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It is known that any dichotomy of {−1, 1}n can be learned (separated)
with a higher-order neuron (polynomial function) with 2n inputs (mono-
mials). In general, less than 2n monomials are sufficient to solve a given
dichotomy. In spite of the efforts to develop algorithms for finding so-
lutions with fewer monomials, there have been relatively fewer studies
investigating maximum density (�(n)), the minimum number of mono-
mials that would suffice to separate an arbitrary dichotomy of {−1, 1}n.
This article derives a theoretical (upper) bound for this quantity, super-
seding previously known bounds. The main theorem here states that for
any binary classification problem in {−1, 1}n (n > 1), one can always find a
polynomial function solution with 2n − 2n/4 or fewer monomials. In par-
ticular, any dichotomy of {−1, 1}n can be learned by a higher-order neuron
with a fan-in of 2n − 2n/4 or less. With this result, for the first time, a deter-
ministic ratio bound independent of n is established as �(n)/2n ≤ 0.75.
The main theorem is constructive, so it provides a deterministic algo-
rithm for achieving the theoretical result. The study presented provides
the basic mathematical tools and forms the basis for further analyses that
may have implications for neural computation mechanisms employed in
the cerebral cortex.

1 Introduction

Higher-order neurons (units) or sigma pi units are computationally pow-
erful extensions of linear neuron models (Rumelhart, Hinton, & Williams,
1986; Giles & Maxwell, 1987; Schmitt, 2005). These units capture the non-
linearity in the input-output relation through products of input variables
called monomials. The net input to a higher-order unit is the sum of the
monomials weighted by adjustable parameters. The output is obtained by
the application of a predefined activation function (e.g., sigmoidal function
or a threshold function) to the net input. When the output is a threshold
function, these units are sometimes called polynomial threshold units. Ac-
cumulating biological data suggest that specific neurons in the cerebral
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cortex compute in a multiplicative way (see Schmitt, 2002). Therefore,
higher-order units whose monomials capture the nonlinear dendritic in-
formation processing can be considered better models for real neurons
compared to the McCulloch-Pitts model (Mel & Koch, 1990; Mel, 1994).
It is well known that the use of higher-order units increases the compu-
tational power and storage capacities of neural networks (Schmitt, 2002);
however, the combinatorial growth in the number of monomials required
for a given problem limits their application. Some work has been de-
voted to developing algorithms for finding a reduced set of monomi-
als to realize a given classification problem without suffering from the
combinatorial growth problem (e.g., Ghosh & Shin, 1992; Guler, 2001).
Theoretical results concerning the bounds for Vapnik-Chervonenkis di-
mension of higher-order neurons have also been obtained (Schmitt, 2002,
2005). More relevant to this article is the study of the so-called polyno-
mial threshold density of Boolean functions (i.e., dichotomies) (see, e.g.,
Saks, 1993), which indicates the minimum number of monomials over
all the polynomial functions that solve a given classification problem in
{−1, 1}n. It is of both practical and theoretical importance to determine
the maximum density, �(n), the number of monomials that one can al-
ways separate any dichotomy of {−1, 1}n. Spectral theory of Boolean func-
tions produced important results and elegant methods to derive some
bounds on the maximum density, �(n). The best-known lower bound
is 0.11 × 2n (see, Saks, 1993; O’Donnell & Servedio, 2003). The upper
bound is due to Gotsman (1989), who proved that the maximum den-
sity is at most 2n − √

2n + 1. These bounds tell us that every dichotomy
of {−1, 1}n can be separated with 2n − √

2n + 1 or fewer monomials, and
there are dichotomies that cannot be separated with fewer than 0.11 × 2n

monomials. In fact, it is known that there exist dichotomies that can-
not be separated with a polynomially (in n) bounded number of mono-
mials (Bruck, 1990). Recently, O’Donnell and Servedio (2003) improved
the upper bound asymptotically to 2n − 2n

/
O(n). This article further im-

proves the latter bound by proving �(n) ≤ 2n − 2n/4, thereby, for the first
time, establishing a deterministic ratio bound independent of n: �(n)

/
2n ≤

0.75.

1.1 A Motivating Example. Consider the dichotomy (fully specified
binary classification problem) given in Table 1. For simplicity we use −1 and
+1 for the class labels. A solution to this problem would be a polynomial of
x0, x1, and x2 with no powers greater than 1 (higher powers are not needed
since x2

k = 1) such that the sign of the polynomial function evaluated at
each x0, x1, x2 picked from the rows of Table 1 coincides with the class label
given in that row. There are infinitely many such polynomials. Here are
some examples:
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Table 1: Class Assignment Table for the Example of Section 1.1.

x0 x1 x2 Class p1 p2 p3

1 1 1 −1 −4 −3 −1
−1 1 1 1 4 3 3

1 −1 1 1 4 1 3
−1 −1 1 −1 −4 −1 −5

1 1 −1 −1 −4 −1 −3
−1 1 −1 1 4 5 1

1 −1 −1 1 4 3 1
−1 −1 −1 1 4 1 1

Notes: The last three columns enlist the outputs of the polyno-
mials. The sign of the values in these columns match the class
labels, which indicates that all three polynomials are solutions
to the given problem.

p1 = −x2x1x0 + x2x1 + x2x0 − x2 − 3x1x0 − x1 − x0 + 1

p2 = −x2 − 2x1x0 − x0 + 1

p3 = −x2x1x0 + x2x1 + x2x0 − 2x1x0.

