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Abstract

Unsupervised analysis of the dynamics (non-stationarity) of functional brain connectiv-
ity during rest has recently received a lot of attention in both the neuroimaging and neu-
roengineering communities. Most studies have used functional magnetic resonance imaging
(fMRI), but electroencephalography (EEG) and magnetoencephalography (MEG) also hold
great promise for analyzing non-stationary functional connectivity with high temporal res-
olution. However, previous EEG/MEG analyses divided the problem into two consecutive
stages: first, the separation of neural sources, and second, the connectivity analysis of the
separated sources. Such non-optimal division into two stages may bias the result because of
the different prior assumptions made about the data in the two stages. Here, we propose a
unified method for separating EEG/MEG sources and learning their functional connectivity
(coactivation) patterns. We combine blind source separation (BSS) with unsupervised clus-
tering of the activity levels of the sources in a single probabilistic model. A BSS is performed
on the Hilbert transforms of band-limited EEG/MEG signals, and coactivation patterns are
learned by a mixture model of source envelopes. Simulation studies show that the unified
approach often outperforms conventional two-stage methods, further indicating the benefit
of using Hilbert transforms to deal with oscillatory sources. Experiments on resting-state
EEG data, acquired in conjunction with a cued motor imagery /non-imagery task, also show
that the states (clusters) obtained by the proposed method often correlate better with phys-
iologically meaningful quantities than those obtained by a two-stage method.

1 Introduction

Unsupervised machine learning techniques play a fundamental role in the analysis of spontaneous
(resting-state) neuroimaging signals by exploring the intrinsic statistical structures of such sig-
nals without relying on extrinsic covariates about tasks or stimulation protocols. The structures
or features obtained can then be examined based on neurophysiological knowledge often using
the features in a group comparison, or possibly by finding similar structures in other signals
already associated with tasks or stimuli.

In recent years, there has been growing interest in exploring the patterns and dynamics
of resting-state functional brain connectivity [I1] based on unsupervised signal analyses. To
find patterns in non-stationary functional connectivity, most studies have relied on such stan-
dard techniques as independent component analysis (ICA) [6l [45], principal component analysis
(PCA) [31], and K-means clustering [32, [I]. New unsupervised analysis methods have also


http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00747

been actively developed [e.g., [16, B0, 25, 17, 39, [40, B] to incorporate the specific nature of
neuroimaging signals.

Such methods for analyzing functional brain connectivity, primarily based on signals’ own
statistics, are potentially very useful not only for neuroscientific investigations but also for
neuroengineering applications. For example, a key challenge in an emerging new direction in
brain-computer interface (BCI) research is to covertly acquire user’s unobserved states during
everyday life behaviors [49, [30]. Since brain activity cannot be very well controlled in everyday
life situations, no reliable class labels are available for discriminating the unobservable states
of users. Such difficult data could be tackled if unsupervised analysis discovered connectivity
patterns reflecting the user’s cognitive states. Unsupervised connectivity analysis might also
shed light on the neurophysiological basis of the BCI paradigms commonly used so far, such as
those based on motor imagery, i.e., imagining body movements [14], [15].

Motivated by such potential applications, in this paper we focus on developing an unsuper-
vised analysis method for finding connectivity-related signal features from electroencephalogra-
phy (EEG); our method may also be readily applied to magnetoencephalography (MEG) because
of its fundamental similarity. EEG/MEG’s high temporal resolution is particularly useful for
analyzing non-stationary connectivity, as compared to functional magnetic resonance imaging
(fMRI), which is used in most connectivity studies.

The analysis of functional connectivity patterns in EEG/MEG, however, is not straight-
forward because the neural sources are mixed by volume conduction (and/or field spread) into
sensor signals. Two-stage analysis has been conventionally performed by first separating the neu-
ral sources from the given sensor signals and analyzing the connectivity patterns based on those
separated sources. In neuroimaging literature, electromagnetic inverse problems are often solved
to separate (estimate) the activity of dipolar sources on the cortical grid, with an additional
effort of physical forward modeling. On the other hand, in exploratory signal analysis related
to BCI, blind source separation (BSS) methods (including ICA) are especially useful, since they
greatly simplify the interpretation of the results by decomposing the data into components, and
the inverse problem can be solved to localize the obtained components afterwards [19] [10]. Note
that these components are actually called “sources” in BSS literature, and a component can be
an integration of multiple correlated dipolar sources.

The problem is that conventional two-stage analysis, i.e., first source separation and then
connectivity analysis, is “neither a principled nor an optimal solution to the overall problem” [34].
Source separation methods rely on specific prior assumptions about the sources, which are not
necessarily consistent with what the connectivity analysis assumes about them; such inconsis-
tency between prior assumptions might bias the results. A more desirable unified treatment
would be obtained by extending the conventional generative (forward) model used for source
separation by including prior assumptions about the sources that are consistent with the con-
nectivity analysis. Typically, connectivity analysis can be formulated as learning of a specific
parametric model of the sources, and both layers of the model may be learned simultaneously,
unified by the principle of statistical parameter estimation.

Here, we present a unified method for BSS and analyzing functional connectivity patterns
in EEG/MEG sources with a jointly solved BSS, based on a novel two-layer extension of the
conventional BSS/ICA generative model. In line with previous resting-state MEG studies [9, [0,
40], we are particularly interested in finding coherent (frequently occurring) patterns of activity
levels (coactivations) of oscillatory sources in any frequency band of interest. The connectivities
are based on envelopes and ignore phase information, but our model is rather different from
power-to-power coherences.

To properly model the source envelopes, our model uses a complex-valued formulation of
BSS based on the Hilbert transform, which is a key departure from related extensions of ICA



based on modeling real-valued data [21, 22, 47, 26, 27, 37, 29, [16, 17]. Another important
novelty here is using a finite mixture model of sources, in which they are assumed to exhibit
different coactivation patterns corresponding to a finite number of unobserved “brain states.”
This corresponds to performing unsupervised clustering on the coactivations of the sources,
inspired by the use of K-means clustering in previous resting-state fMRI studies [32] I]. Due to
the simplicity of the mixture model, our two-layer model is tractable, unlike previous two-layer
models that are often difficult to learn. Our entire model can be readily estimated (optimized)
by the maximum likelihood method without resorting to any approximations.

