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Behavioral studies have shown that humans can adapt to conflicting sensorimotor mappings that cause interference after intensive
training. While previous research works indicate the involvement of distinct brain regions for different types of motor learning (e.g.,
kinematics vs dynamics), the neural mechanisms underlying joint adaptation to conflicting mappings within the same type of perturba-
tion (e.g., different angles of visuomotor rotation) remain unclear. To reveal the neural substrates that represent multiple sensorimotor
mappings, we examined whether different mappings could be classified with multivoxel activity patterns of functional magnetic reso-
nance imaging data. Participants simultaneously adapted to opposite rotational perturbations (!90° and " 90°) during visuomotor
tracking. To dissociate differences in movement kinematics with rotation types, we used two distinct patterns of target motion and tested
generalization of the classifier between different combinations of rotation and motion types. Results showed that the rotation types were
classified significantly above chance using activities in the primary sensorimotor cortex and the supplementary motor area, despite no
significant difference in averaged signal amplitudes within the region. In contrast, low-level sensorimotor components, including track-
ing error and movement speed, were best classified using activities of the early visual cortex. Our results reveal that the sensorimotor
cortex represents different visuomotor mappings, which permits joint learning and switching between conflicting sensorimotor skills.

Introduction
Humans can concurrently learn and switch among various motor
skills. There are two kinds of multiple-skill acquisition: one is
learning the different types of perturbations, such as kinematics
versus dynamics transformation, which involves independent
processes in the sense that joint learning of two separate skills
does not cause interference (Krakauer et al., 1999). The other
type is adaptation to different parameters within the same type of
perturbation, such as varying angles of visuomotor rotation,
which sometimes induces conflicting interference (Wigmore et
al., 2002). For example, people do not confuse riding a bike with
driving a car, but they have difficulty in switching between driv-
ing on the left and on the right side of the road in different
countries. Related to the latter type of adaptation, behavioral
experiments have shown successful learning for conflicting force
fields (Wada et al., 2003; Osu et al., 2004; Nozaki et al., 2006;
Howard et al., 2008) or opposite visuomotor rotations (Cun-
ningham and Welch, 1994; Ghahramani and Wolpert, 1997; Ima-

mizu et al., 2007b; Choi et al., 2008) after intensive training.
Another study showed that exposure to various angles of visuo-
motor rotation induces structural learning (Braun et al., 2009).

Previous literature revealed the involvement of separate brain
regions in the learning of different types of perturbation (Imam-
izu et al., 2003; Krakauer et al., 2004; Girgenrath et al., 2008 for
human neuroimaging; Rabe et al., 2009 for a lesion study), which
is consistent with behavioral evidence of independent learning as
well as the computational theory (Wolpert and Kawato, 1998). In
contrast, the neural mechanisms underlying joint adaptation to
the multiple parameters within the same types of perturbation
remain unclear. To reveal the neural substrates that represent
multiple sensorimotor mappings, we used functional magnetic
resonance imaging (fMRI) to measure brain activities related to
conflicting visuomotor mappings. However, the conventional
univoxel fMRI analysis evaluates overall increases in activation of
specific regions and would not be sensitive to distributed repre-
sentations contained in patterns of voxel activity. To overcome
this issue, this study used multivoxel pattern analysis (Haynes
and Rees, 2005; Kamitani and Tong, 2005; Norman et al., 2006)
for examining whether different mappings could be classified
with distributed patterns of neural activities.

Using visuomotor tracking, participants simultaneously
adapted to two types of visuomotor rotation (i.e., dual adaptation
task) in which the cursor position of a joystick was rotated by
!90° or "90° around the starting position. After adaptation, we
classified the two rotation types during the tracking with the
multivariate activity pattern of fMRI. One possible concern is
that tracking under different rotation types could be accompa-
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nied with differences in movement kinematics, which is a major
confound for decoding. We thus used two patterns of target motions
by manipulating target velocities (Imamizu et al., 2000, 2003) and
tested the classifier generalization between different combinations of
rotation and motion types. This cross-validation ensures that the
decoding of rotation types is not confounded by differences in
low-level kinematics or reafferent sensory inputs associated with
the rotational perturbations. Successful classification of rotation
types would support the existence of neural substrates represent-
ing conflicting visuomotor mappings.

Materials and Methods
Subjects. Subjects were seven male volunteers with a mean age of 30.0
years (range, 22– 49 years). All subjects were right-handed, as assessed by
a modified version of the Edinburgh Handedness Inventory (Oldfield,
1971). Written informed consent was obtained from all subjects in ac-
cordance with the Declaration of Helsinki. The experimental protocol
received approval from the local ethics committee.

