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A computational model of anterior intraparietal (AIP) neurons
9
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15

17 Abstract

19 The monkey parietal anterior intraparietal area (AIP) is part of the grasp planning and execution circuit which contains neurons that

encode object features relevant for grasping, such as the width and the height. In this study we focus on the formation of AIP neurons
21 during grasp development. We propose and implement a neural network structure and a learning mechanism that is driven by successful
grasp experiences during early grasp development. The simulations show that learning leads to emergence of units that have similar
response properties as the AIP visual-dominant neurons. The results may have certain implications for the function of AIP neurons and

23 thus should stimulate new experiments that cannot only verify/falsify the model but also advance our understanding of the visuomotor
learning mechanisms employed by the primate brain.
25 © 2006 Published by Elsevier B.V.
27 Keywords: Anterior intraparietal area; Grasp learning; Affordance; Visuomotor development
29
31 1. Introduction cortex) [10] that is involved in grasp planning and
execution [13], and projects to motoneurons that control
33 Humans visually monitor critical kinematic events for  finger muscles [2]. The activity of neurons in the primary
detecting errors in goal-directed movement execution [8] motor cortex (F1) when compared to premotor activity
35  including grasping movements that require cortical inte- indicates that the primary motor cortex may be more
gration of visual and somatosensory cues for proper grip involved in dynamic aspects of movement [18], executing
37  formation [6]. The accumulated neurophysiological data ‘instructions’ sent by higher motor centers including
indicate that the parietal cortex is involved in visuomotor premotor regions. Thus, it has been suggested that
39  aspects of manual manipulative movements [19]. In  AIP-F5-F1 circuit is responsible for grasp planning and
particular, the neurons in anterior intraparietal (AIP) area  execution [3-5,7]. However the formation/adaptation of
41  of macaque monkeys discharge in response to viewing and/ the neural circuitry that extracts object features required
or grasping of three-dimensional objects representing for dexterous manipulation (i.e. AIP) is yet to be under-
43 object features relevant for grasping [14,16]. Generally, stood. To this end, it is important to know whether AIP
AIP neurons are classified as one of motor-dominant  representation is the final step of a series of visual analysis
45 (active during grasping, even in the dark), visual-motor, or the by product of the grasp-related visuo-motor
and visual-dominant (no movement is necessary; sole learning.
47 object fixation elicits response) types. AIP has strong In this article, we present a model of AIP visual-
recurrent connection with area F5 (ventral premotor  dominant neurons consistent with monkey grasping circuit
49 that extends upon our earlier modeling of infant grasp
SN . . . learning (when we use AIP, we mean AIP visual-dominant
Corresponding author. ATR Computational Neuroscience Labora- .
51 tories, Department of Cognitive Neurosciences, 2-2-2 Hikaridai, Soraku- from now on). . Infant motor .develoy.)ment studies have
gun Seika-cho, Kyoto 619-0288, Japan. Tel: +81774951215; fax: ~ shown that during early grasping period of 4-6 months,
53 +81774951236. infants do not use vision to guide hand trajectory or to
E-mail addresses: erhan@atr.co.jp (E. Oztop), imamizu@atr.co.jp (H. orient the hand toward the object prior to initial contact.
55 Imamizu), gordon@atr.co.jp (G. Cheng), kawato@atr.jp (M. Kawato).
0925-2312/$ - see front matter © 2006 Published by Elsevier B.V.
57 doi:10.1016/j.neucom.2005.12.106
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For example, at 4-5 months, reaches are as good with
vision available during the reach as when vision is removed
after onset of the reach [1]. Only after 9 months of age the
visual features of the objects that are relevant for grasping
(orientation, size, etc.) are incorporated into the grasping
actions. This developmental progression suggests that
earlier grasp learning may mediate the formation of a
stronger grasp planning circuit that fully utilizes the visual
information available. The model we present addresses the
latter portion of this progression, where the less-visually
guided grasp experiences provide (learning) data points for
an infant’s grasp related visuo-motor mapping system.