The rest of this paper is organized as follows. First, we present our proposed method based
on a novel two-layer extension of the generative BSS/ICA model called the latent coactivity
mixture model (LCMM) (Section [2). Then we provide simulation studies (Section [3) and real
EEG data analysis (Section [4]) to validate the unified approach. Finally, we discuss the results
and open issues (Section . Preliminary results were presented at the International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC’14) [18].

2 Latent coactivity mixture model

2.1 Background: blind source separation

Before introducing our new model, we start by discussing the generative (forward) model conven-
tionally used for the blind separation of EEG/MEG sources. Let (t) = (z1(t), z2(t), ..., zq(t))T €
R? be a multivariate EEG /MEG signal, sampled at discrete time points indexed by t = 1,2,..., N,
which is assumed to have already been (band-pass) filtered so that each z;(t) is limited to a
certain frequency band of interest. Sensor signal vector x(t) is then assumed to follow a linear
generative model given by

z(t) = As(t), (1)

where s(t) = (s1(t), s2(t), ..., sq4(t))T € R? denotes the vector of the source signals and A € R?*¢
is called the mixing matrix, which is assumed to be non-singular so that demixing matrix
W := A~! exists. Both s(¢) and A are unknown and estimated from data in the BSS setting.

Note that in Eq. , the number of sources is assumed to equal (effective) dimensionality
d of the sensor signal, as a fundamental setting in a standard ICA; this greatly simplifies the
mathematical treatment. In practice, d can be selected to be smaller than the original number
of sensor channels, typically by discarding the ineffective dimensions (with too small variances)
using PCA. It should also be noted that each source (or component) s;(t) does not necessarily
correspond to any single electrical dipole; instead, each s;(t) may describe the total effect of
multiple correlated dipolar activities.

To solve the BSS problem, we need to make further assumptions about the statistical prop-
erties of the sources based on prior knowledge. Independent component analysis (ICA) typically
assumes that d sources are non-Gaussian and mutually independent [23], which theoretically
guarantees the identifiability of both A and s(¢)’s, up to the scaling and permutation of the
sources. However, the independence assumption might lead to a solution that is weakly func-
tionally connected (i.e., weakly statistically dependent), even when the true sources are strongly
dependent, which is not consistent with the goal of connectivity analysis. This motivated us to
develop an appropriate model of functionally connected (dependent) sources.

2.2 Definition of latent coactivity mixture model

Our main interest here is modeling the envelopes (i.e., amplitudes) of narrow-band source signals
[36, B0, [6] for which the “real-valued” BSS model of Eq. is not convenient. Envelopes can



be modeled more easily with complex analytic signals s;(t) [43], defined as

8j(t) = s5(t) + iH[s;(2), (2)

where H[f] denotes the Hilbert transform of signal f(¢) and 4 is an imaginary unit. The envelope
of s;(t) is given by the modulus of 5;(¢). This simple algebraic dependence of the envelope on §
greatly simplifies the developments below.

We thus formulate a “complex-valued” BSS with a similar transformation of sensor signal
vector x(t):

z(t) = As(t), (3)

where complex sensor signal Z(t) = (Z1(t),Z2(t),...,Tq(t))T € C¢ can be directly computed
from the original one by Z;(t) := x;(t) +iH[z;](t). Here, sources s;(t) are further assumed to be
centered (i.e., E[5;(t)] = 0) without loss of generality by always subtracting the (sample) mean
from Z. Both mixing matrix A and complex-valued source signal 5(t) = (31(t),32(t), ..., 34(t))"
are again unobserved and estimated from the data.

Note that mixing matrix A in Eq. is identical to the original one in Eq. because of
the Hilbert transform’s linearity. This ensures that the A’s columns can be interpreted directly
as defining spatial topographies in the original sensor space. For simplicity, we constrain A to
be real-valued, while a complex-valued A could also be straightforwardly used, which might be
useful to deal with sources synchronized in different phases [24].

We next define a coactivation (connectivity) structure between sources s;(t). The fundamen-
tal assumption here is that a system generating the data can be in a finite number of different
states, corresponding to different patterns of source amplitudes. Given the state at time point
t, sources $;(t) are generated based on a multivariate Student-t distribution (specified below)
which implements the average source amplitudes specific to that state and generates random
phases.

Thus, our model of connectivities is not based on explicitly measuring some form of correla-
tions between the sources or their envelopes, as is typically done in electrophysiology. Instead,
we characterize the interactions of the sources by dividing their joint activity into a number
of typical patterns of envelopes, which intuitively express the idea that certain sources tend
to be coactivated. Such coactivation does imply correlations of envelopes, i.e., power-to-power
coherence, but provides a more detailed analysis of the coactivation than merely computing
correlations.

The proposed latent coactivity mixture model (LCMM) is thus summarized as a two-layer
generative model of complex sensor signal vector &(t) as follows:

1. At each time point ¢, the system generating the data takes one of a finite number of
different states (clusters) indexed by k = 1,2, ..., K, according to multinomial probability
distribution with cluster probabilities 11,72, ..., nx, where np > 0 and ZkK:1 e = 1.

2. Given that the system belongs to the k-th state at time ¢, source vector s(t) is specifically
generated by a complex multivariate Student-t distribution [43] with circular (see below)
and mutually uncorrelated sources; they have state-conditional variances or expected pow-
ers (squared amplitudes), given by

1%

where E[]; denotes the conditional expectation given the k-th state, v is an integer called



the degrees of freedom, and nonnegative vector by = (b1x, bag, - - - ,bdk)T, called the coacti-

vation pattern, specifies the expected levels of the source envelopesH

3. Complex sensor signal (t) is given as a linear instantaneous mixture of 5(¢) with unknown
mixing matrix A, as in Eq. , common to each state k.

The N Hilbert-transformed sensor signal vectors, (1), Z(2),...,&(N), are simply assumed to
be independently and identically distributed (i.i.d.), as is commonly done in many ICA methods.
Such a simplification is mainly done for purposes of mathematical and computational tractability,
but it could be relaxed by further modeling the autocorrelation structures of the sources (in
future work).

