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Abstract
Recent computational studies have emphasized quanti-
tative similarity between convolutional neural networks
(CNNs) and the visual ventral stream up to the primate
inferotemporal (IT) cortex. However, whether such simi-
larity holds for the face-selective areas, a subsystem of
IT, is not clear. To address this question, we extensively
investigate CNNs in terms of known tuning properties
of the face-processing network in macaque IT. Specifi-
cally, we first trained an AlexNet-type CNN model with
natural face images. Then, we conducted simulation of
four physiological experiments (Freiwald, Tsao, & Living-
stone, 2009; Freiwald & Tsao, 2010; Ohayon, Freiwald, &
Tsao, 2012; Chang & Tsao, 2017) to make a correspon-
dence between the model layers and the macaque face
patches. As a result, we found that higher model lay-
ers explained well properties of anterior patches, while
no layer had properties close to middle patches; this ob-
servation was consistent across model variation. Our re-
sults indicate that, although the near-goal representation
of face-classifying CNNs has some similarity with the pri-
mate face processing system, the intermediate computa-
tional process might be rather different, thus calling for
a more comprehensive model for better understanding of
this system.
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Introduction
Goal-driven deep convolution neural networks (CNNs) have
exhibited a remarkable similarity to ventral visual areas in
terms of stimulus-response relationship despite that the net-
work itself was not directly optimized to fit neural data (Yamins
& DiCarlo, 2016). For example, CNNs optimized for image
classification were highly predictive of neural responses not
only in the inferotemporal cortex (IT) but also in the inter-
mediate visual areas (Khaligh-Razavi & Kriegeskorte, 2014;
Yamins et al., 2014). A natural question arises here: if CNNs
explain overall responses in IT, then do they also explain re-
sponses in a subsystem of IT?

Among various subsystems of IT, the most well-studied
is the macaque face-processing system. This subsystem
forms a network consisting of multiple face-selective patches
with anatomically tight inter-connections (Moeller, Freiwald, &
Tsao, 2008). The network putatively has a functional hierar-
chy from the middle to the anterior patches with a progres-
sive increase of selectivity to facial identities and invariance
in viewing angles (Freiwald & Tsao, 2010). For each patch,

a number of tuning properties to specific facial features have
been reported in a clear and detailed manner (Chang & Tsao,
2017; Freiwald et al., 2009; Freiwald & Tsao, 2010; Ohayon et
al., 2012). Given these experimental facts, the macaque face
processing system emerges as an ideal testbed to examine
our question regarding the generality of CNNs as a model of
higher visual processing.

Thus, in this study, we have thoroughly investigated
whether CNNs explain previously reported tuning properties
to facial features. For this, we incorporated four major phys-
iological experiments that had been conducted on the mid-
dle lateral (ML), anterior lateral (AL), and anterior medial (AM)
patches: (1) size invariance and view-identity tuning (Freiwald
& Tsao, 2010), (2) shape-appearance tuning (Chang & Tsao,
2017), (3) facial geometry tuning (Freiwald et al., 2009), and
(4) contrast polarity tuning (Ohayon et al., 2012). By conduct-
ing simulation of these experiments on CNNs with varied ar-
chitectures and training conditions and by matching the results
with the documented experimental data, we have attempted
to make a correspondence between the model layers and the
face-processing patches.

Results
We started with a representative CNN model, which had ar-
chitecture similar to AlexNet but was trained on face images
from VGG-Face dataset (with data augmentation for size vari-
ation) for classification. We refer to this network as ‘AlexNet-
Face’. We first identified a population of face-selective units
in each ReLU layer; we call such unit simply ‘unit’ from here
on. We then conducted each experiment on the face-selective
population to see how each model layer corresponded to a
face-processing patch. Here, we present the results from
the ReLU1, ReLU3, ReLU5 (last convolutional layer), and
ReLU7 (second fully-connected layer), since the remaining
layers gave more or less interpolated results of the presented
layers.

Size Invariance
To investigate the size invariance property, we presented a set
of face and object images of various sizes to the model. For
each layer, we calculated the average population responses,
R̄ f ace and R̄ob ject , for face and object images, respectively,
for each image size. We quantified the degree of invariance
by size-invariance (SI) index, which is defined as the minimal
fraction of image sizes at which the average population re-
sponse to faces is sufficiently larger than to objects (R̄ f ace >
1.4R̄ob ject ). Thus, a lower SI-index indicates a stronger size
invariance.
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Figure 1: A) The average population response to face or ob-
ject images of a varied size (x-axis). B) The population re-
sponse similarity matrix. The face numbers are grouped ac-
cording to the head orientation.