It can be verified that these are solutions to the dichotomy (see the last three
columns of Table 1). Note that the polynomial p1 contains eight monomi-
als, whereas p2 and p3 contains four monomials. One wonders whether
it is possible to find a solution with fewer terms (monomials). The study
presented in this article is motivated by this question. More generally, we
pursue an answer to the question, “Can we find a general upper bound on
the minimum number of monomials that one can separate any dichotomy of
{−1, 1}n?” The next section presents definitions needed for the derivations
leading to an (affirmative) answer to this question.

2 Definitions

Definition 1. A binary classification problem Cn = (S+
n , S−

n ) in {−1, 1}n is
defined with two disjoint sets of input vectors S+

n ⊂ {−1, 1}n and S−
n ⊂ {−1, 1}n.

We use �n to represent the collection of all dichotomies (i.e., fully specified binary
classification problems) in {−1, 1}n. Note that |�n| = 22n

. When it is clear from
the context, the subscript n may be suppressed.

Definition 2. A polynomial function (of dimension n) is a polyno-
mial over the field of real numbers interpreted as a function of {−1, 1}n.
We represent the set of polynomial functions of dimension n with �n =
{p(x) ∈ �[x]|p(x) : {−1, 1}n → �}.
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Definition 3. Any polynomial function, p(x0, x1, . . . , xn−1) can be written as∑2n

i=1 ai
∏

k∈Si
xk (i runs through all the subsets, Si ⊂ {0, 1, · · · , n − 1}) when

restricted to {−1, 1}n, since x2
k = 1. Note that we have defined

∏
k∈{} xk = 1.

The terms in the expression of p(x0, x1 . . . xn−1) without the leading coeffi-
cients are called monomials (i.e.,

∏
k∈Si

xk for some i). The set of monomi-
als that can be generated using x0, x1, . . . , xn−1 is denoted by Mn. Formally,
Mn = {∏k∈Si

xk : Si ⊂ {0, 1, · · · , n − 1}}. Thus, |Mn| = 2n.

Definition 4. We define ψ(p) : �n → {0, 1, . . . , 2n} as the number of mono-
mials contained in the polynomial function p. We will also extend the number of
monomials function to operate on sets of polynomial functions so that ψ(Q) is
the set of nonnegative integers that are the number of monomials contained in the
polynomial functions in Q ⊂ �n.

Definition 5. Given a binary classification problem C = (S+
n , S−

n ), a solution is a
function f (x) : {−1, 1}n → � such that f (x) > 0 whenever x ∈ S+ and f (x) < 0
whenever x ∈ S−. Then we say f solves C. When a polynomial function (p) solves
a binary classification problem (C), we say that the monomials of p solves C as well
as p solves C. Furthermore, the problem C is said to have a solution with ψ(p)
number of monomials.

Definition 6. Given a binary classification problem C = (S+
n , S−

n ), a solution
set is the collection of polynomial functions that solves C. We define �

(S+,S−)
n ⊂ �n

to be the set of all polynomial function solutions to the classification problem
(S+

n , S−
n ). We also use �Y

n when the label Y uniquely identifies the classification
problem under consideration.

Definition 7. Given a binary classification problem C = (S+
n , S−

n ), the density
of C = (S+

n , S−
n ) is defined to be the minimum element of ψ(�(S+,S−)

n ).

Definition 8. The minimum number of monomials that suffices to separate
any dichotomy of {−1, 1}n is defined to be the maximum density associated with
{−1, 1}n (or n). Formally we have

�(n) = max
⋃

C∈�n

min ψ(�C
n ). (2.1)

The goal of this letter is to advance our understanding of �(n), the
maximum over the densities of the dichotomies of {−1, 1}n.

3 Polynomial (Spectral) Representation of Dichotomies of {−1, 1}n

The polynomial/spectral representation of Boolean functions (i.e., di-
chotomies of {−1, 1}n) and the standard results are covered in Saks (1993)
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and Siu, Roychowdhury, and Kailath (1995). Here we will present only the
necessary results without proofs. A dichotomy of {−1, 1}n being equivalent
to a Boolean function f : {−1, 1}n → {−1, 1} can be represented as a vector
in {−1, 1}2n

by adopting a fixed ordering over the assignment vectors. More-
over, f has a unique representation as the weighted sum of monomials with
coefficients a = (a1, a2, . . . , a2n )T ∈ �2n

, called the spectral coefficients,

f (x1, x2, · · · , xn) =
2n∑

i=1

ai

∏
k∈Si

xk where Si ⊂ {0, 1, · · · , n − 1} .