The circularity of the sources means that the phase of each source is distributed uniformly
and independently of its amplitude. Our method focuses on modeling (analyzing) an amplitude-
to-amplitude type of connectivity (coactivation), ignoring phase-to-phase or phase-to-amplitude
types of connectivity. In the circular case, the probability density function (pdf) of complex
multivariate Student-t distribution [43] with scatter matrix 3 and v (> 0) degrees of freedom
is given by

_ d v —d—3
T(32,v) = F?;)Ei:; dTQ (1 + i§”2—15> , (5)

where ‘" denotes the Hermitian transpose and ['(-) denotes the Gamma function. Source vector
$ in LCMM has a state-conditional pdf given by 7 (s;diag(by), V). Figs. (a) and (b) illustrate
the conditional pdf for a bivariate case.
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Figure 1: Illustration of complex multivariate Student-t distribution for two circular complex
sources. (a,b): Bivariate Student-t pdf T((51,32), diag(by),v) with by = (1,.1) and v = 2;
(a) illustrates pairwise marginal density on real and imaginary parts of single source 57, where
spherical equiprobability contours imply circularity; pairwise marginals for the four combinations
of real or imaginary parts between s; and Sy have the same form illustrated in (b) (black
solid lines), where two other examples are also shown (gray solid lines) with by = (.1,1) and
bs = (.8,.8). (c): Mixture density of the three state-conditional pdfs in (b), with the state k
marginalized out with n = (.1,.1,.8).

ITo be precise, the exact relation between by and the source variances in Eq. is no longer valid if v < 2,
since the variance is infinite or undefined. However, even if v < 2, the estimated by can still be interpreted as
modeling the variance levels, while small v implies canceling the effects from the outliers from the viewpoint of
robust estimation (as explained in the text).
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Figure 2: Graphical representations of dependency structure in LCMM

The particular choice of the Student-t model is mainly motivated by its robustness to outliers
in the estimation of (co)variances (i.e., coactivation patterns), as has been thoroughly studied
in the literature [see e.g., 35, 33]E] Scatter matrix X is proportional to the covariance matrix if
it exists, i.e., B[35"] = {v/(v — 2)} for v > 2, and maximum likelihood estimate (MLE) of X
is often used as a robust alternative of the sample covariance matrix even with v < 2. Diagonal
scatter matrix diag(by) in LCMM implies Eq. , and the estimate of by serves as a robust
estimator of the state-conditional variances; note that even if the variance does not exist when
v < 2, b, can have a finite MLE, giving a more general scale parameter estimate. Typically,
since EEG/MEG signals contain a large amount of noises or artifacts from outside of the brain,
robustness is a desirable property in practice. On the other hand, our model includes no explicit
noise term in the generative model of Eq. , which is mainly for computational simplicity as
in standard ICA methods.

Graphical representations of the dependency structure in LCMM are given in Fig.2l The
sources in LCMM are not independent of each other (Fig.2(a)} see also Fig.[1] (¢)), i.e., p(8) #
H;-lzl p(5;), in contrast to standard complex-valued BSS/ICA models. Unlike the related gen-
eralizations of ICA modeling energy correlations, the sources are even conditionally dependent
(Fig.2(b)), given the higher-order latent variables (here: state k). This is due to our choice of
the Student-t model instead of a Gaussian model. In the limit of ¥ — oo the pdf is reduced
to a complex Gaussian and the sources become conditionally independent (Fig., but they
remain dependent over the whole data set (with state k£ marginalized out).

2.3 Parameter estimation

According to LCMM’s generative model, we obtain the pdf of complex sensor signal & by the
transformation of random variables from s to x:

K
p(@; W, B,n,v) = |det W|* >, T(Wa; diag(by), v), (6)
k=1

where we explicitly indicate the model parameters in the left-hand side (after the semicolon),
and B = (by,...,bx) and n = (n1,72,...,mx)" collect the coactivation patterns and the state
probabilities, respectively. Note that in Eq. @, the determinant is squared because the same

2Note that other heavy-tailed distributions in the complex elliptical family [43] commonly have the robustness
property and thus could also be used as the source model in LCMM. However, the examination of this option is
beyond the scope of this paper.



transformation is required for both real and imaginary parts. The pdf can also be expressed as

K
p(@; A, B,m,v) =Y nT(T; ATdiag(b) A, v). (7)
k=1

The model is thus a constrained form of the mixture of multivariate Student-t distributions,
in which the state-dependent scatter matrices are tied with common parameter A. It can be
readily seen from Eq. that the probability density does not change if A (or W) and by
are simultaneously replaced by AD > (or D%W) and Dby, respectively, where D is any non-
singular diagonal matrix. This is the well-known scaling ambiguity inherent to BSS/ICA; we fix
the scale by setting every column of A to have unit Euclidean norm.

The parameters of interest in LCMM can be easily estimated by the maximum likelihood
method, i.e., maximizing Zi\il Inp(x(t); W, B, n, v) with respect to the model parameters when
the latent variables are marginalized out. Importantly, this does not require any approximation
in contrast to other hierarchical BSS models. For simplicity, we fix degrees of freedom v to a
constant (we set v = 2 in Sections |3| and 4] below; this choice leads to an infinite variance and
strong robustness) and learn the other parameters {W, B, n} since v typically has only a small
effect on the final solution (at least if set relatively small for ensuring robustness). The detailed
form of the objective function and its derivatives are given in Appendix [A]

We propose to use a quasi-Newton methodE] to efficiently optimize the likelihood using repa-
rameterization [41] given by

exp(Ax)
S (i ®

so that the nis automatically satisfy constraints n; > 0 and Zszl 7 = 1. On the other hand, we
don’t constrain the scaling of W or B during the optimization, but rescale them after obtaining
the final solution so that every column of A has a unit norm. Any standard optimization software
can be used for solving unconstrained optimization on new parameter set {W, B, A}. We found
that this quasi-Newton method is more efficient than the well-known expectation-maximization
method (simulations not shown).

