative merit .
2) The serotonergic system controls the time scale of evaluation .
3) The noradrenergic system controls the inverse temperature .
4) The acetylcholinergic system controls the learning rate .

The theory of reinforcement learning provides a clue as to how these
hyperparameters should be adjusted in reference to the task and the
environment. The above hypotheses lead to predictions about the
effect of neuromodulators on learning behaviors, the environmental
effects on the neuromodulatory systems, and the appropriate
balance between the levels of neuromodulators. The comparison of
such predictions with experimental data would help us better
understand the metalearning mechanism of the brain.

Neurobiological studies of emotion have so far focused on the
role of emotion as the ‘emergency programs’ of behavior, such as
escaping and freezing. However, the role of emotion in modulating
cognitive and behavioral learning systems is highly important;
many of affective and mental disorders occur as a result of the
‘runaway’ of learning systems. Consideration of the emotion as the
metalearning system enables a novel computational approach in
which the studies of learning theory, autonomous agents, and the
neuromodulatory systems can be bound together.