Noting that each monomial is also a Boolean function, we switch to vector
notation and write f = Dna where the columns of Dn are the vector repre-
sentations of the monomials. With appropriate ordering of the monomials1

and assignment vectors,2 Dn becomes a so-called Sylvester-type Hadamard
matrix (Bruck, 1990; Siu et al., 1995), which has the following
properties.

Lemma 1. Dn satisfies the recursive relation

D1 =
[

1 1
1 −1

]
, Dn+1 =

[
Dn Dn

Dn −Dn

]
for n > 0. (3.1)

Lemma 2. Dn is symmetric.

Lemma 3. DnDn = 2nI.

Corollary 1. The inverse of Dn is (Dn)−1 = 2−nDn.

Corollary 2. The matrix D̂
n = 2−n/2Dn is orthogonal.

4 The Set of Solving Polynomial Functions

Definition 9 (standard form). Assume p ∈ �n with p(x) = a1 + a2x0 +
a3x1 + a4x1x0 + · · · + a2n xn−1xn−2 · · · x0 solves a classification problem C =
(S+, S−). Further assume C is a dichotomy. Let a = (a1, a2, · · · , a2n )T ∈ �2n

.
Since p(S+) > 0 and p(S−) < 0, C partitions the rows of Dn into Dn

+ and Dn
−

1 Monomials are ordered as 1, x0, x1, x1x0, x2, x2x0, x2x1, x2x1x0, . . . , xn−1 . . . x1x0.
2 Assignments to (x0, x1, x2, . . . , xn−1) are ordered as (0’s represent 1’s and 1’s

represent −1): 000 . . . 0, 100 . . . 0, 010 . . . 0, 110 . . . 0, 001 . . . 0, . . . , 111 . . . 1.
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with Dn
+a > 0 and Dn

−a < 0. By defining

Y = diag([ y1 y2 · · · y2n ]) where yi =
{

−1 if i th assignment ∈ S−

+1 if i th assignment ∈ S+

the problem can be written as YDna > 0. Then a solution a to this inequality
system provides the coefficients of the polynomial function that is a solution to
the classification problem C = (S+, S−). We call this representation the standard
form.

Assume we are given a problem in the standard form YDna > 0. Then
for a solution a, there exists a positive k = (k1k2, . . . , k2n )T > 0 such that
YDna = k. Noting that Y−1 = Y and (Dn)−1 = 2−nDn (see corollary 1), we
can solve the coefficients of p as a = 2−nDnYk. Thus, a solution to the
problem C = (S+, S−) is a positive linear combination of the columns of
DnY (or rows of YDn). Conversely, assume b is a positive combination of the
columns of DnY so that b = DnYk for some k > 0. Then YDnb = 2nk > 0,
implying that

q (x0, x1 · · · xn−1) = b1 + b2x0 + b3x1

+ b4x1x0 + · · · + b2n xn−1xn . . . x0 ∈ �nx

is a solution to C = (S+, S−). So we have established the following result:

Theorem 1. Given a dichotomy of dimension n in the standard form, YDna >

0, the set of solutions, �Y
n ⊂ �n is exactly the polynomial functions with the

coefficients taken from the interior of the cone defined by the rows of YDn. In short,
we write �Y

n = int cone(YDn).

5 Main Theorem: An Upper Bound for the Minimum Number of
Monomials

Theorem 2 (main theorem). For any binary classification problem in {−1, 1}n,
n > 1, there exists always a polynomial function solution with 2n − 2n/4 or fewer
monomials. Equivalently, the maximum density over all the n-dimensional Boolean
functions is bounded (from above) by 2n − 2n/4. Formally,

max
⋃

C∈�n

min ψ(�C
n ) = �(n) ≤ 2n − 2n/4. (5.1)

Proof. We prove the theorem by constructing a polynomial function so-
lution with 2n − 2n/4 or fewer monomials for an arbitrary dichotomy of
{−1, 1}n.
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Any dichotomy of {−1, 1}n is characterized by the standard form
diag(y)Dnz > 0 for some y ∈ {−1, 1}2n

. A solution vector z gives the mono-
mial coefficients of the solving polynomial function. Thus, we have to prove
that a solution to the inequality system exists with at least one-fourth of the
components of z equal to zero.

Using lemma 1, write Dn in terms of Dn−1, and partition y and z into two
halves:

diag(y)Dnz > 0 ⇔ diag
([

yu

yd

]) [
Dn−1 Dn−1

Dn−1 −Dn−1

] [
w
t

]
> 0. (5.2)

Further, write the submatrices Dn−1 as row vectors:

diag
([

yu

yd

])



d1 d1
...