After estimating the model parameters, the (real-valued) sources are separated by s(t) =
Wx(t) or by taking the real part of s(¢t) = Wa(t) for any x(t) or (t). This is possible because
the demixing matrix is the same for both the original and the Hilbert-transformed data. The
states are inferred by computing their posterior probability:

Tk

ol | &) = neT (Wz; diag(b), v)

= — . 9
Sh—1 e T (W; diag(by), v) )

The maximum a posteriori (MAP) estimate of the state is given by taking the state that max-
imizes this posterior, which gives the final result of the model-based clustering of the source
coactivations.

2.4 Choosing the number of states by BIC

Another important issue in learning mixture models is the choice of the number K of states or
clusters. We use the Bayesian information criterion (BIC) to select the best K minimizing

BIC(K) := —2InL + MIn N, (10)

We used a Matlab implementation [42] of the limited-memory BFGS by Mark Schmidt, available at
http://www.di.ens.fr/ “mschmidt/Software/minFunc.html



where L denotes the maximum of the likelihood obtained numerically as explained above and the
number of free parameters M in LCMM is given by M = K —1+d?+ Kd—d. The use of BIC for
the model order selection in mixture models has been extensively studied in statistics. There are
theoretical results regarding statistical consistency [28], and BIC often exhibits state-of-the-art
performance, as shown empirically [46].

2.5 Relation to previous two-layer extensions of BSS/ICA

Many previous attempts have been made to extend BSS/ICA based on Eq. (1)), particularly to
deal with the residual dependency structures between power sjz or magnitudes |s;| of the sources
often observed in ICA results [21} 22, 47, 26], 27, 50 [17]; these works were not necessarily
concerned with EEG/MEG.

Initial developments made fixed prior assumptions about the dependencies of the sources
without estimating any parameters in the source model [2I]. However, we are concerned with
models in which the parameters in the second layer (i.e., connectivity patterns) are estimated

as well [26], 37, 29]. Typically, these models are based on a (generalized) linear model of squared

sources 82 := (s2,3,...,52)T, as already proposed by [22]:
E[s*(t) | u(t)] = 6(Bu(t)), (11)
where B and w(t) = (u1(t),u2(t),...,ux(t))T are the second-layer mixing matrix and source

vector, and ¢ is a strictly monotonic function that is applied element-wise. Given variance
E[s? | u], each source s;(t) is then usually assumed to follow a certain probability distribution:
either Gaussian [22 47] or non-Gaussian [26]. The real-valued linear mixing (Eq. (1)) finally
produces observed signals x(t).

The following are the main problems with these previous models for EEG/MEG connectivity
analysis: 1) they do not properly model the envelopes of the oscillatory sources, and 2) the
likelihood is often intractable without resorting to approximations, because the continuous latent
variable u(t) needs to be integrated out. A recent study [7] on the statistical modeling of natural
movies actually addressed the first issue without resolving the second one.

In fact, a close connection between LCMM and Eq. is implied by the well-known fact
that Student-t distribution belongs to the Gaussian scale-mixture family [see e.g., 4, for a real
case]. We can equivalently re-formulate our model by assuming that 5;(¢) is a complex (circular)
Gaussian conditionally on state k and introducing a scaling variable ux(¢) > 0 that follows an
inverse Gamma distribution. The conditional variance can then be written:

E[[3[*() | ug(t)]x = ur(t)br, (12)

where |32 := (51]%,|32/%, . .., |34|>)T denotes the squared envelopes. Now consider a simplified
complex-valued counterpart of the previously used Eq. given by

B[|3*(t) | u(t)] = Bu(t). (13)

The LCMM in Eq. has essentially the same form, if we can constrain it so that only a single
variable uy takes a non-zero value at a time.

Hence, although closely related, LCMM has notable differences from previous energy-correlation
models. First, it models the (squared) envelopes |3|? instead of the (squared) magnitudes s,
thus properly dealing with oscillatory sources (together with Hilbert transform). Second, the
model is tractable and fast to learn because it has only one discrete latent variable instead of

multiple continuous ones.



2.6 Real-valued variant of LCMM

To separately evaluate the effect of using complex-valued formulation instead of a real-valued
kind, we also examine a real-valued counterpart of LCMM in our simulation study below. The
model can also be seen as a simplification of a previous two-layer BSS/ICA such that only a
single variable u in Eq. takes a non-zero value at a time, where nonlinearity ¢ is set to an
identity function, implying that E[s%(t) | u(t)]x = ui(t)br. More specifically, the real-valued
LCMM is given as a constrained form of a mixture of multivariate Student-t distributions and
its pdf is given by

K
p(z; A,B,m, k) = > T (z; Aldiag(by)A, ), (14)
k=1

where the Student-t pdf for real vector s € R is generally given by

7' - _ F(dLQH) 1 1 Tzfl _M—TR 15
(87 7"<5> = F(%)(Kﬂ)d/2|2|1/2 ( —l—;s S) . ( )
Again, the pdf can be expressed using W = A~! as

K

k=1

and the same quasi-Newton optimization is used for estimating {W,B,n} (specifically with
k = 1 in Sections 3| and 4| below). Finally, the state posterior is also given by

i T (Wa; diag(by), k)

plk|x) = .
k| =) Yk ne T (Wa; diag(by), k)

(17)

3 Simulations on artificial data

We next quantitatively compare the proposed method with existing approaches for the analysis
of EEG/MEG data. We start with simulated EEG/MEG data so that the ground truth is
known and can be systematically controlled; we provide a real EEG analysis in Section [4. The
goal of the simulation study below is to validate the two key ideas of the proposed method: the
complex-valued formulation and the unified estimation principle of the two stages of analysis.

3.1 Methods

The simulated EEG/MEG signals were created as follows. First, we applied a band-pass filter
(9.5-10.5 Hz) to ten Gaussian temporally white signals sampled virtually at 75 Hz to simulate the
alpha-range activities. Then these oscillatory signals were jointly amplitude-modulated block-
wise in every 2-second window (150 samples) to show the state-dependent coactivation patterns.
For this purpose, we first created vectors by whose entries were independently sampled from a
standard Gaussian distribution but set to zero if negative; this was repeated until at least two
entries satisfied bjp > 0.05. Then the j-th oscillatory signal was multiplied by /b;; with state
k randomly chosen for each block with uniform probability (k = 1,2,...,5). The sources with
non-zero b;i’s were actually coactivated, while very small activity levels were avoided with this
procedure.