Task procedures. We used a continuous visuomotor tracking task
(Imamizu et al., 2000, 2003, 2004, 2007a): subjects moved a small cross-
hair cursor on the screen with a joystick and continuously tracked a
moving target. After a starting message shown for 2 s, target and cursor
were presented on the screen. The target was a small green circle on a dark
background, which moved around within a square subtending horizon-
tal and vertical visual angles of #14°. The cursor was a small yellow cross.
We introduced a rotational perturbation between cursor positions and a
joystick angle of 90° around the screen center, in either clockwise or
counterclockwise direction. During the task block of 21 s, subjects con-
tinuously tracked the moving target. A fixation dot was displayed for 4 s
during intertrial intervals (ITI) (Fig. 1A). After a practice session to be-
come familiarized with the scanner environment, the subject underwent
five sessions, with each consisting of 24 blocks. One session lasted #11

min. The block order was counterbalanced as
A-B-B-A-A-B-B-A… with A and B pseudoran-
domly assigned the two rotation types across
sessions. Unlike previous studies (Osu et al.,
2004), we did not provide visual or auditory
cues for different rotation types to equate sen-
sory inputs between conditions.

Stimuli were presented on a liquid crystal
display and projected onto a custom-made
viewing screen. Subjects lay supine in the scan-
ner and viewed the screen via a mirror, being
unable to see their hand throughout this task.
They used their right index and middle fingers
to control the joystick, with the right upper
arm immobilized using foam pads to minimize
body motions. A custom-made bite bar was
used for all participants to prevent head mo-
tions for all the scanning sessions. The amount
of subjects’ head motion, which was estimated
from alignment of functional images (see be-
low), ranged from 0.07–2.0 mm, with a median
of 0.36 mm within a session.

Functional localizer scans. On a separate day
from the main rotational experiment, an inde-
pendent localizer scan was performed for all
participants to define sensorimotor areas re-
lated to visuomotor tracking. The task was the
same as in the main experiment except that it
had a longer baseline period to reliably detect
increased fMRI responses related to visuomo-
tor tracking, and that subjects used a normal
joystick without rotation. One session lasted
#12 min and had 24 task blocks of 15 s, inter-
leaved with 15 s rest periods using a fixation
display.

Target trajectory. Stimuli were generated us-
ing Psychophysics Toolbox (http://www.psy-

chtoolbox.org; Brainard, 1997) for MATLAB (MathWorks). The x- and
y-components of the target trajectory were the sums of sinusoids whose
amplitudes and frequencies were pseudorandomly determined using the
same procedure as in our previous studies (Imamizu et al., 2000, 2003,
2004, 2007a). Since these parameters were determined pseudorandomly
for each run, the target paths differ across sessions and among subjects. In
addition, two different patterns of target trajectory were created to dis-
sociate low-level movement kinematics or reafferent sensory inputs with
two rotation types (see below, Multivoxel pattern analysis). We applied
three kinds of manipulations in target motion: (1) velocity: fast (average
speed of 378 pixels/s) or slow (265 pixels/s), (2) position: bias of either
!50 or "50 pixels introduced to on-screen position of target trajectory
for both x- and y-axes, and (3) phase between x- and y-components:
manipulated to be in-phase (results in positive correlation) or anti-phase
(negative correlation) by introducing different phases into the x- and y-
components of target sinusoids. The position and phase were explicitly
manipulated in addition to the velocity because some participants
showed differences in these measures between the rotation types in our
preliminary behavioral experiment. These three types of manipulations
were introduced in fixed combinations: fast target was always accompa-
nied with positional bias of !50 and "50 pixels for x- and y-axis, respec-
tively, and with in-phase motion, which generated two different types of
target trajectory. Figure 1 illustrates an example of the target trajectory of
a single block under each rotation and velocity type (Figure 1B) and
examples of the horizontal positions of the target together with those of a
cursor within a single block of the first (left) and last (right) practice
sessions (Figure 1C). Hereafter, these two target types are referred to as
“fast” and “slow” conditions (Fig. 1B). Note that target motion was still
pseudorandom but had these constraints. The two target patterns (fast,
slow) were manipulated independently of rotation types, and the num-
bers of the two target types were equalized between the two rotation
types.
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Figure 1. A, Time course of experiment. After display of start message for 2 s, target (circle) and cursor (cross) were presented
on the screen. Subjects continuously tracked a moving target with cursor using joystick for 21 s, with rotational perturbations of
!90° or "90°. Task blocks were interleaved with rest periods of 4 s. B, Examples of target trajectory under different rotation types
and velocity types in single block. C, Examples of horizontal positions of target with those of cursor within single block of first (left)
and last (right) practice sessions.
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Behavioral training. Before the fMRI scan-
ning, subjects underwent 9 –16 sessions of
training outside the MRI scanner for 3 or 4 d.
The training session is the same as those used
for fMRI scanning, including the same rota-
tion perturbations, except that ITI is shorter
(2 s). One session lasted #10 min. One sub-
ject (author K.O.) did not participate in the
training sessions because he had already un-
dergone sufficient practice during the pre-
liminary experiment.