2. The model
2.1. Behavioral setting

The model we present addresses the developmental stage
of 49 months where a basic grasping skill has been
acquired. We present the model in terms of brain areas
belonging to macaque monkeys, however, the develop-
mental data is mainly from humans due to the lack of
infant studies on other primates. In other words, we
implicitly assume that the developmental aspects of the
grasp circuit in humans and other primates follow similar
stages.

The grounding assumption of the modeling presented in
this article is that during early grasp learning infants
associate the vision of the objects with the grasp plan (the
motor code generating the grasp) that provides a stable

grasping.

2.2. The systems level organization

We abstract the primate grasping circuit as shown in Fig.
1A. The visual input arriving to AIP—although processed
at earlier visual areas—is void of geometric information
about the object in the visual field. The task of AIP-F5
complex is then to transform the visual input into a motor
code which when executed yields a successful (stable)
grasping of the object. In the primates, the input to AIP is
highly processed as there are multiple relay stations on the
way from primary visual cortex to AIP. Nevertheless, these
areas do not compute information such as width and height
of the object in the visual field. To our knowledge, AIP and
caudal intraparietal sulcus (cIPS) are the sole areas
reported to encode geometric object properties. cIPS
neurons encode orientation or axis of objects and may
provide information for AIP [15]. For simplicity we do not
model cIPS explicitly as a separate layer. However, we do
expect to see units similar to cIPS neurons as well in our
AIP layer (in spite of the naming). For this article, we focus
only on the properties of unit responses that are compar-
able to AIP-like responses.

2.3. Input and output encoding

To capture the non-specificity of the visual input (i.e.
lack of geometric information coding) we implemented the
input to AIP as a depth encoding ‘retina’. The visual
processing taking place prior to AIP includes stereopsis, so
this choice is justified by the monkey neurophysiology [15].
The most notable point of our representation is that it does
not include any high level features extracted by a
preprocessing step; what the network sees is just a depth
map (i.e. matrix of real numbers). Notice that instead of an
explicit depth encoding it is also possible to use two
intensity coding retinas corresponding to two eyes, in
which case we would predict the emergence of binocular
neurons in the hidden layers. Since the depth encoding
retina chosen for computational convenience does not
contain more information than the two retina system
(given the simple objects we used) the validity of the
arguments we might draw from the model is not weakened
by our choice.

For the motor code (F5) output we used joint angles of
the fingers. Although the motor code in the brain must
address dynamics and intrinsic properties of the muscles
and lower motor control centers we believe the output code
used does not limit the validity of the conclusions we can
draw from the model.

2.4. Adaptation mechanism

The problem an infant faces during grasp learning is
computationally stated as to learn the mapping from visual
(V) to motor codes (é) that yield successful grasping.
Notice that the learning mentioned here is only possible
with the active movements of an infant, although the
resulting neural structure may exhibit purely visual
responses not requiring movement. The infant experiences
many {V;, Gi} pairs during early grasping. At first, this
problem seems to assume a simple function approximation
solution, however, the mapping is not well defined: we can
apply different grasps to a given object. Conversely,
different objects can serve as the target for the very same
grasp. The problem can be approached from several
directions. One way is to model the association learning
as learning the joint probability distribution p( v, é) of the
visual representation of the object and the motor com-
mand. In this study we chose a more biological approach
and propose a neural circuit with explicit neural units that
can solve the problem: we propose that AIP-F5 complex
consists of sub-networks (columns) that compete in the
motor code space for being the one to learn the current
{Vi,éi} (successful grasp association) pair (see Fig. 1B).
The competition is implemented using a Kohonen’s
topology preserving self-organizing map (SOM). When a
grasping attempt results in successful holding of the target
object, the competition picks a sub-network to learn the
current observed vision—motor association. Although
other alternatives were possible, the learning in the sub-
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Fig. 1. (A) Overall network representation is shown. The arrows labelled with W and w indicates the adaptive weights. (B) Competition among AIP-F5
columns (sub-networks) for learning the association of the current vision and the executed grasp code is depicted. (C) Conceptual illustration of how an ill-
defined vision — motor relation (the curve) can be learned using multiple columns. A single neural network cannot learn this mapping because v1 maps to
both m1 and m2. The strips drawn over the curve symbolically indicate the areas where the columns (sub-networks) become winner for the indicated range
of motor values. In these strips the mapping is well-defined (see the curve segments in the shaded areas).