So that the amplitudes of these coactivated sources have non-zero (positive) correlations
within each state, they were further modulated globally by a noisy sinusoidal signal, generated
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s;(t) before (black) and after (gray) adding Gaussian noise with signal-to-noise ratio (SNR) of
0 dB. Clean sources (i.e., before adding noise) exhibit one of five different coactivation patterns
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each block (see text for more details). Top horizontal bars and numbers indicate five states
k=1,2,...,5, corresponding to five coactivation patterns. (b) Five coactivation patterns. k-th
panel shows values of bj;; for ten sources j =1,2,...,10.
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by sampling from a Gamma distribution Gamma(2£(t), 2) [[] with &(¢) = 0.9sin(27 f/75+ ¢) + 1
where f = 1 Hz and phase ¢ was randomly selected. Then Gaussian white noise was added,
where the noise variance was set to have a given value of a signal-to-noise ratio (SNR), defined
as the ratio of the variance. Fig.[3|illustrates an example of ten sources before and after adding
the noise. Finally, sources s;j(t) were linearly mixed into the same number (i.e., 10) of sensor
signals x;(t) with square mixing matrix A generated randomly from the standard Gaussian
distribution.

The clustering and source separation performances on these simulated data were com-
pared among the following methods: 1) LCMM, 2) LCMM (real), 3) ICA+MixT, and
4) ICA+Kmeans. The first one, LCMM, is the proposed approach, based on the joint max-
imum likelihood estimation of the two layers of the complex-valued LCMM. The second one,
LCMM (real), denotes the real-valued counterpart of LCMM (see Section [2.6), which can
be seen as laying between our proposed method and the previous two-layer BSS/ICA models.
The latter two, ICA+MixT and ICA+Kmeans, perform two-stage analysis. Both first used
the complex-valued FastICA [3] (with real-valued W) for separating complex sources §(t); then
ICA+MixT directly learned the mixture of the Student-t model (as in LCMM) on the sepa-
rated sources, while ICA+Kmeans performed standard k-means clustering on log-amplitudes
In [5;(t)|, where the mean log-amplitude over the channels was subtracted at every ¢ to compen-
sate for the global modulation.

We used the adjusted mutual information (AMI) [48] and the Amari index [2] as specific per-
formance measures for clustering and source separation, respectively. AM]E] corrects normalized
mutual information (NMI) between true cluster k and estimated cluster k for chance agreements:
AMI = (NMI — NMI)/(1 — NMI) where NMI = I(k, k)/ max{H(k), H(k)} (0 < NMI < 1) and
NMI denotes the expectation of NMI under random permutations of the cluster labels where
the numbers of clusters and cluster members are unchanged (I and H denote the sample mutual
information and marginal entropy). AMI is thus expected to be zero under this random permu-
tation and is upper-bounded by one; the upper bound is achieved only when the two clusterings
are perfectly matched. The Amari index, which is a standard performance measure for linear
BSS problems, is defined by

d d d

d
Amari index = Z(Z M — 1> +Z<Z ’X#_
7j=1

)
=1 Vj'=1 maxg |X]]€’ =1 \j'=1 maxg |Xk;j’| ’

(18)

where x;;» denotes the (j,j’)-th element of matrix A~TA with estimated and true mixing
matrices A and A" respectively. This index is nonnegative and equals zero if and only if the
true mixing matrix is recovered up to the permutation and scaling of the columns.

3.2 Results

Figure {4] quantitatively compares the performances of clustering (panels on the left) and source
separation (panels on the right) by the above four methods with different numbers of clusters
estimated by the model, K = 2,5,8, while the number of true states is always 5. Each boxplot
displays the result of 50 runs in each of the different sample sizes N. The SNR of the sources
was specifically set to 20 dB in this figure. In the panels on the right, “ICA” corresponds to
both ICA+MixT and ICA+Kmeans.

As is clearly seen in the left three panels, LCMM achieved the highest AMI (medians) in
every condition, and LCMM (real) consistently showed a lower AMI. In contrast, on the right-
hand-side panels, these two methods showed very similar Amari indices. These results imply

4The pdf is given by p(z) = b2~ exp(—bx)/T(a) if x ~ Gamma(a,b).
"We used the matlab code available at https://sites.google.com/site/vinhnguyenx /softwares.
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Figure 4: Simulated data (with SNR=20dB): Performances in clustering (left) and source sep-
aration (right) with different settings of number of clusters estimated, (a) K = 2, (b) K =5,
and (c) K = 8, evaluated respectively by adjusted mutual information (AMI) [48] and Amari
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are good; on the right, low values are good. Each panel displays boxplots at different sample
sizes N. Each boxplot indicates median, interquartile range, and entire data range of 50 runs,
excluding outliers indicated by ‘x’. See text for legends of methods.

12



that the complex-valued formulation of our LCMM is particularly beneficial for obtaining better
clustering without degenerating the source separation. The two-stage methods, ICA+MixT
and ICA+Kmeans, also exhibited lower (i.e., worse) AMI values than those of LCMM (but
not necessarily of LCMM (real)), while they exhibited higher (i.e., worse) Amari indices. The
two-stage methods are less accurate in both clustering and source separation than the proposed
(complex-valued) LCMM method.

Although we obtained the best performance with K = 5 (true number of clusters), the
relative performance among the four methods was qualitatively similar for different Ks. That
is, the proposed method outperforms other methods even when the number of clusters K is
misspecified.

To further examine how the result changes with different noise levels, we also conducted
simulations with different SNRs for generating the source signals. The number of clusters K in
the model was simply set at the true one (K = 5). Fig. shows the result in the same format as
that of Fig.[d] The relative performance of the four methods was qualitatively similar to Fig.[]
in every SNR setting. This showed that LCMM improved clustering without degenerating the
source separation over the other methods even when the SNR is relatively low.