Behavioral analysis. Cartesian coordinates of
the on-screen target and cursor positions were
recorded at 60 Hz. We then calculated the
following measures separately for x- and y-
components: (1) tracking error defined as a
Euclidean distance between target position and
cursor position, (2) distance of cursor trajec-
tory, (3) correlation coefficient between target
and cursor trajectories, and (4) correlation
coefficient between x- and y-components.
These behavioral measures were calculated for
each block, normalized as a z-score among all
trials within subjects and then compared both
between the two conditions of rotation (!90°
vs "90°) and between those of velocity (fast vs
slow). The power spectrum of cursor velocity
was calculated with fast Fourier transform to
measure the intermittency, which evaluates the
frequency of on-line corrections based on vi-
sual feedback in manual tracking (Miall, 1996;
Foulkes and Miall, 2000).

MRI acquisition. A 3 T Siemens Trio scanner
with a 12-channel head coil was used to per-
form T2*-weighted echo planar imaging (EPI).
A total of 222 and 246 scans were acquired for the main and localizer
sessions, respectively, with a gradient echo EPI sequence. The first four
scans were discarded to allow for T1 equilibration. Scanning parameters
were TR, 3000 ms; TE, 30 ms; FA, 80°; FOV, 192 $ 192 mm; matrix, 64 $
64; 50 axial slices; and slice thickness, 3 mm without gap. T1-weighted
anatomical imaging with an MP-RAGE sequence was performed with the
following parameters: TR, 2250 ms; TE, 3.06 ms; FA, 9°; FOV, 256 $ 256
mm; matrix, 256 $ 256; 192 axial slices; and slice thickness, 1 mm with-
out gap.

Processing of fMRI data. Image preprocessing was performed using
SPM8 software (Wellcome Department of Cognitive Neurology;
http://www.fil.ion.ucl.ac.uk/spm). All functional images were first re-
aligned to adjust for motion-related artifacts. The realigned images were
then spatially normalized with the Montreal Neurological Institute
(MNI) template, based on affine and nonlinear registration of coregis-
tered T1-weighted anatomical images (normalization procedure of
SPM), and resampled into 3 mm cube voxels with sinc interpolation. All
images were spatially smoothed using a Gaussian kernel of 8 $ 8 $ 8 mm
full-width at half-maximum. The smoothing was not performed except
for the localizer scans, as this could blur fine-grained information con-
tained in multivoxel activity (Mur et al., 2009).

Using the general linear model, the 24 blocks per session were modeled
as separate 24 box-car regressors that were convolved with a canonical
hemodynamic response function. Our previous study using the same
tracking task showed that switching of different visuomotor perturba-
tions takes #5 s after block onset (Imamizu et al., 2004). We thus re-
moved the initial 6 s, corresponding to two fMRI scannings, to remove
transient blood oxygenation level-dependent activity at task onsets asso-
ciated with task switching or increased tracking error, and thus box-car
length was 15 s covering the latter part of a 21 s block. The behavioral
analysis was also conducted by removing the first 6 s period correspond-
ing with the fMRI analysis. The six movement parameters resulting from
the realignment stage were modeled as confounding covariates. Low-
frequency noise was removed using a high-pass filter with a cutoff period

of 128 s, and serial correlations among scans were estimated with an
autoregressive model implemented in SPM8. This analysis yielded 24
independently estimated parameters (! values) per session for each in-
dividual voxel, which were subsequently used as inputs for decoding
analysis.

Definition of regions of interest. The regions of interest (ROIs) were
defined for each subject, both functionally with activations of localizer
scans (Fig. 2) and anatomically with the automated anatomical labeling
(AAL) toolbox (Tzourio-Mazoyer et al., 2002) or Brodmann areas in-
cluded in the MRICro software (http://www.mricro.com). First, the lo-
calizer scan was used to identify the activated areas that showed
significantly higher response during a task epoch compared with the
baseline period with an uncorrected threshold of p % 0.01 at voxel level.
The primary motor and lateral premotor areas (Mot) and the somato-
sensory area (Som) were then anatomically masked with the precentral
and postcentral cortices of AAL, respectively. The supplementary motor
area (SMA) was also defined using AAL mask. The early visual area was
anatomically masked within Brodmann areas 17 and 18. In the posterior
parietal cortex, we selected the medial intraparietal cortex (mIPS), which
is related to visually guided hand movements (Ogawa and Inui, 2012).
The parietal ROI was masked both with mIPS having a 15 mm radius
sphere around the peak average of previously reported coordinates of
["29, "51, 58] (Grefkes et al., 2004; Prado et al., 2005) and anatomically
with the superior parietal lobule (SPL). The anterior and posterior parts
of the cerebellum were anatomically defined based on the primary fis-
sure. As a control ROI, we chose voxels outside of the brain centered at
[57, 60, 57] with a radius of 15 mm (nonbrain). Several areas of one
subject did not show significant activations in the localizer scan, and thus
ROIs were based on activations of group-level results of other subjects
(n & 6) only for this participant. Table 1 describes mean (SD) MNI
coordinates and the number of voxels of ROIs.