Not surprisingly, size invariance in the network increased
along with its depth (Figure 1A). In particular, the top layer
(ReLU7) had the strongest size invariance (SI = 1/4), where
the average population response to faces was always larger
than the one to objects for all sizes. In comparison to the
macaque, the top layer quantitatively came closest, of all lay-
ers, to the face patches (ML/AL/AM), which all give SI ≈ 1/8
(Freiwald & Tsao, 2010).

View-Identity Tuning
To probe the view-identity tuning in each layer, we used the
same set of face images as in (Freiwald & Tsao, 2010), which
consisted of 25 individuals and 8 head orientations. For
each layer, we calculated the correlation between its pop-
ulation responses to each pair of face images. Then, we
constructed a population response similarity matrix (RSM) of
such correlations (Figure 1B), where the face numbers are
grouped according to the head orientation (forming 25× 25
sub-matrices).

The intermediate layers (ReLU3–5) had RSMs with darker
blocks located along the main diagonal, indicating selectiv-
ity to a specific head orientation, similarly to ML (Freiwald
& Tsao, 2010). The top layer (ReLU7) exhibited a mirror-
symmetric pattern in head orientation, as well as para-
diagonal lines indicating selectivity to facial identity with some

degree of view invariance, which shows a combined prop-
erty of AL and AM (Freiwald & Tsao, 2010). Thus, the
intermediate-to-top layers gradually shifted from view-specific
to (partially) view invariant and identity-selective, showing a
reasonable similarity with the putative functional hierarchy in
the macaque face patches (Freiwald & Tsao, 2010).

Shape-Appearance Tuning
To investigate coding of facial shapes and appearances in the
model, we followed the experimental procedure in (Chang &
Tsao, 2017). First of all, we constructed a 50-dimensional
space of frontal face images, where the first 25 dimensions
(shape dimensions) were the first 25 principal components
(PC) of landmark coordinates annotated on pre-defined facial
features, while the last 25 dimensions (appearance dimen-
sions) were the first 25 PCs of the normalized face images
that were obtained by morphing the original images to match
the landmarks to their mean coordinates. Then, for the subse-
quent analyses, we randomly generated a set of face stimuli
from the face space.

Shape-Appearance Preference (SAP). To examine whether
and how much each unit preferred shape or appearance, we
first measured the responses of each unit to those images
and estimated a 50-dimensional vector of spike-triggered av-
erage (STA). Then, we computed the shape preference index,
(S−A)/(S+A), where S is the vector length of the 25 shape
dimensions and A is the vector length of the 25 appearance
dimensions of the STA. We found that the intermediate-to-
higher layers (ReLU5–7) had most of the units with negative
shape-preference indices (Figure 2A), indicating appearance
preference similar to AM (Chang & Tsao, 2017). However,
the lower layers (ReLU1–3) mixed both shape-preferring and
appearance-preferring units, thus dissimilar to either AM or
ML. In addition to these, we found that, throughout all lay-
ers, the units tended to have a ramp-like tuning along the STA
and a flat tuning along axes orthogonal to the STA (data not
shown), similarly to both ML and AM (Chang & Tsao, 2017).

Decoding Performances (DP). To reveal how much infor-
mation each layer contained on the face space, we first de-
coded the 50-dimensional feature values from the population
responses by linear regression. We then quantified the perfor-
mance of the decoding by the average nearest-neighbor clas-
sification accuracy in the feature space for a chosen number
of face classes (Chang & Tsao, 2017). Figures 2B shows
the decoding accuracies (50-d) as a function of the number
of face classes (2–40), along with the cases of decoding only
the appearance or shape dimensions. The overall results for
the top layer (ReLU7) were comparable to AM (Chang & Tsao,
2017). On the other hand, no layer showed lower accuracies
than the top layer or the shape decoding more accurate than
the appearance decoding, unlike ML (Chang & Tsao, 2017).