Finally, we demonstrated the use of BIC for selecting the number of clusters. Here, we
computed the BIC for K = 2,3,...,10 and chose the K that minimizes the value. Note that in
the simulation setting here, LCMM does not completely match the true data-generating model
due to the additional Gaussian noise in the sources. The number of clusters selected thus often
exceeded five, as shown in Fig.@ while higher SNRs (e.g., 20 or 30 dB) resulted in values closer
to five. In practice, since EEG/MEG usually has a low SNR, these results indicate that the
number of clusters will likely be overestimated by BIC. However, spatial topographies a; also
learned by LCMM can be used to identify and discard such irrelevant clusters that only contain
noise or artifacts instead of physiologically meaningful patterns.

4 Experiments on resting-state EEG data

Next, we demonstrate the advantages of using LCMM compared to two-stage methods in a
real EEG data analysis. The target data are resting-state EEGs acquired before and after a
BCl-related task, which we expect to contain task-relevant brain states possibly due to mental
rehearsal or retrieval. We examined the patterns (states) found in the resting-state EEGs based
on the labeled EEG data during task as well as their spatial topographies on sensor channels.

4.1 EEG data

Five healthy subjects (three males, two females, 284-/-11 years old) participated in our EEG
experiment. We placed a headcap with EEG electrodes on their heads with electric-conductive
gel SIGNAGEL (Parker Laboratories Inc., Fairfield, NJ, USA) to reduce the impedance of the
electrodes. We positioned 64-channel active electrodes based on the international 10-20 system,
and connected them to an ActiveTwo amplifier (BioSemi, Amsterdam, The Netherlands). An
experimental protocol of this study was approved by the ethical committee at ATR.

The brain activity was measured in each subject during resting states with eyes open and
while the subjects performed a cued motor imagery /non-imagery task. The experiment consisted
of two resting-state (RS) sessions and six task sessions between the two RS sessions. In each
RS session (5 minutes), the subject was instructed to relax without thinking of anything in
particular and without sleeping and to focus on a fixation point at the screen’s center. In each
task session, the subjects performed a number of task trials in each of which they randomly took
one of the following three actions for three seconds after a visually-cued onset: 1) left: covert
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imagination of a left-hand movement, 2) right: covert imagination of a right-hand movement,
and 3) idle: no imagination of hand movements.

The EEG data were acquired at a sampling frequency of 256 Hz, band-pass filtered off-line
to 1-50 Hz (fourth-order Butterworth, zero-phase), and re-referenced to the common average.
Part of the RS data and some trials in the task data were rejected due to gross contamination.
Typical ocular, cardiac, and muscular artifacts were also identified and removed by FastICA [20]
with visual inspection and frequency analysis, which was done separately for each subject and
also for the RS and task data. The data were further band-pass filtered in certain frequency
bands of interest and then Hilbert-transformed. We focused on two frequency bands of interest,
8-12 Hz (alpha) and 13-30 Hz (beta), in line with previous neurophysiological studies on motor
imagery [e.g., 38] as well as those on resting-state brain networks [e.g., [6].

4.2 Method

All the LCMM parameters were estimated from the RS data alone where the two (pre- and post-
) RS sessions were combined. We emphasize that the task data and labels were not used for
the parameter estimation but only to validate the learned model in a post-hoc manner. Before
the parameter estimation, the RS data were spatially prewhitened and dimensionality-reduced
by PCA, so that 99% of the sample variance was kept. Note that the effective dimensionality of
the data had already been reduced above by removing the artifactual dimensions using ICA. As
a result, the number of sources d was selected as 12,12,11,7, and 31 for the five subjects in the
alpha band and 17,12,17, 14, and 31 in the beta band. For comparison, we also applied the two-
stage method ICA4+MixT, as explained in Section to the same data to examine the effect
of unifying the two stages of the analysis by LCMM. In both methods, we ran the algorithm
ten times, each from different initial parameters to converge, for every preselected number of
states K = 10,20,...,100. The best K in LCMM was chosen so that the median of the ten
BIC values achieved the minimum, and the same number K was also used in ICA+MixT.
We then evaluated how well each coactivation pattern by found in the RS data discriminates
the two physiologically different brain states corresponding to the motor imagery (i.e., left and
right) and non-imagery (i.e., idle) labeled in the task EEG data. We used a standard performance
criterion for binary discrimination, the area under the receiver operating characteristic (ROC)
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Figure 7: Real EEG analysis: Channel names and spatial layout of 64 electrodes. Layout
corresponds to spatial topographies on scalp shown in Figs.[9] and

curve or AUC and evaluated them as follows. We used the k-th signal model p(z | k) to detect
whether a task trial was in the k-th state. This state was supposed to be detected if log-likelihood
Inp(z | k), averaged over the imagery/non-imagery period after the cued onset (where the initial
0.5 seconds of this 3-second period were discarded to avoid the transient effect), was above or
below a certain threshold. The log-likelihood of the k-th state, up to the irrelevant scaling and
additive constants, can be evaluated at each time point by In(1 + Z?zl b;k1|§j|2), as derived by
setting v = 2 in Eq. and removing the time-invariant constant terms from its logarithm.
The occurrence of the k-th state may be associated arbitrarily with motor imagery or with
non-imagery for each case of which the ROC curve was drawn by plotting the true positive rate
against the false positive rate at many different threshold values. Thus we had two AUC values
(computed by a trapezoidal rule) for each state from which the greater one was simply chosen;
the AUC becomes close to one if the state occurrence discriminates well between motor imagery
and non-imagery, and it is close to 0.5 if the occurrence does not discriminate it at all. Note
that this AUC does not distinguish between left and right because that seemed too difficult in
these data based on our preliminary analysis (not shown here).