Mass univariate analysis. For the conventional univariate analysis of
individual voxels, we directly compared two conditions for both rota-
tions (!90° vs "90°) and velocity (fast vs slow). Contrast images of each
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Figure 2. The activated areas of localizer scans, averaged over subjects ( p % 0.001 uncorrected for multiple comparisons with
an extent of 50 voxels) in the cerebral cortex (A) and in the cerebellum (B). Mot, Lateral premotor and primary motor area; Som,
primary somatosensory area; SMA, supplementary motor area; SPL, superior parietal lobule; Vis, early visual area; CBLa, anterior
part of cerebellum; CBLp, posterior part of cerebellum; CS, central sulcus; PoCS, postcentral sulcus; PF, primary fissure.
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subject, generated using a fixed-effects model, were taken into the group
analysis using a random-effects model of a two-way ANOVA with rota-
tion and velocity types as within-subject factors. Activation was reported
with a lenient threshold of p % 0.01 uncorrected for multiple compari-
sons at voxel level with an extent threshold of 10 voxels. The ROI analysis
was additionally performed by comparing averaged parameter estimates
(! values) between the two conditions of rotation types as well as velocity
types.

Multivoxel pattern analysis. The multivariate classification analysis of
fMRI was performed with a binary classifier based on linear support
vector machine (SVM) implemented in LIBSVM (http://www.csie.ntu.
edu.tw/#cjlin/libsvm/), with default parameters (a fixed regularization
parameter C & 1). Parameter estimates (! values) of each trial of voxels
within ROIs were used as inputs to the classifier.

We conducted two types of classification analysis. First, we classified
the rotation types with cross-validation between different velocity types.
The decoder was first trained to classify !90 and "90 rotations with fast
target trials, and the same decoder was tested to classify !90 and "90
rotations with slow target trials (Fig. 3A) to test whether the decoder for
rotation types could generalize between different kinematics (i.e., target
motion) patterns. We also conducted classification in the reverse direc-
tion and estimated the averaged decoding accuracy. The classification of
velocity types between different rotation types was conducted in the same
manner. The decoder was first trained to classify fast and slow target with
!90° trials, and the same decoder was tested to classify fast and slow with
"90° trials. Second, we used different combinations of rotation types and
velocity types for training and testing datasets: the classifier was first
trained to discriminate the trials with rotation of !90° and fast target
from those of "90° rotation and slow target. The same decoder was then
tested to see if it could classify the trials of "90° rotation and fast target
separately from those of !90° rotation and slow target. We also con-
ducted classification in the reverse direction. In this analysis, manipula-
tion of rotation types and velocity types was orthogonal to each other,
and thus classification accuracy of rotation was the opposite to that of
velocity (i.e., the accuracy of rotation equals to 100% minus the accuracy
of velocity; Fig. 3B). This was done to explicitly dissociate low-level
movement kinematics or reafferent sensory inputs associated with rota-
tion types, since all types of behavioral differences including tracking
error and movement distance were larger in velocity types compared
with rotation types (see Results, Behavioral performance). Such a “cross-
classification,” a cross-validation between trials with different sets of
tasks or stimuli, has been previously used to investigate the similarity or
invariance of neural representations by testing the generalization of a
classifier between different conditions or modalities (Etzel et al., 2008;
Knops et al., 2009; Stokes et al., 2009; Meyer et al., 2010; Oosterhof et al.,
2010; Gallivan et al., 2011a; Kahnt et al., 2011; Ogawa and Inui, 2011,
2012; Corradi-Dell’Acqua et al., 2011). A cross-validation was conducted
10 times (5 sessions $ 2 combinations) and then the average accuracy
was estimated.

Tests of statistical significance for classification accuracy were con-
ducted in both parametric and nonparametric methods. First, a two-
sided t test was used to determine whether the observed decoding
accuracy was significantly higher than chance (50%) with intersubject
difference treated as a random factor (df & 6). To control for the problem

of multiple comparisons, we applied the Holm–Bonferroni procedure
(Holm, 1979) based on the number of ROIs. Second, we conducted a
nonparametric test, since the observed classification accuracies may not
be normally distributed (Nichols and Holmes, 2002). We conducted a
randomization test that was identical to the decoding analysis described
previously, except that we randomly shuffled correspondence between
the fMRI activations and the condition labels before training the classifier
within each subject and obtained average decoding accuracy across par-
ticipants. This procedure was separately repeated 1000 times for each
ROI by reshuffling the labels each time, which created an empirical dis-
tribution of decoding accuracy under a null hypothesis of chance. A
significant above chance accuracy of p % 0.05 was assumed if the decod-
ing accuracy with correct labeling exceeded the 95th percentile of the null
distribution.