networks was implemented using back-propagation learn-
ing algorithm for computational convenience. The SOM
clustering groups similar (in the hand configuration space)
grasps together and hence creates sub-problems each of
which can be solved with a simple function approximator
allowing the sub-networks to learn their sub-problems.
This is conceptually illustrated in Fig. 1C where the curve
represents a hypothetical vision — motor relation. Notice
that at vision = vl, the motor output can be either m1 or
m2. When a function approximator is used to learn this
relation it will be forced to learn conflicting data points,
namely (vl, ml) and (vl, m2). Since the function
approximator can give only single output for the input of
vl, the learning will not be able to reduce the prediction
error to zero (see also [9]). However, if the curve was cut
into horizontal stripes then within each stripe the relation
would be learnable (see the shaded regions in Fig. 1C). This
is exactly what the self-organization in the motor space
does; it partitions the motor space such that in a given

partition, the vision — motor relation becomes well
defined. This scheme works provided that the number of
sub-networks is sufficient enough to accommodate the
number of sub-problems required to reduce the association
problem into a set of well defined Vi > (G} mappings.

2.5. Learning details

Given the successful grasp configuration G;, The SOM
update rule used was A7 = pe= A0/ (—F + G;) where 7,
represents the kth sub-network’s preferred grasp config-
uration, and k" is the winner sub-network. The neighbor-
hood function e=A*"%/%" was determined by taking A(k*, k)
as the Euclidean distance between the 2D indexes of sub-
networks k and k~, and setting the variance as 6> = 2. In all
simulations, the update rate of the SOM was u = 0.001,
and the variance was reduced at each time step by 107 of
the current value of the variance.
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For a given (visual-input, grasp configuration) data
point (171, éi), the weights of the winner sub-network was
updated using a straightforward gradient descent update
rule (i.e. back-propagation) on the error E = 0.5||¢ — (%ii||2
where 2 represents the output generated when the input V;
was presented. The output ¢ was computed with
Z: f(Wf(w I7i)), where f(.) is the sigmoid function given
by f/(x) = (1 + e¥)~!. Note also that for the operation of
this network the input and outputs were normalized to be
within the range of [0, 1]. The visual-input— AIP weight
matrix (W) was updated with AW’ = —p2E + BAW'~! and
the AIP—output weight matrix (w) was updated with
Aw' = —n% + BAW'"!, where 5 and B represents the
learning rate and the coefficient of momentum term,
respectively. The superscripts indicate the update step
number, so z—1 means the previous update step. All of the
simulations reported in this article used # =0.05 and
p=0.6.

3. Simulations

The visual input (17) was modeled as a 32 x 32 depth
map centered on the target object. The motor command
(G) was modeled as the joint configuration of the hand. We
used 7 joints: 3 joints for the thumb, 2 joints for the index
and middle fingers. The number of sub-networks was 16,
and each had 16 or § hidden (AIP) units. For the SOM, we
used a planar (two dimensional) mesh. The number of
nodes was equal to the number of sub-networks (16), and
the input dimension was equal to the motor output (7). For
input, we used three objects with variable dimensions. The
objects were: a rectangular prism (box) which could change
size in two dimensions; a vertical cylinder (vertical bar) that
could change in height and diameter; and finally a
horizontal cylinder (horizontal bar) with variable height
and diameter (Fig. 2, right side).

Fig. 2. Grasp learning system that provided successful grasps and
corresponding joint angles (left), and the depth map representation used
as the input to the model for various objects are shown (right). The arrows
indicate the dimensions of the objects that were varied during grasp
learning.

As mentioned previously, the current model addresses
the stage of motor development where a basic grasping
ability is assumed. Our earlier study of infant grasp
learning provided us the stage required. We used our
implementation of infant grasping learning model (ILGM)
[12] to acquire the skill of grasping the aforementioned
objects with different sizes (Fig. 2, left side shows the
ILGM simulation environment). The successful grasps
executed by ILGM then were used to drive the AIP model
presented in this article. In ILGM the objects were modeled
as 3D geometric shapes, which required us to convert them
into depth maps so that they could be fed to AIP. This
conversion is performed by rendering the objects into a
32 x 32 buffer such that the intensity of a rendered pixel
indicated its depth as shown in Fig. 2, right side.