...
d2n−1 d2n−1

d1 −d1
...

...
d2n−1 −d2n−1




[
w
t

]
> 0. (5.3)

By expanding (5.3) we see that for each i ∈ {1..2n−1} we have

yu
i (diw + dit) > 0 and yd

i (diw − dit) > 0. (5.4)

Depending on the values of the components of y, we have four cases; we
first look at the following two:

(yu
i , yd

i ) = (+1,+1) ⇒ diw > dit > −diw

(yu
k , yd

k ) = (−1,−1) ⇒ −dkw > dkt > dkw

⇒ (−dk)w > (−dk)t > −(−dk)w. (5.5)

We construct the r (F) × 2n−1 matrix F using the rows that satisfy equa-
tion 5.5, namely, with di and −dk . Then equation 5.5 can be compactly
expressed as Fw > Ft > −Fw. Note we allow r (F) = 0, meaning that F is
the empty matrix (see the Remark below).

Next, consider the remaining two cases:

(yu
i , yd

i ) = (+1,−1) ⇒ dit > diw > −dit

(yu
k , yd

k ) = (−1,+1) ⇒ −dkt > dkw > dkt

⇒ (−dk)t > (−dk)w > −(−dk)t. (5.6)
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Similarly, we construct the matrix G of size r (G) × 2n−1 using the rows that
satisfy equation 5.6, namely, with di and −dk. Then equation 5.6 can be
compactly stated as Gt > Gw > −Gt. Note we allow r (G) = 0, meaning
that G is the empty matrix (see the Remark below).

A simple but useful identity regarding the size of F and G is

r (F) + r (G) = 2n−1. (5.7)

Thus, we have obtained two coupled systems of inequalities in the 2n−1

dimension (if r (F) = 0 or r (G) = 0 there will be a single inequality system):

Fw > Ft > −Fw and Gt > Gw > −Gt. (5.8)

Note that the systems are satisfied for all w ∈ int cone(F) and t ∈ int cone(G)
because the rows of F and G are mutually orthogonal. Our goal is to find
a solution vector z = [w, t] with as many zero components as possible. We
now show that equation 5.8 enables us to drive a lower bound for the
number of zeros we can obtain in z = [w, t].

Remark. If r (F) = 0, the theorem’s claim is readily satisfied by taking
w = 0 and t ∈ int cone(G). The same is true for r (G) = 0 with the choice
of t = 0 and w ∈ int cone(F). In this case, the problem is equivalent to a
problem in one lower dimension and assumes at least a 2n−1 monomial
solution.

Now write equation 5.8 in terms of (w − t) and (w + t) to get

F(w − t) > 0 F(w + t) > 0

−G(w − t) > 0 G(w + t) > 0; (5.9)

equivalently,

[
F

−G

]
(w − t) > 0

[
F

G

]
(w + t) > 0. (5.10)

Notice that we have decomposed the original problem into two subprob-
lems of the standard form diag(y′)Dn−1z′ > 0 for some y′. Therefore, by
theorem 1, the vectors (w − t)T and (w + t)T must belong to the interior of
the cones spanned by the rows of {F,−G} and {F, G}, respectively. Therefore
all the solutions to equation 5.9 are characterized by arbitrary positive real
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row vectors α,α′, γ , γ ′,

(w − t)T = 2αF − 2γ G α, γ > 0

(w + t)T = 2α′ F + 2γ ′G α′, γ ′ > 0, (5.11)

which easily yield expressions for w and t:

wT = (α + α′)F + (−γ + γ ′)G

tT = (−α + α′)F + (γ + γ ′)G

}
α,α′, γ , γ ′ > 0. (5.12)

Now either r (G) ≥ r (F) or r (F) > r (G). Assume the former and choose
α,α′ > 0 arbitrarily to get

wT = (w1 w2 w3, . . . , w2n−1 ) + (−γ + γ ′)G γ , γ ′ > 0 . (5.13)

Now consider G̃, the reduced row-echelon form of G: since the rows of G
are orthogonal, G̃ has no zero rows. So we can define ic to be the column
index of the leading nonzero element of G̃i , the ith row of G̃. Consider the
row vector

v =
r (G)∑
i=1

−wic G̃i . (5.14)

Clearly v is a linear combination of the rows of G, that is,

∃β ∈ �r (G) such that βG = v. (5.15)

Since GGT = 2n−1Ir (G), β can be found by the projection (and scaling) of
v onto the rows of G: β = 2−(n−1)vGT . As γ , γ ′ > 0 are free parameters in
equation 5.13, we can choose them to construct β (and hence v). Formally
stated,

∀β ∈ �r (G), ∃γ , γ ′ ∈ �r (G) > 0 such that (−γ + γ ′) = β. (5.16)

But because of the construction of v given in equation 5.14, wT =
(w0 w1 w2 · · · w2n−1−1) + v must have at least r (G) zeros.