Complementary to the a priori ROI analysis, we additionally con-
ducted a volume-based “searchlight” analysis (Kriegeskorte et al., 2006).
Cross-classification with different pairs of rotation and velocity types
(Fig. 3B) was performed using multivoxel activation patterns within a 9
mm radius sphere (searchlight) containing at least 100 voxels (maximum
of 123 voxels). The searchlight moved over the gray matter of the whole
brain, and the average classification accuracy for each searchlight with
leave-one-session-out cross-validation was assigned to the sphere’s cen-
ter voxel. The resulting map of the decoding accuracy was averaged over
subjects. Results were first thresholded at voxel level using a randomiza-
tion test as in the ROI analysis. We conducted the same searchlight anal-
ysis by randomly shuffling the correspondence between the voxel
activities and the condition labels, and estimated the average accuracy
across participants. This procedure, which was repeated 100 times by
reshuffling the labels each time, created an empirical distribution of de-
coding accuracy under a null hypothesis of chance, which was then col-
lapsed over all searchlights (the number of searchlights was 35,512, and
so the number of data in the null distribution was 3,551,200). For each
searchlight (i.e., each center voxel), a significant above-chance accuracy
of p % 0.0001 was assumed if the observed accuracy with correct labeling
exceeded the 99.99th percentile of the null distribution. To correct for
multiple comparisons, a cluster-level threshold was further applied with
a randomization test (Nichols and Holmes, 2002; Oosterhof et al., 2010)
using the same permutation distribution generated above. We obtained a
maximum cluster size (i.e., the number of voxels) for each randomiza-
tion sample at the same voxel-level threshold, which yields an empirical
null distribution of a maximum cluster extent. Clusters were reported as
significant at a cluster level of p % 0.01 if the observed number of voxels
within the cluster with correct labeling exceeded the 99th percentile of
this null distribution.

Additional experiment with normal joystick. To further confirm that the
classification result of rotation types was not confounded with differ-
ences in movement kinematics associated with rotational perturbations,
we conducted another experiment with five of the seven subjects who
participated in the main experiment. This time subjects used a normal
(not rotated) joystick to track a target whose motions followed their own
joystick trajectory of the previous rotational experiments. The task de-
sign and number of trials as well as sessions per subject were the same as
those in the rotational experiment. We hypothesized that if differences in
movement patterns between rotational conditions had contributed to
successful classification of rotations, significant classification accuracy
could also be obtained in this control experiment.

Eye-movement recording. Our subjects freely made eye movements
during the tracking, which could be a potential confound. To exclude the
possibility that differences in eye movements contributed to the success-
ful classification of rotation types, we measured the eye positions during
the rotational tracking outside the fMRI scanner after the main fMRI
experiment. The horizontal and vertical eye positions of four among
seven subjects who participated in the main experiment were mea-
sured at 60 Hz with the Tobii X120 infrared recording system (Tobii
Technology;http://www.tobii.com). The task sequences were the same as
those of the fMRI experiment except for a shorter trial duration (12 s) to
minimize eye blinks; five sessions were conducted per participant. We
then ran the classification analysis based on the time series of the eye
positions as well as the power spectrum of the eye movement velocity

Table 1. Mean ROI coordinates and sizes (number of voxels) with SD in parenthesis
across subjects

ROI name

MNI coordinates

ROI sizex y z

Mot "22 (4.9) "20 (6.4) 74 (5.2) 655 (139)
Som "34 (7.0) "38 (7.7) 68 (4.4) 712 (92)
SMA "4 (6.8) "16 (8.3) 68 (6.7) 605 (203)
SPL "32 (6.5) "56 (9.8) 62 (3.7) 900 (158)
Vis "1 (17.6) "86 (11.3) "5 (7.6) 437 (55)
CBLa 12 (7.9) "60 (9.4) "15 (4.9) 1234 (239)
CBLp 6 (20.5) "64 (7.6) "26 (12.5) 2131 (333)
Nonbrain 57 (0) 60 (0) 57 (0) 500 (0)
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with the same procedure as multivoxel pattern
analysis (MVPA) using different combinations
of rotation types and velocity types (Fig. 3B).

Results
Behavioral performance
Over the training sessions, subjects grad-
ually learned two rotational types, as indi-
cated by the decrease in tracking errors as
the number of sessions proceeded (Fig.
4A). We compared the average tracking
errors of the first and the last three ses-
sions, respectively, for each subject, and
found a significant decrease (paired t test,
t(5) & 6.49, p & 0.001; Fig. 4B). We next
analyzed the maximal cross-correlation
between the trajectories of the target and
the cursor averaged during the first and
last three sessions. This revealed a signifi-
cant increase in correlation coefficients,
indicating that the cursor followed the
target trajectory more accurately in the
later sessions (paired t test, t(5) & 4.55, p %
0.01; Fig. 4C).

The time series of tracking errors
within a 21 s block was compared between
rotation and velocity types (Fig. 5A). Be-
cause a transient increase in errors was
found after block onset, behavioral and fMRI data were used only
after 6 s of trial onset (Fig. 5A, gray areas) for later analysis. We
also compared the power spectrum of the cursor velocity between
the two conditions (Fig. 5B), which showed the differences in the
cursor movement frequency or the intermittency of the feedback
control. The figures show that differences in both tracking er-
rors and power spectrum were larger between velocity types
compared with rotations. For quantitative comparison, we calcu-
lated various behavioral measures for cursor trajectory and com-
pared the normalized absolute differences between the two
conditions of rotation and velocity types (see Materials and
Methods, Behavioral analysis for details; Fig. 5C). We then com-
pared the differences between the rotation and velocity types and
found significantly larger differences between the two velocity
types compared with the rotation types for measures including
tracking error and movement distance, while no measure
showed significantly greater differences in the reverse direc-
tion. These behavioral results indicate that the kinematic dif-
ferences are larger in the two velocity types compared with
those of the rotation types, which ensures that a higher decod-
ing accuracy of rotation types than velocity types later found
in MVPA cannot be due to kinematic differences.