To compare these states that exhibited high AUC values, we further examined the time
courses of their log-likelihood and the sensor-level topographies corresponding to them. The
topographies were drawn by evaluating how the occurrence of each state changed the power
in the frequency band of interest at each site of the electrodes. We first obtained a robust
estimate of the state-conditional variance (power) for each sensor channel by 2, > bjkazj
(¢ =1,2,...,64), where a.; denotes the estimated mixing coefficient from the j-th source to
the c-th sensor channel and total variance ), ng was simply normalized to one because it
was undefined due to the choice of v = 2. The topographies were then plotted by spatially

interpolating the percentage deviations 100 x (02, — 52)/5> from the “grand variance” o2 over

64 electrodes (see Fig. for the layout and channel names). Grand variance o2 was set to the
expectation of state-conditional variances o*zk during the task period, i.e., 72 = >}, nkagk, where
Nk was re-estimated by the posterior state probabilities during the imagery/non-imagery periods

of the task trials.

4.3 Results

The discriminability of each state between the motor imagery and idling trials was examined in
terms of the sample distribution of their AUC values. Fig.[§ shows the normalized histograms
of the AUC collected from the ten different runs of the parameter estimation, where each panel
shows the two normalized histograms by LCMM (“unified”) and ICA+MixT (“2-stage”) for
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a particular subject and frequency band. The number of samples (AUC values) summarized in
each panel was thus 10 x K, where number of states K was selected by BIC as K = 70,70, 90, 20
and 90 for the five subjects in the alpha band, and K = 30,10, 20, 10 and 70 in the beta band.
The figure shows that in most cases, the unified method exhibited greater variation in AUC
than the two-stage method. For example, the range of AUC clearly expanded to both sides of
the distribution in Subjects 1 (beta), 3 (beta), and 5 (alpha), while mostly to the right (greater)
side in Subjects 3 (alpha), 4 (alpha, beta) and 5 (beta). The greater variation in the AUC
distribution, even if it was both-sided, implies that it has a greater chance to contain brain
states that exhibit higher AUC values. The two vertical lines in each panel further indicate
the upper quartiles of AUC for the unified (solid line) and two-stage methods (dashed line),
showing consistent increases of the upper quartiles by LCMM from those by ICA+MixT. In
other words, the lower bound of the top 25% of the AUC values consistently shifted to the right
as a consequence of unifying the two stages of analysis.

To get insights into the difference of these high-AUC states between the unified and two-
stage methods, we further analyzed the average dynamics of the states that exhibited the best
(highest) AUC in each subject and frequency band. Figs.@] and display the trial-averaged
time courses of the log-likelihood of those states obtained for the alpha and the beta bands,
respectively, around the 3-second period of motor imagery/non-imagery. For the alpha band
(Fig.[9), the dynamics clearly differ between the motor imagery (left and right) and the non-
imagery (idle) conditions in LCMM (left column), especially in Subjects 1, 2, and 5, with
smaller differences among them in ICA4+MixT (right column). For the beta band (Fig.[10)), the
dynamics again exhibited similar differences between the imagery and non-imagery conditions
in every subject. The results by LCMM (left column) and ICA+MixT (right column) are
very similar in Subjects 2, 3, and 4, but in Subjects 1 and 5 the dynamics again clearly differ
between the imagery and non-imagery conditions in LCMM with fewer differences among them
in ICA+MixT.

The corresponding spatial topographies of the power deviations, given in Figs.[9] and
provide further neurophysiological insights in conjunction with those of the averaged dynamics.
For example, Fig.[9] (left column) suggests that the best-AUC states of Subjects 1 and 2 are both
associated with the event-related decrease of frontal alpha power in the idle condition but not
in the two motor imagery conditions. This is readily seen in the decrease of the log-likelihood
during the idle condition (green line) from the baseline level and with those topographies that
exhibit positive values on the central areas. The figure also suggests that the best-AUC state of
Subject 5 is associated with the event-related decrease of the alpha powers during the left and
right conditions at the bilateral Rolandic (central) areas, which are the major regions of interest
related to motor imagery [38]. This is seen in the log-likelihood increase during motor imagery
in conjunction with the negative deviations in the alpha power around those areas, as indicated
by the topographies. The topographies obtained for the beta band (Fig.@ seem more difficult
to interpret. Further neurophysiological interpretation is beyond the scope of this paper.

These topographic changes in power, seen at the sensor level, are actually caused by differ-
ent coactivation patterns at the level of the underlying sources. Fig.[11] shows an example of
the coactivation patterns (b;) and the topographies (a; and their element-wise squares) corre-
sponding to each source obtained by LCMM. The top row shows the coactivation pattern of the
twelve sources, obtained for Subject 2 in the alpha band, which corresponds to the best-AUC
state shown in Fig.[9] (left column, Subject 2). Here in this state, sources 3 and 10 have the
largest powers, followed by 5, 6, and 7, and the rest have relatively small powers. With the
coactivation patterns for other states, perhaps these high-AUC states can be characterized by
the relative deactivation of sources 1 and 2 or the relative activation of sources 5, 6, and 7, for
example. Even though we omit the details, the topographies given at the bottom will be useful
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Figure 8: Real EEG analysis: Distributional difference of AUC values evaluated for each obtained
state between unified and two-stage methods. Each panel shows two histograms corresponding
to LCMM (unified) and ICA4MixT (2-stage) for particular subjects and frequency bands, as
indicated on left and right sides of figure, respectively. In each panel, two normalized histograms
are superimposed with their overlap shown by transparency. Vertical axis is scaled in each panel,
and horizontal axis denotes AUC. Two vertical lines indicate upper quartiles for two methods:
LCMM (solid line) and ICA4MixT (dashed line).
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Figure 9: Real EEG analysis: Temporal dynamics of log-likelihood of states that exhibited
best (highest) AUC in Fig.[8|for alpha band (8-12 Hz). Each panel displays time courses of log-
likelihood, trial-averaged in each of three task conditions, left (blue), right (red), and idle (green),
for a particular subject and by either LCMM (unified) or ICA4+MixT (2-stage), as indicated
on left and top of figure. Solid lines indicate moving-averages using time windows of 0.5 seconds,
where shaded intervals indicate standard deviation in each moving window. Corresponding scalp
topographies shows percentage deviations in frequency-band power at each electrode (Fig. for
channel names) interpolated spatially, which represents how the occurrence of state changes the
power from the grand mean at the sensor level.
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Figure 10: Real EEG analysis: Temporal dynamics of log-likelihood of states that exhibited best
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was taken by time windows of 0.25 seconds.
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Figure 11: Real EEG analysis: Examples of coactivation patterns by of sources and spatial
topographies corresponding to each source obtained by LCMM (Subject 2, alpha band). The
ten barplots display coactivations associated with ten different states k. Five from top are
those of highest AUC values, and the rest are lowest AUC values, as indicated at right of each
row. Vertical length of the j-th bar (from left) in the k-th row represents relative value of bjj,
with vertical axis scaled separately in each row. Scalp topographies at bottom show values of
mixing coefficients a.; (lower) and its squared agj (upper), where blue and red colors correspond
to negative and positive signs, respectively. Note that the signs of coefficients a.; may be
arbitrarily flipped for each j due to indeterminacy inherent to LCMM (or ICA). Numbers j at
bottom indicate twelve sources.
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for further interpretation.

