Table S1

ID

Reaction name

Kinetic parameters

References

a1

PKC_bind_Ca

kf = 0.25 sec-1mM-2

kb = 1 sec-1

Kd = 2 mM

1

a2

PKC-Ca_memb

kf = 1 sec-1

kb = 0.1 sec-1

Keq = 10

1

a3

PKC_bind_AA

kf = 0.2 sec-1mM-1

kb = 10 sec-1

Kd = 50 mM

2

a4

PKC-AA_bind_Ca

kf = 0.25 sec-1mM-2

kb = 1 sec-1

Kd = 2 mM

1

a5

PKC-Ca_bind_AA

kf = 0.2 sec-1mM-1

kb = 10 sec-1

Kd = 50 mM

2

b1

PKC_phos_Raf

Km = 11.5 mM

kcat = 0.0335 sec-1

k-1/kcat = 4

3, 4

b2

PP2A_deph_Raf-P

Km = 15.7 mM

kcat = 6 sec-1

k-1/kcat = 4

5

b3

Raf_act_MEK

Km = 0.398 mM

kcat = 0.105 sec-1

k-1/kcat = 4

6

b4

Raf_act_MEK-P

Km = 0.398 mM

kcat = 0.105 sec-1

k-1/kcat = 4

6

b5

PP2A_deph_MEK-PP

Km = 15.7 mM

kcat = 6 sec-1

k-1/kcat = 4

5, 7, 8

b6

PP2A_deph_MEK-P

Km = 15.7 mM

kcat = 6 sec-1

k-1/kcat = 4

5, 7, 8

b7

MEK_act_MAPK

Km = 0.0463 mM

kcat = 0.15 sec-1

k-1/kcat = 4

9, 10

b8

MEK_act_MAPK-P

Km = 0.0463 mM

kcat = 0.15 sec-1

k-1/kcat = 4

9, 10

b9

MKP_deph_MAPK-PP

Km = 0.16667 mM

kcat = 1 sec-1

k-1/kcat = 4

11, 12

b10

MKP_deph_MEPK-P

Km = 0.16667 mM

kcat = 1 sec-1

k-1/kcat = 4

11, 12

c1

MAPK_phos_PLA2

Km = 25.6 mM

kcat = 20 sec-1

k-1/kcat = 4

13, 14

c2

PLA2-P_deg

kf = 0.17 sec-1

kb = 0 sec-1

 

15

c3

PLA2_bind_Ca

kf = 0.01 sec-1

kb = 0.1 sec-1

Kd = 10 mM

16

c4

PLA2-PIP2_bind_Ca

kf = 0.01 sec-1

kb = 0.1 sec-1

Kd = 10 mM

16

c5

PLA2_bind_PIP2

kf = 0.0012 sec-1

kb = 0.48 sec-1

Kd = 400 mM

4

c6

PLA2-Ca_bind_PIP2

kf = 0.0012 sec-1

kb = 0.48 sec-1

Kd = 400 mM

4

c7

PLA2-Ca_prd_AA

Km = 20 mM

kcat = 54 sec-1

k-1/kcat = 4

17

c8

PLA2-PIP2_prd_AA

Km = 20 mM

kcat = 11.04 sec-1

k-1/kcat = 4

17

c9

PLA2-PIP2-Ca_prd_AA

Km = 20 mM

kcat = 36 sec-1

k-1/kcat = 4

17

c10

PLA2-P_prd_AA

Km = 20 mM

kcat = 120 sec-1

k-1/kcat = 4

17

c11

AA_deg

kf = 0.4 sec-1

kb = 0 sec-1

 

15

d1

PKC_phos_AMPAR

Km = 3.5 mM

kcat = 0.05 sec-1

k-1/kcat = 4

4

d2

PP2A_deph_AMPAR-P

Km = 15.7 mM

kcat = 6 sec-1

k-1/kcat = 4

5

kf and kb are defined by the formula S8.

k1, k-1, and kcat are defined by the formula S9.

Kd: dissociation constant (Kd = kb/kf)

Keq: equilibrium constant (Keq = kb/kf)

Km: Michaelis constant (Km = (k-1 + kcat)/k1 )

 

 

 

Table S2

Molecular name

Full name

Concentration

References

PKC

Protein kinase C

1 mM

18

PP2A

Protein phosphatase 2A

0.045 mM

19

Raf

Raf

0.5 mM

20

MEK

MAPK or ERK kinase

0.5 mM

21, 22

MAPK

Mitogen-activated protein kinase

1 mM

22, 23

MKP

MAPK phoaphatase

0.0032 mM

24

PLA2

Phospholipase A2

0.4 mM

16

PIP2

Phosphatidylinositol bisphosphate

10 mM

4

APC

Aracholonylphosphatidylcholine

30 mM

25

AMPAR

AMPA receptor

0.5 mM

26

 


References for Table S1 and S2

1. Oancea, E., and Meyer, T. (1998). Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307-318.

2. Schaechter, J. D., and Benowitz, L. I. (1993). Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. J Neurosci 13, 4361-4371.