Mass univariate analysis
We directly compared two conditions of both rotation (!90° vs
"90°) and velocity (fast vs slow), using the traditional univariate
analysis of single voxels. A significant main effect of velocity types
was observed in the early visual areas bilaterally at a lenient
threshold of p % 0.01 uncorrected for multiple comparisons (Fig.
6A). No significant main effect of rotation types or interactions
was found at the same threshold. In addition, the ROI analysis
comparing averaged parameter estimates (! values) between the
two conditions of rotation and velocity within each ROI revealed
no significant difference in either rotation or velocity comparison
(Fig. 6B).

MVPA
First, we classified the rotation types with the cross-validation
between different velocity types to test whether the decoder
trained to classify two rotation types in one motion pattern could
be generalized to the other (Fig. 3A). While the statistical results
were described based on the corrected threshold unless otherwise
mentioned, we included both the corrected and uncorrected sig-
nificance in Figure 7 for completeness. The results showed signif-
icant above-chance classification accuracy of rotation types in
Mot (62.2%, t(6) & 10.97, p % 0.001), Som (67.3%, t(6) & 4.14,
p % 0.01), SMA (62.3%, t(6) & 6.10, p % 0.001), early visual area,
Vis (60.6%, t(6) & 4.80, p % 0.005), anterior part of cerebellum,
CBLa (61.5%, t(6) & 3.34, p % 0.05), and posterior part of cere-
bellum, CBLp (61.3%, t(6) & 4.46, p % 0.005). The successful
classification of velocity types between different rotation types
was found in Vis (78.9%, t(6) & 11.33, p % 0.001) (Fig. 7A).

Since we found small differences in the behavioral measures
between two rotation types and the velocity types (Fig. 5C), the
successful classification of rotation types might reflect differences
in the low-level kinematics or the resultant visual feedback of
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cursor motions. The higher than chance decoding accuracy for
rotations together with the velocity types in Vis suggests that
slight differences in kinematics could also contribute to the clas-
sification of rotation and velocity types. To exclude that possibil-
ity, we then performed “cross-classification” with different
combinations of rotation and velocity types to explicitly dissoci-
ate the movement kinematics with rotation types (Fig. 3B). If the
kinematics contributed to successful classification of rotation
types, the accuracies for velocity types should exceed those of
rotation types in this analysis, because the differences in all the
behavioral measures were larger among the velocity types com-
pared with rotation types (Fig. 5). Significant decoding accuracy
of rotation was found for Mot (59.2%, t(6) & 9.21, p % 0.001),
Som (62.1%, t(6) & 3.12, p % 0.05), SMA (57.6%, t(6) & 2.94, p %
0.05), and CBLa (57.5%, t(6) & 2.78, p % 0.05), while that of
velocity was found for Vis (71.9%, t(6) & 6.94, p % 0.001) (Fig.
7B). Among these ROIs, Mot and Vis showed significant above-
chance accuracy after correction for multiple comparisons, and
the results of each individual subject (denoted by small dots in
Fig. 7B) show high consistency. We additionally conducted a
nonparametric randomization test and found that it generally
produced a more lenient threshold for p values compared with
the parametric t test (similar results were reported by Gallivan et
al., 2011b). This confirmed that all of the significant above-

chance accuracies found by the t test were
also significant by the randomization test.

The same classification was also con-
ducted by equating the number of voxels
across ROIs to eliminate differences in
feature size. The voxels in each ROI were
selected in the order of highest t value of
the localizer scan, which was based on the
univariate analysis, until the number of
voxels reached 400 for each subject
(Pereira et al., 2009). This replicated the
previous results: significant decoding ac-
curacy of rotation for Mot (56.2%, t(6) &
4.79, p % 0.005), Som (60.3%, t(6) & 2.74,
p % 0.05), and SMA (57.3%, t(6) & 2.45,
p % 0.05), and that of velocity for Vis
(70.0%, t(6) & 5.59, p % 0.005) with un-
corrected p values.

Next, the same classification was per-
formed with averaged ! values of all vox-
els within an ROI as inputs. No
significantly higher than chance accuracy
was found in any ROI, which indicates
that decoding was based on differences in
distributed spatial patterns of multiple
voxels, rather than overall amplitude dif-
ferences within the ROI (Fig. 7C). This is
also supported by the voxel bias map,
which displays the averaged weights (pos-
itive or negative) of the classifier across 10
folds (i.e., iterations) in the cross-
validation for individual voxels within
ROIs; this map showed intermingled pat-
terns of voxels with two rotational types
(!90 vs "90 biased voxels) within ROIs
in all subjects (Fig. 8A for a single typical
subject). In addition, the bias patterns be-
tween different pairs of participants
showed low correlations around zero (Fig.