The value of r (G) can easily be bounded from below. Since r (G) ≥ r (F)
and r (G) + r (F) = 2n−1, we have

r (G) ≥ 2n−1 − r (G) ⇒ r (G) ≥ 2n /4. (5.17)
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Table 2: Example Problem Used in Section 6 and the Verification of the Solution
Found by Application of the Main Theorem.

Example Problem The Solution via Theorem 1

x0 x1 x2 Class Sign of p(x0, x1, x2) p(x0, x1, x2)

1 1 1 −1 −1 −8
−1 1 1 −1 −1 −4

1 −1 1 1 1 8
−1 −1 1 1 1 16

1 1 −1 1 1 16
−1 1 −1 −1 −1 −4

1 −1 −1 −1 −1 −16
−1 −1 −1 −1 −1 −8

Thus, the solution z = [w, t] has 2n − 2n/4 or fewer nonzero elements, so
the corresponding polynomial function has 2n − 2n/4 or fewer monomials.

The case for r (F) > r (G) is proven in the same way by changing
the roles of F, (α,α′), w with G, (γ , γ ′), t, respectively. Combining the
proofs for the two cases, we conclude that the number of zeros is at
least maxF,G(r (F), r (G)) = 2n/4. Thus, for any binary classification prob-
lem in {−1, 1}n, there exists a polynomial function solution with 2n −
maxF,G(r (F), r (G)) = 2n − 2n/4 or fewer monomials.

6 An Example

We apply the theorem to the dichotomy of {−1, 1}3 given in Table 2 (con-
sider the left four columns). We write the problem in the standard form
diag(y)D3z > 0, where y = (−1,−1, 1, 1, 1,−1,−1,−1) is formed by copy-
ing the class labels in the order they appear in the table. Applying the
partitioning used in the theorem, we have

yu = (−1,−1, 1, 1), yd = (1,−1,−1,−1), z = [w, t] and

D3 =
[

D2 D2

D2 −D2

]
where D2 =




d1

d2

d3

d4


 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .

Considering components yu and yd , (−1, 1), (−1,−1), (1,−1), (1,−1), we
construct F and G matrices as instructed in the theorem, finding

F = [−1 1 −1 1
]

and G =

−1 −1 −1 −1

1 1 −1 −1
1 −1 −1 1


 .
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The number of rows in F and G are 1 and 3, respectively, so r (F) = 1 and
r (G) = 3. Since r (G) ≥ r (F), we work on the w part of the solution vector.
In the expression for wT = (α + α′)F + (−γ + γ ′)G, we can choose α,α′ > 0
arbitrarily. Let us set α = α′ = 0.5 (note that since r (F) = 1, α,α′ became
scalars) to have

wT = ( −1 1 −1 1 ) + (−γ + γ ′)G.

Applying row echelon reduction to G yields

G̃ =

 1 0 0 1

0 1 0 −1
0 0 1 1


 .

So 1c = 1, 2c = 2, 3c = 3 . Applying the formula v = ∑r (G)
i=1 −wic G̃i we

obtain

v = −(−1)G̃1 − (1)G̃2 − (−1)G̃3 ⇒ v = ( 1 −1 1 3 ).

Plugging v in β = 2−(n−1)vGT , we get

β = 2−2( 1 −1 1 3 )GT ⇒ β = ( −1 −1 1) .

Now we have infinitely many ways of choosing positive vectors γ and
γ ′ to satisfy (−γ + γ ′) = β. Let us choose γ = ( 2 2 1 ) and γ ′ = ( 1 1 2 ). Ac-
cording to the theorem, wT = ( −1 1 −1 1 ) + (−γ + γ ′)G must have at least
r (G) = 3 zeros and z = [w, t] must be a solution to the original problem,
where t is given by tT = (−α + α′)F + (γ + γ ′)G = (γ + γ ′)G. Carrying out
the arithmetic, we indeed find z = ( 0 0 0 4 3 −3 −9 −3 )T . Thus, the solv-
ing polynomial function is p(x0, x1, x2) = −3x2x1x0 − 9x2x1 − 3x2x0 + 3x2 +
4x1x0.

It is easily verified that the sign of p(x0, x1, x2) satisfies the assignment
table (compare class labels with the last two columns of Table 2). Figure 1
shows the separation obtained by this solution. The surface shown is the
contour plot of p(x0, x1, x2) at 0.

This example demonstrates the freedom of choice in constructing a so-
lution. One suspects that a better bound can be obtained by studying the
freedom provided by α,α′, γ , γ ′ > 0. In fact, we will prove in section 9
that all dichotomies of {−1, 1}3 can be solved with four monomials, which
is fewer than the five-monomial solution found by the application of the
main theorem to the example problem.
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Figure 1: (Left) Depiction of the problem given in section 6. (Right) Solution
obtained by the application of the main theorem. The surface has two sides,
each facing exclusively the circles from a single class.