View Tolerance (VT). We constructed another face space
for profile face images, similarly to frontal faces, and estab-
lished a correspondence between the two face spaces via lin-
ear regression (Chang & Tsao, 2017). We then estimated the
STA of each unit in the profile face space and calculated the
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Figure 2: A) The distribution of shape-preference indices.
B) Decoding accuracy as a function of the number of face
classes. C) Dimension-wise correlations between the frontal
and the profile STAs across units.

correlation between the frontal and the profile STAs for each
feature dimension across all units in each layer (Figure 2C).
The correlations of the first half of the appearance dimensions
increased in the intermediate-to-top layers, indicating a grad-
ual progression of view tolerance along with its depth; in par-
ticular, the correlations in the top layer (ReLU7) came closest,
of all layers, to AM (Chang & Tsao, 2017). Note that this result
is compatible with Figure 1B.

Facial Geometry Tuning

We simulated the experiment on ML in (Freiwald et al., 2009)
to investigate coding of cartoon face space. As in the exper-
iment, we used cartoon face images parametrized by 19 dif-
ferent facial features, each ranging from −5 to +5 with ±5
corresponding to the extreme features and 0 corresponding
to the mean features. From the responses to randomly gen-
erated cartoon face images, we estimated a tuning curve of
each unit for each feature, together with its statistical signifi-
cance using the same criterion as in the experimental study.

As shown in Figure 3A, the distribution of tuned features
per unit (FPU), i.e., how many features each unit is signifi-
cantly tuned to, was reasonably similar to ML (∼ 3 features
on average) in ReLU1 (∼ 4 features on average). Also, the
distribution of tuned units per feature (UPF), i.e., how many
units are tuned to each feature, was similar to ML in the low-
est layer (Figure 3B); most of the units were tuned to geo-
metrically larger features giving skewed shape to the distribu-
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Figure 3: A) The distribution of the number of features that
each unit is tuned to. B) The distribution of the number of
units tuned to each feature.

tion. However, both distributions gradually diverged from ML
in higher layers, accommodating more units tuned to larger
numbers of features and more remaining features reportedly
absent in ML (Freiwald et al., 2009). In addition to these, we
observed that, in all layers, the units had tuning curves mostly
ramp-shaped with peaks and troughs at the extreme values
(data not shown), similarly to ML (Freiwald et al., 2009).

Contrast Polarity Tuning

We also simulated the experiment on ML in (Ohayon et al.,
2012) using mosaic-like cartoon face stimuli. Each stimulus
consisted of 11 distinct parts, where each face part was as-
signed a unique intensity value varying from dark to light. For
a set of randomly generated mosaic-like cartoon faces, we
analyzed the responses of each unit to identify the preference
in contrast polarity (CP) between each pair of parts (55 part-
pairs in total). In all layers, most of the units had preferences
for contrast polarities mainly related to the forehead (Figure 4),
the largest geometrical area in the mosaic face. This result is
inconsistent with ML (Ohayon et al., 2012), where most neu-
rons were tuned to contrast polarities related to the eyes or the
nose and the polarities were consistent across the neurons.

Consistency Across Model Variations

To further test whether the results shown so far carry over to
other CNN models, we repeated all the experiments on sev-
eral other networks: VGG-Face network (VGG-16 architec-
ture trained on VGG-Face images), AlexNet (trained on Im-
ageNet), Oxford102 network (AlexNet architecture trained on
Oxford102 flower images), and four other CNNs with depth
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Figure 4: The distribution of contrast polarity preferences on
each facial part-pair. Each plot shows positive polarities (A >
B) in the upper half and negative polarities (A<B) in the lower
half. The parts in each pair are indicated in the bottom matrix.

variations (trained on VGG-Face images). We found that the
results were, indeed, largely consistent across all these net-
works (data not shown).

Conclusion
In this study, we investigated whether a CNN can be a model
of the macaque face-processing network. We attempted to
make a correspondence between the model layers and the
face patch areas by comparing their key tuning properties. We
found that higher model layers tended to explain reasonably
well properties of the anterior patch (AM) (Table 1A), while
none of the layers simultaneously captured those of the middle
patch (ML) (Table 1B). Taken together, despite the prevailing
view linking CNNs and IT, our results indicate that the interme-
diate computational process in the macaque face processing
system might be rather different and therefore requires a more
refined model to clarify the underlying computational principle.
Feedback processing, which CNNs crucially lack, may be one
direction to investigate (Hosoya & Hyvrinen, 2017).
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