8B), which indicates idiosyncratic patterns of weights specific to
each subject.

Finally, the searchlight map revealed the voxels for higher accu-
racy of rotation types in the sensorimotor cortex as well as in the
SMA (Fig. 9, red). These areas closely correspond to the activated
regions in the localizer scans that were conducted separately (Fig.
2A). We also found the voxels for higher accuracy of velocity types
mostly located in the early visual areas (Fig. 9, blue). These are largely
consistent with the results of the previous ROI analysis.

Classification with behavioral measures
To further validate that successful classification of rotation types
is not due to differences in low-level movement kinematics, we
conducted multivariate classification analysis using the various
behavioral measures. In this analysis, all of the observed behav-
ioral measures (see Materials and Methods, Behavioral perfor-
mance) were used separately or jointly as features (Fig. 10A), and
classification of rotation types versus velocity types was con-
ducted in the same way as the fMRI–MVPA (Fig. 3B). The time
series of tracking error as well as the power spectrum of cursor
trajectory was also used as a feature vector for classification (Fig.
10B). These analyses revealed significantly greater classification
accuracy only between velocity types compared with rotations.
We further conducted the same classification analysis using the
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time series as well as the power spectrum
of the eye movements, which again
showed a higher accuracy for the velocity
types compared with the rotation types
(Fig. 10C). These results indicate that
higher classification accuracy for rotation
over velocity in MVPA (Fig. 7B) cannot be
attributed to the differences in the move-
ment or the sensory reafferents associated
with rotational perturbations as well as in
eye movements.

Additional experiment with
normal joystick
We additionally conducted the same
MVPA using different combinations of
rotation types and velocity types (Fig. 3B)
when subjects used a normal (not rotated)
joystick to track a target in a control ex-
periment. The averaged (SD) maximum
cross-correlations between the target and
cursor trajectory of the x- and y-directions
were 0.78 (0.05) and 0.81 (0.04), respec-
tively. This indicates that all of the subjects
accurately followed the target trajectory.
A significant decrease in classification ac-
curacies for rotation types compared with
those of the main rotational experiment
was observed in Mot (paired t test; t(4) &
5.38, p % 0.01), Som (t(4) & 4.11, p %
0.05), and CBLa (t(4) & 3.30, p % 0.05),
and a marginal significance was found in
SMA (t(4) & 2.41, p & 0.07), with nonsig-
nificant differences with the chance level
in the control experiment (all p ' 0.5)
(Fig. 11). In a post experimental debrief-
ing, none of the subjects could discrimi-
nate whether a target motion was from
their cursor trajectory of the !90° or
"90° condition in the previous rotational
experiment, while they could notice fast
versus slow target trajectories. This indi-
cates that movement kinematics were
more similar between the two rotation
types than between the velocity types,
which is consistent with the results of be-
havioral analysis (Figs. 5, 10).

Discussion
This study aimed to reveal neural sub-
strates that represent conflicting visuo-
motor mappings. After intensive training,
the participants jointly adapted to the two
rotational perturbations, which is indi-
cated by the behavioral measures (Fig. 4).
The fMRI decoding showed that rota-
tion types were successfully classified
with multivariate activity patterns in the
sensorimotor cortex when trials with different types of rota-
tion and velocity were combined and cross-validated in the
ROI analysis (Fig. 7B). Searchlight analysis also revealed a signif-
icant above-chance accuracy of rotation types in the sensori-
motor cortex and the SMA (Fig. 9). Our findings reveal that

the sensorimotor cortex represents different mappings, which
subserves simultaneous adaptation of multiple visuomotor
correspondences.

This successful classification cannot be due to differences in
low-level movement kinematics or sensory reafferents associated
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with the rotational perturbations for the following two reasons.
First, the differences in the various behavioral measures, includ-
ing tracking error, movement distances, and correlation of target
and cursor motions, as well as power spectrum, are larger be-
tween the velocity type compared with the rotation type (Fig. 5).
The classification using these behavioral measures as well as eye
movements, conducted in the same way as the fMRI–MVPA,
further showed significantly higher accuracies of velocity types
over rotation types (Fig. 10). Second, the additional experiment,
in which subjects tracked their joystick trajectory with a normal
joystick, showed a significant decrease in accuracy for rotation
types in the same ROIs with a chance-level performance (Fig. 11).
These results indicate that successful decoding of rotation types is
not confounded with movement kinematics. In contrast, low-level
sensorimotor components, which were associated with different ve-
locity types including tracking error and movement speed, were best
classified using activities of the early visual cortex (Figs. 7, 9). We also
found a significantly higher than chance decoding accuracy of veloc-
ity types as well as rotation types in the sensorimotor cortex and the
cerebellum when classification of velocity types was cross-validated
between different rotation types (Fig. 7A). This indicates that low-
level sensorimotor components were also represented in these areas,
together with the rotational types.