7 Fourier-Motzkin Elimination for Binary Classification Problems

Fourier-Motzkin (FM) elimination is a method for eliminating variables
from a system of inequalities. It is often used to determine the solvability
of the system and finding a feasible solution if it is solvable. Here we will
show that FM elimination can be used to construct polynomial function
solutions (with fewer monomials) for binary classification problems. First,
we introduce the elimination procedure.

7.1 Fourier-Motzkin Elimination. Given an inequality system, the aim
of FM elimination is to produce a new inequality system with fewer vari-
ables. The key step in the procedure is the elimination of a single vari-
able, which is repeatedly applied to the current inequality system until
no variable can be eliminated. If the elimination yields an inconsistent
inequality system, then it is concluded that the original system has no so-
lution. Here we assume that the inequality system is given byAx > 0. For a
more general treatment readers are referred to other sources (e.g., Chandru,
1993).

Suppose we wish to eliminate the variable xj (or column j) from Ax > 0.
Define

I+ = {i : Aij > 0}
I− = {i : Aij < 0}
I0 = {i : Aij = 0}. (7.1)
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If I− = {} or I+ = {}, then xj cannot be eliminated. Assume this is not the
case. We create a new matrix A′ with the row entries taken from the set
{|Ak j |Ai + |Ai j |Ak : i ∈ I−, k ∈ I+} ∪ I0. The new inequality system A′x > 0
has zero coefficients for xj . Thus, we can write a reduced system Ãx̃ > 0
(by removing column j from A′ and xj from x). Clearly a solution to the
system Ax > 0 is a solution to the system Ãx̃ > 0 since it is constructed
with elementary row operations that involve positive scaling and addition
of the rows of A. The converse is also true, as stated next (for a proof, see
Chandru, 1993).

Proposition 1. Given the inequality system Ax > 0, consider the one-variable
(say, x1) eliminated system Ãx̃ > 0. Then for all the solutions of the reduced system,
it is guaranteed that there will be a value for x1 such that the original inequality
system will be satisfied with x = [x1, x̃].

7.2 Polynomial Function Solution via Fourier-Motzkin Elimination.
Given a classification problem in the standard form YDna > 0, the idea is to
pick an elimination order and eliminate the matrix YDn regarding a as the
vector of variables. The resultant matrix then can be easily converted into a
solution vector with the zero components corresponding to the eliminated
columns of YDn.

Definition 10. Given an inequality system Ax > 0, we use A◦ to denote the
matrix after the repeated application of FM elimination to all the columns of A.
The order of elimination is indeterminate, so A◦ is in general ambiguously defined.
When no order is specified, an arbitrary order is implied. Note that A◦ has the same
number of columns as A but with zero columns corresponding to the eliminated
variables.

Proposition 2. Assume that we are given a classification problem in the standard
form YDna > 0. Let Q = YDn so that we have the system of inequalities Qa > 0.
Apply FM elimination to all columns of Q to obtain Q◦a > 0. Then the row sum
given by c = ∑m

i=1 Q◦
i is a solution, that is, YDncT > 0, where m is the number of

rows of Q◦.

Proof. Clearly cT ∈ int cone(YDn). Therefore due to theorem 1, c must
satisfy YDncT > 0. In fact, for any wi > 0, the sum c = ∑m

i=1 wi Q◦
i is also a

solution.

Definition 11. We call the row vector c = ∑m
i=1 Q◦

i the FM sum.

7.3 Example: Polynomial Function Solution via FM Elimina-
tion. Consider the two-dimensional classification problem specified in
Table 3.
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Table 3: Assignment Table for the Two-Dimensional Example Problem.

x0 x1 Class

1 1 −1
−1 1 1

1 −1 1
−1 −1 −1

We write the problem in the standard form YD2a > 0:




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







a0

a1

a2

a3




︸ ︷︷ ︸
YD2a

=




−1 −1 −1 −1
1 −1 1 −1
1 1 −1 −1

−1 1 1 −1







a0

a1

a2

a3




︸ ︷︷ ︸
Qa

> 0.

Let us eliminate column 1 from Q. Since I + = {2, 3}, I − = {1, 4} and I 0 = {},
we get

Q1 =




0 −2 0 −2
0 0 2 −2
0 0 −2 −2
0 2 0 −2


 .

Eliminate column 2 from Q1: I + = {4}, I − = {1}, I 0 = {2, 3}, so we have

Q2 =

 0 0 2 −2

0 0 −2 −2
0 0 0 −8


 .

Eliminate column 3 from Q2: I + = {1}, I − = {2},I 0 = {3}, so we have

Q3 =
[

0 0 0 −8
0 0 0 −8

]
.