3. Chen, S. J., Klann, E., Gower, M. C., Powell, C. M., Sessoms, J. S., and Sweatt, J. D. (1993). Studies with synthetic peptide substrates derived from the neuronal protein neurogranin reveal structural determinants of potency and selectivity for protein kinase C. Biochemistry 32, 1032-1039.

4. Kuroda, S., Schweighofer, N., and Kawato, M. (2001). Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21, 5693-5702.

5. Pato, M. D., Sutherland, C., Winder, S. J., and Walsh, M. P. (1993). Smooth-muscle caldesmon phosphatase is SMP-I, a type 2A protein phosphatase. Biochem J 293, 35–41.

6. Force, T., Bonventre, J. V., Heidecker, G., Rapp, U., Avruch, J., and Kyriakis, J. M. (1994). Enzymatic characteristics of the c-Raf-1 protein kinase. Proc Natl Acad Sci U S A 91, 1270-1274.

7. Kyriakis, J. M., App, H., Zhang, X. F., Banerjee, P., Brautigan, D. L., Rapp, U. R., and Avruch, J. (1992). Raf-1 activates MAP kinase-kinase. Nature 358, 417-421.

8. Ahn, S., Ginty, D. D., and Linden, D. J. (1999). A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23, 559-568.

9. Seger, R., Ahn, N. G., Posada, J., Munar, E. S., Jensen, A. M., Cooper, J. A., Cobb, M. H., and Krebs, E. G. (1992). Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem 267, 14373-14381.

10. Haystead, T. A., Dent, P., Wu, J., Haystead, C. M., and Sturgill, T. W. (1992). Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett 306, 17-22.

11. Charles, C. H., Abler, A. S., and Lau, L. F. (1992). cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene 7, 187-190.

12. Charles, C. H., Sun, H., Lau, L. F., and Tonks, N. K. (1993). The growth factor-inducible immediate-early gene 3CH134 encodes a protein-tyrosine-phosphatase. Proc Natl Acad Sci U S A 90, 5292-5296.

13. Sanghera, J. S., Paddon, H. B., Bader, S. A., and Pelech, S. L. (1990). Purification and characterization of a maturation-activated myelin basic protein kinase from sea star oocytes. J Biol Chem 265, 52-57.

14. Nemenoff, R. A., Winitz, S., Qian, N. X., Van Putten, V., Johnson, G. L., and Heasley, L. E. (1993). Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem 268, 1960-1964.

15. Bhalla, U. S., and Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science 283, 381-387.

16. Leslie, C. C., and Channon, J. Y. (1990). Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A2 from macrophages and reduce the calcium requirement for activity. Biochim Biophys Acta 1045, 261-270.

17. Channon, J. Y., and Leslie, C. C. (1990). A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line RAW 264.7. J Biol Chem 265, 5409-5413.

18. Marquez, C., Martinez, C., Kroemer, G., and Bosca, L. (1992). Protein kinase C isoenzymes display differential affinity for phorbol esters. Analysis of phorbol ester receptors in B cell differentiation. J Immunol 149, 2560-2568

19. Mumby, M. C., Green, D. D., and Russell, K., L. (1985). Structural characterization of cardiac protein phosphatase with a monoclonal antibody. Evidence that the Mr = 38,000 phosphatase is the catalytic subunit of the native enzyme(s). J Biol Chem 260, 13763-13770

20. Storm, S. M., Cleveland, J. L., and Rapp, U. R., (1990). Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 5, 345-351.

21. Seger, R., Ahn, N. G., Posada, J., Munar, E. S., Jensen, A. M., Cooper, J. A., Cobb, M. H., and Krebs, E. G. (1992). Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem 267, 14373-14381.

22. Huang, C. Y., and Ferrell, J. E., Jr. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 93, 10078-10083.

23. Sanghera, J. S., Paddon, H. B., Bader, S. A., and Pelech, S. L. (1990). Purification and characterization of a maturation-activated myelin basic protein kinase from sea star oocytes. J Biol Chem 265, 52-57.

24. Sun, H., Charles, C. H., Lau, L. F., and Tonks, N. K. (1993). MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487-493.

25. Wijkander, J., and Sundler, R., (1991). An 100-kDa arachidonate-mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Purification, substrate interaction and phosphorylation by protein kinase C. Eur J Biochem 202, 873-880.

26. Tanaka, J., Matsuzaki, M., Tarusawa, E., Momiyama, A., Molnar, E., Kasai, H., and Shigemoto, R. (2005). Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci 25, 799-807.