We used 2000 successful grasping performances from
ILGM to test the AIP model. In those grasping movements
the object sizes and types were (uniform) randomly
selected. Note that the grasp plan generation mechanism
in ILGM is stochastic and produces different grasp
configurations at different instances of an object’s pre-
sentation (even when the dimensions are fixed). Techni-
cally, we could implement AIP model on top of ILGM
model and run them together, but for practical reasons we
kept the two systems separate. We first collected 2000
grasping data points (joint configuration of the hand and
the depth map of the grasped objects) and then used them
in adapting our model. For the simulations reported in this
paper we applied a sequential training schedule: first the
SOM was adapted, then each sub-network was allowed to
learn for those grasp codes that they became winner for.
The learning was stopped after all the sub-networks had
converged. The norm of the error was ~0.45 for the 8§ AIP
unit case, and ~0.4 for the 16 AIP unit case. This
corresponds approximately to an average of ~6 and ~5
degrees of error per finger joint angle, respectively.

4. Results

After learning has converged, we presented the objects
with varying dimensions recording the elicited response at
each of the AIP units. Since two dimensions of the objects
were altered, a given object provided us with a two-
dimensional mesh of response values (called the response
map) for each unit. Before presenting the actual response
maps of the units we briefly report the object encoding
emerged via learning using 16 AIP units per sub-network [8
AIP units per sub-network]: for each object type we listed
all the units that have higher activity than in all other
object presentations by a margin of ~0.1 [~0.05] (remem-
ber that maximal firing is 1.0). Interestingly, number of
selective units for each object was more or less the same for
each object (i.e. the list contained approximately the same
number of units). Approximately, 8 [4] out of 256 [128]
units became selective for each object (box, horizontal bar,
and vertical bar). And of those only 1 or 2 [1 or none] units
were strictly selective for a specific size of the object.
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Fig. 3. Response of AIP units (after learning) when the box object was presented with varying width and height values (number of AIP units per sub-
network = 16). The thumbnail images (response maps) indicate the AIP units’ response to the varying width and height values of the box. The darker
areas indicate higher response, whereas lighter areas indicate smaller response. The magnification on the top left shows the axes of the response maps. The
location of a unit’s response map shows the feature encoding by that unit: the ones on the left and right extremes have responses that correlate well with
the width of the presented box. Similarly, the units on the upper and lower extremes have responses that correlate well with the height of the presented box.
Note that although there are 256 AIP response maps, because of the special arrangement of the response maps, some overlapped (because they had close

correlation values for the width and height).

In order to visually inspect the response map of units we
have created image maps (small thumbnail images) in
which darker regions indicate higher response, while white
regions indicate zero response, as shown in Fig. 3. A
vertical gradation in the intensity indicates that the unit
encodes the height of the object, whereas a horizontal
gradation indicates a width encoding. For space limitations
we can only present the response maps obtained from the
presentation of one object (box) using the 16 AIP units per
sub-network (Fig. 3). The location of each response map
was specially chosen: the position of the response maps
within the drawn axes, indicate the level of geometric
feature encoding of units: the horizontal axis indicates the
correlation of unit response with the width of the box,
where as the vertical axis indicates the correlation of unit
activity with the height of the box. Therefore, the units at
the left and right extremes encode the width of the box,
whereas the units at upper and lower extreme encode the
height. The units around the origin do not have a clear
(linear) correlation with the dimensions of the box. Note
that there are units which encode a certain range of width
or height, one example is marked in the first quadrant with
a circle. In addition, there are a few units that prefer certain
width and height in combination; the unit marked in the
third quadrant, for example, prefers small boxes. These
types of units are rarer than the width and height encoding

units and are located away from the +1 and —1 in the
correlation axes as these units do not have a linear
correlation with the object dimensions. The sigmoidal
network we used is characterized by the non-local basis
functions implemented by the hidden layers, which are
formed via training [17]. It could be speculated that the
variety of neural responses we obtained could be attributed
to this fact. If we used local learning networks (i.e. radial
basis function network) the neural responses might have
been more stereotypical, having convex shaped high-
response areas when plotted as in Fig. 3.