We cannot eliminate any more columns, so Q◦ = Q3; thus, the sum of
the rows of Q◦ must be the coefficients of a solution. Namely, we have
p(x0, x1) = −16x1x0. In this case, FM elimination has found the minimum
number of monomial solutions to the problem.
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8 Extension of the Main Theorem

Although the extension theorem gives a slight improvement, it shows how
one might pursue a proof based on theorem 2 and FM elimination to im-
prove the bound. The reader might have already noticed the freedom of
parameter choice in theorem 2, which suggests that the bound can indeed
be improved.

Theorem 3 (extension of the main theorem). For any binary classification
problem in {−1, 1}n, n > 2, there exists always a polynomial function solution
with 2n − 2n/4 − 1 or fewer monomials. Formally stated,

max
⋃

C∈�n

minψ(�C
n ) = �(n) ≤ 2n − 2n/4 − 1. (8.1)

First we prove two lemmas.

Lemma 4. Given an arbitrary (row) vector β and a positive (row) vector δq > 0,
the system of equations with the unknown vectors γ and γ ′,

(−γ + γ ′) = β

(γ + γ ′) = Mδq with M = (1 + ε)
max(|β j |)
min(δq

k )
, ε > 0, (8.2)

where max and min runs over the components of β and δq , and ε > 0 always has
a positive solution γ , γ ′ > 0.

Proof. By solving the system for γ , γ ′, we see the solutions have to be
positive because of the construction of M:

γ ′
i = 0.5(Mδ

q
i + βi ) = 0.5

(
(1 + ε)

max(|β j |)
min(δq

k )
δ

q
i + βi

)
≥ 0.5

(
(1 + ε) max(|β j |) + βi

)
> 0

γi = 0.5(Mδ
q
i − βi ) = 0.5

(
(1 + ε)

max(|β j |)
min(δq

k )
δ

q
i − βi

)
≥ 0.5

(
(1 + ε) max(|β j |) − βi

)
> 0. (8.3)

Thus, γ , γ ′ > 0 as desired. Note that that Mδq G and δq G will have the same
number of zero components (G is an appropriately sized real matrix).

Lemma 5. Assume we have constructed F and G matrices as in theorem 2 and
r (G) ≥ r (F ) for a given problem. Then assume that there exists a positive row vector
δq > 0 such that δqG has q zero components. Furthermore, assume there exist
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row vectors γ , γ ′ > 0 satisfying both (−γ + γ ′) = β(β as defined in theorem 2)
and (γ + γ ′) = δq . Then the number of zeros in the solution can be improved to
2n−2 + q .

Proof. We are given r (G) ≥ r (F). Choose α = α′ = 0.5Ir (G). From
theorem 2, we know that if we choose γ , γ ′ > 0 such that (−γ + γ ′) = β,
the half solution vector w given by wT = (w0 w1 w2, . . . , w2n−1−1) + (−γ +
γ ′)G is guaranteed to have at least 2n−2 zeros. The expression for the other
half of the solution given by tT = (−α + α′)F + (γ + γ ′)G is tT = δq G, since
α = α′ and δq = (γ + γ ′) by the premises of the lemma. So, the proof is
complete because the solution is the concatenation of w and t.

Proof of Theorem 3. Proceed as in theorem 2 to construct F and G matri-
ces. Then either r (G) ≥ r (F) or r (F) > r (G); assume the former. We are given
n > 2, so r (G) ≥ r (F) implies r (G) > 1 due to the identity r (G) + r (F) = 2n−1.
Since the rows of G are orthogonal and taken from {−1, 1}n−1, there must
be a column where not all the components have the same sign. Application
of FM elimination on this column and taking FM sum results in a vector
with at least one zero component. This means that there exists δ′ > 0 such
that δ′G has at least one zero component. By lemma 4, δ′ can be positively
scaled as q1 = Mq′ such that (γ + γ ′) = q1 and (−γ + γ ′) = β have a posi-
tive solution γ , γ ′ > 0, and q1G has one zero component. Due to lemma 5,
this implies that the number of zeros in the solution can be made at least
2n−2 + 1, proving the theorem.

Remark. The case for r (F) > r (G) is proven in the same way by changing
the roles of F,(α,α′), w with G, (γ , γ ′), t, respectively, in lemma 5 and the
proof.

9 Some Results on Lower Dimensions

This section presents exact results concerning the minimum number of
monomials required to solve the binary classification problems in {−1, 1}1,
{−1, 1}2, and {−1, 1}3.

Corollary 3. (corollary to theorem 3). Any binary classification in {−1, 1}3

can be solved with four monomials.

Proof. Proceed as in theorem 2 to construct F and G matrices. Then either
r (G) ≥ r (F) or r (F) > r (G); assume the former. Since r (G) + r (F) = 22, we
have three cases:

Case 1: r (G) = 4, r (F) = 0. Due to the remark for theorem 2, there exists a
four-monomial solution.
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Case 2: r (G) = 3, r (F) = 1. Application of theorem 2 yields three zeros on
the w part of the solution vector. Following the steps of theorem 3, it is
apparent that this solution can be improved by at least one.