5 Discussion

We presented a novel unsupervised method for non-stationary functional connectivity analysis
of EEG/MEG sources. Our simulation studies confirmed that the proposed unified method
often outperformed the conventional two-stage method, in terms of both source separation and
clustering performances. Real EEG data analysis also showed that the unified method finds
coactivity patterns that discriminate well between motor imagery and idling states with a higher
probability than the two-stage method. In addition, the proposed method performs clustering in
the source space to give further neurophysiological insights beyond sensor-space clustering [e.g.,
5l 44], as demonstrated in Section

Our real EEG data analysis suggested that the log-likelihood values of the states, obtained
by our unsupervised analysis, may provide better higher-order signal features relevant to BCI
(e.g., for the onset detection of motor imagery) than those by conventional methods. However,
as seen in Section[d.3] LCMM often did not consistently improve the discriminability (AUC) of
every state but rather strengthened their contrasts: the states obtained by LCMM may contain
both more discriminative (higher AUC) and more indiscriminative (lower AUC) ones than those
by the two-stage methods. Hence, we must carefully select the discriminative features (states)
while avoiding the indiscriminative ones to successfully apply our method to BCI. Such a feature
selection could be done, e.g., based on neurophysiological interpretations or using additional
task-based experimental calibration. This remains open for future investigation.

Some recent studies have combined BSS with effective (directional) connectivity analysis to
analyze the causality between neural activities, for example, autoregressive (AR) models [13] 16,
see also [12] to solve the inverse problem rather than BSS], generalized autoregressive conditional
heteroscedasticity (GARCH) models [50], or a structural equation model (SEM) [I7]. Our idea
of unifying BSS and EEG/MEG connectivity analysis in a hierarchical statistical model is thus
not completely novel, but in the present study, we focused on a different type of statistical
connectivity: functional connectivity based on envelope correlations. More importantly, we fo-
cused on analyzing non-stationary functional connectivity in terms of underlying patterns/states
and their dynamics. This is a conceptually crucial difference from previous studies that were
concerned with static connectivity, i.e., those unchanging over time.

The LCMM proposed here was shown to be a reasonable statistical model to perform our
specific analysis on resting-state EEG/MEG signals, but obviously it has some limitations from
the perspective of generative signal modeling. First, each LCMM state can describe only the
positive correlations in the source envelopes, as is readily seen from the interpretation of Eq. ,
where latent factor ug(t) and coefficients by are both positive. The states themselves are, on the
other hand, correlated negatively since they do not occur simultaneously due to the assumption
of the finite mixture model. Hence, our method cannot analyze any brain states characterized by
negative envelope correlations or states that are positively correlated with each other. Second,
the i.i.d. assumption is too simplistic since brain activity is obviously not independent over
time. More general models corresponding to Eq. , possibly with nonlinearly ¢ in Eq. as
well as some temporal dynamics model on latent variables, will make the model more realistic.
However, the model complexity must be carefully controlled to achieve good predictability and
to maintain the model’s tractability.

Another practical limitation of our method is that it can currently handle only a single
frequency band of interest. Although it is very typical to limit an EEG/MEG analysis to a
certain frequency band, cross-frequency interactions are sometimes of particular interest. Some
recent studies have actually combined a complex-valued ICA with time-frequency decomposition
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for spontaneous EEG/MEG analysis with more flexibility on the spectral nature [e.g., 24, 39].
A similar technique can probably be used to extend our method to analyze the data in multiple
frequency bands.
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A  Maximum likelihood estimation of LCMM

In our LCMM, the maximum likelihood estimates of parameters of interest {W, B, n} are given
by the minimizer of the negative (average) log-likelihood L := (1/N) >N, L(t), where t-th term,
L(t) := —lnp(Z(t); W, B, n) + const., is given by

4 |w]z () d
-G Zfbi‘ — > Inbj,| —2In|det W|, (19)

j=1 J j=1
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L(t)=—1In Z Nk €XP
k=1

where G(u) = (d + §)In (1 + 2u/v), according to Egs. and @ We minimize L by a quasi-
Newton method with respect to W, B, and A using the reparametrization of Eq. . This
requires the first derivatives of L(t), given by
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where g(u) := G'(u) = (v+2d)/ (v + 2u), asterisk -* denotes a complex conjugate, WZ-_]-T denotes
the (i, j)-element of the transposed inverse matrix of W. ¢x(t) denotes the posterior probability
of the k-th state, given by

d 3. 2 d
qr(t) o< nx, exp <—G<Z ’25?’) - In bjk) ; (23)
= =1

where oc means that the left-hand side is proportional to the right-hand side up to a constant
factor independent of k. Notice that Eq. is equivalent to Eq. @ To obtain Eq. above,
we used the relation given by

52 ~ -
%'wjj = 55)@' {Re[w;rg;]? + Im['w;rmf} (24)
= 2(w; Re[&]) Re[7;] + 2(w, Tm[Z]) Im[7;] (25)
= 2Re[s;] Re[z;] + 2Im[5;] Im (7] (26)
= glf; + gfj, (27)
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where Re[z] and Im[z] denote the real and imaginary parts of complex number z, respectively.
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