Because of space limitations we revert to simple scatter
plots for presenting the responses of the AIP units for other
objects. In Fig. 4, each unit is indicated by a triangle; the
horizontal axis indicates the absolute value of the linear
correlation of unit responses with the horizontal extent of
the object presented. Likewise, correlation with the vertical
extent is represented on the vertical axis. Row A indicates
the objects used in computing the correlations. The last
column of Fig. 4A indicates that all of the objects were
considered in the correlation computation illustrating the
emergence of units with size encoding independent of object
identity. Row B shows the results obtained when the
number of AIP units was set to 8 per sub-network, whereas
Row C shows the results when the number of AIP units
was 16. Comparing Row B and C we can see that the
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Fig. 4. (A) Objects presented for computing the correlations that are shown in the lower rows. (B) Correlation results when the sub-networks were
modelled with 8 AIP units. (C) Results are shown when the number of the AIP units was increased to 16. Each triangle represents an AIP unit, where the
coordinates of a unit represents its (absolute valued) correlation with the indicated object dimension. So the units that have coordinates close to 1 can be

said to represent geometric features of the presented objects.

distribution of units have strong similarity even though
they were obtained through different simulations with
different number of AIP units.

5. Conclusion

The monkey AIP has neurons with complex visuo-motor
properties. Some of them are mainly activated during grasp
execution whereas others can be activated by mere visual
fixation of the objects (visual-dominant object-type neu-
rons) [15]. The current model addresses the latter type of
neurons that become active even though no subsequent
movement is involved. In literature, a range of object
selectivity has been reported for the object-type neurons; a
highly selective neuron shows vigorous activity to a single
object and responds weakly to other objects, whereas, a
broadly selective neuron may respond to more than one
object, often which have similar geometric features [11].
The simulation experiments with our model showed that
units with a range of object selectivity can emerge via
visuo-motor learning. Most of the units we have found
were broadly tuned showing response to more than one
object type. This is consistent with the experimental studies
that report that the number of AIP neurons with strict
selectivity is less than the broadly selective neurons [11].

With the goal of stimulating new experimental studies,
the main focus of the current modeling study was to test
whether size selectivity could emerge from visuo-motor

learning. As presented in results, we have found units that
encode object dimensions (some with independent of the
object shape). Indeed, it has been reported that many
neurons found in monkey AIP were selective for the size
and the shape (often in conjunction) of the objects being
viewed [11]. However to our knowledge, there is no
experimental study to show that AIP neurons represent
geometric quantities (i.e. measure of say, thickness rather
than the attributes of thin/thick). The results from our
simulations suggest that if AIP visual-dominant neurons
are part of a visuo-motor grasp learning network, as is
usually accepted [7,16], then (1) shape and size selectivity
emerges naturally via learning, and furthermore (2) the
phrase ‘shape and size selectivity’ can be replaced with
‘representation of geometric features’, or better with
‘representation of affordances for grasping’. It is possible
to test the latter implication of our model with further
neurophysiological experiments that involve systematic size
alterations of the presented objects to the subject monkey,
allowing a reliable correlation analysis on the recorded
data.

An unanswered question by the presented model is how
the two learning systems interact. The model predicts that
during the early phases of infant grasping, output from the
visuo-motor circuit would not be accurate (due to e.g. lack
of sufficient learning data points). Therefore if the infants
have no complete control to suppress this inaccurate
output, the vision of the detailed shape of the object must
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degrade the grasping performance. The closest experimen-
tal findings to our prediction indicates that 3 months old
infants reach for and contact with glowing and sounding
objects under lighted and dark conditions with similar
frequency, and the onset of successful grasping occurs at
approximately at the age of 15-16 weeks for both
conditions [1]. This means that 3 months old infants do
not take advantage of the visibility of the shape of the
object. Perhaps with more strict experimental conditions it
might be possible to show that at the age of 3—4 months,
the object shape information in fact degrades the grasping
performance.
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