Case 3: r (G) = 2, r (F) = 2. Application of theorem 2 yields two zeros
on the w part of the solution vector. Let δq = (1, 1). Then δq G must
have exactly two zeros since the rows are orthogonal vectors from
{−1, 1}4. Therefore, due to lemmas 4 and 5, there exists a four-monomial
solution.

The case for r (F) > r (G) is proven similarly.

Proposition 3. There is a dichotomy in {−1, 1}3 that cannot be solved with
three (or fewer) monomials.

Proof. We find a problem that cannot be solved with three monomials. The
example problem given in section 7 serves the purpose. If the problem has a
three-monomial solution, then the inequality system [ c j1 c j2 c j3 ]a = Ha > 0
must be satisfiable for some c j1 , c j2 , and c j3 , each of them distinct columns
of D4. Satisfiability of Ha > 0 can be checked using FM elimination: if
the eliminated system is inconsistent, then Ha > 0 cannot be satisfied due
to proposition 1. By applying this procedure for all the 8!/8! (8 − 3)! = 56
possible cases, it can be shown that that there is no ( j1, j2, j3) that leads to a
consistent set of inequalities. Thus, there is no three-monomial solution to
the given problem.

Proposition 4. There is a dichotomy in {−1, 1}2 that cannot be solved with two
or fewer monomials.

Proof. We find an example problem. Take the classification problem =
({( 1 1 ), ( −1 1 ), ( 1 −1 )}, {( −1 −1 )}). Following the logic described in the
proof of proposition 3, it can be shown that C cannot be solved with two
monomials.

Corollary 4.

i. Clearly problems in {−1, 1}1 always require one monomial (one of x0 or 1)
solution. Therefore, �(1) = 1.

ii. The problems in {−1, 1}2 can always be solved with three monomials
(main theorem) and according to proposition 4, there is at least a prob-
lem that cannot be solved with fewer than three monomials. Therefore,
�(2) = 3.

iii. Combining corollary 3 (there is always a four-monomial solution) and propo-
sition 3 (there is a dichotomy that cannot be solved with three or fewer
monomials), we get �(3) = 4.
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Thus, we have established the exact results for the maximum density of the
dichotomies of dimensions 1, 2, and 3:

�(1) = 1

�(2) = 3 (9.1)

�(3) = 4.

It can be shown that �(4) ≤ 9 (proven with random search) and in fact it
appears that �(4) = 9 (not proven—empirical observation), tempting one
to speculate on the possibility of the general formula,

�(n) =
{

2n−1

2n−1 + 1
if n is odd
if n is even

that conforms the known bounds for n > 1, that is, 0.11 × 2n < �(n) ≤
0.75 × 2n.

10 Conclusion

This letter presented theoretical results regarding the maximum density,
�(n), defined as the minimum number of monomials with which one can
separate any dichotomy of {−1, 1}n. The best-known bound prior to this
work was asymptotic and substantially inferior to the proven bound. It
is shown that for dimensions 1, 2, and 3, �(n) is equal to 1, 3, and 4,
respectively, and less than 2n − 2n/4 for n > 3. This result says that given any
dichotomy of {−1, 1}n, it is always possible to perform the target separation
with less than three-quarters of the full set of n-dimensional monomials (2n

monomials). This is the first time a ratio bound independent of n, namely,
3/4, is shown for the maximum density.

In general, a higher-order neuron (HON) would require an exponentially
growing number of input lines (number of monomials) to implement a
given dichotomy (fully specified binary classification problems). Although
this seems to reduce the validity of the HON models of real neurons, one
also has to consider that the number of dichotomies grows superexponen-
tially with n. This suggests the possibility that a useful subset of dichotomies
might be implemented by HONs with a subexponential number of mono-
mials. Although it is trivially shown that all the classification problems
specified at, say, a polynomial number of assignments (p(n)) are always
solvable with p(n) monomials, the conditions at which a superpolynomial
(e.g., ε2n for some, 0 < ε < 1) number of assignment specifications would
assume a solution with polynomial (i.e., q (n)) number of monomials is un-
explored. New techniques that use the unspecified assignments to reduce
the number of monomials that would suffice to solve a partially specified
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problem must be developed, for which this study might provide a start-
ing point. In spite of the success of spectral theory of Boolean functions
in obtaining insights on the HON solutions of binary classification prob-
lems, it appears that it has certain limitations when the underlying local
structure of the Boolean functions (i.e., individual vector components) has
to be considered, as is the case when the unspecified assignments need to
be exploited for arriving at reduced number of monomial solutions. This
is probably why the previous bounds obtained using techniques from the
spectral analysis of Boolean functions are inferior to the bound derived in
this study, which employs simple local algebraic manipulations.
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