Previous studies with MVPA or fMRI adaptation (Grill-
Spector and Malach, 2001) revealed the directional selectivity of

hand movements in the primary motor cortex (Eisenberg et al.,
2010, 2011; Fabbri et al., 2010; Ogawa and Inui, 2012). Eisenberg
et al. (2011) introduced a single rotational perturbation (45°)
between hand and cursor movements to dissociate movement
directions in the visual and motor coordinates. In contrast, our
current study introduced the two conflicting rotational pertur-
bations between hand and cursor movements (!90 or "90°),
requiring participants to move their hands in an opposite direc-
tion depending on the rotation types. We then decoded the rota-
tional directions of the visuomotor perturbation that are
independent of the movement directions. Our study indicates,
for the first time, that multiple visuomotor mappings can be
decoded with distributed neural activity patterns of fMRI. Previ-
ous human neuroimaging studies revealed that separate brain
regions are involved in the learning of different types of pertur-
bation (Imamizu et al., 2003; Krakauer et al., 2004; Girgenrath et
al., 2008), which indicates that the size of these separate modules
are larger than fMRI individual-voxel resolution. In contrast, our
results showed that parametric differences in the same type of
perturbation cannot be discriminated with the mass univoxel
analysis (Fig. 6) but could be revealed using MVPA. The voxel
bias map showed intermingled patterns of voxels with two rota-
tional types idiosyncratic to each participant (Fig. 8). The previ-
ous studies showed that orientation columns in the early visual
cortex could be discriminated using MVPA that is beyond fMRI
voxel resolution (Haynes and Rees, 2005; Kamitani and Tong,
2005). Our results suggest that parametric differences within the
same perturbation are represented more closely and intermixed
at a resolution below that of fMRI voxels, compared with differ-
ent perturbations in separate areas that are larger than voxel size.
This discrepancy may correspond to the existence of behavioral
interference: joint learning of the different types of perturbations,
such as kinematics versus dynamics, does not cause interference
(Krakauer et al., 1999), while adaptation to different parameters
within the same type of perturbation, like that in the current
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study, induces conflicting interference
(Wigmore et al., 2002). This interference
could be caused by the conflicting use of
the same neural representations, which
are more closely located for multiple para-
metric mapping within the same type
rather than different types of perturba-
tions. Noted that the possible information
source of MVPA remains unclear with
some recent controversies (Freeman et al.,
2011; Beckett et al., 2012). The decoding
accuracy of MVPA is considered to be de-
pendent on the spatial patterns of distinct
neuronal populations and/or accompany-
ing vasculature units together with the
spatial resolution of fMRI (Bartels et al.,
2008; Gardner, 2010). Our results are also in line with recent
papers showing the effectiveness of MVPA in motor systems by
successfully decoding multiple actions (Dinstein et al., 2008; Gal-
livan et al., 2011a,b), representations of individual fingers (Wies-
tler et al., 2011; Diedrichsen et al., 2013), or movement directions
(Eisenberg et al., 2010, Ogawa and Inui, 2011, 2012), which are
not possible with the conventional univoxel analysis.

There are two possibilities for the neural mechanisms under-
lying the joint adaptation of the multiple parameters within the
same types of perturbation. One is that a single component that
represents the visuomotor correspondence continuously adapts
and readapts to different mappings depending on the current
environment, which regards switching as recalibration between
the visual and motor frames of reference. The other is that mul-
tiple mappings have distinct substrates, each of which represents
a specific visuomotor correspondence (Lee and Schweighofer,
2009). In our current study, it remains unclear whether the motor
system serially recalibrates a single general model or acquires
multiple models specific to each mapping, since both possibilities
induce specific distributed activation patterns of multiple voxels
for decoding. Further studies are needed to clarify whether the
distinct mappings are represented with a single or multiple models.

Previous research identified the sensorimotor cortex and cer-
ebellum as neural substrates of visuomotor learning (for review,
see Shmuelof and Krakauer, 2011). Neurophysiological studies
with nonhuman primates revealed changes in neuronal response
reflecting learning of rotational perturbations in the primary mo-
tor cortex (M1) (Wise et al., 1998; Paz et al., 2003; Paz and Vaadia,
2004) as well as in the SMA (Padoa-Schioppa et al., 2004; Paz et
al., 2005). A recent study using unit recording of nonhuman
primates suggested that two opposing rotations cannot be repre-
sented with a single neuron in M1 (Zach et al., 2012). Their
results support the existence of separate representations for dif-
ferent mapping, consistent with our current findings. Together
with these previous unit recordings of nonhuman primates, our
results indicate the existence of different neuronal populations in
the motor-related region.

Human neuroimaging studies also indicated increased activa-
tions (Karni et al., 1995) as well as structural changes in M1
related to motor learning (Draganski et al., 2004; Landi et al.,
2011). The recent studies using transcranial magnetic stimulation
or transcranial direct current stimulation indicate the acquisition
(Hunter et al., 2009) as well as storage (Hadipour-Niktarash et
al., 2007; Galea et al., 2011) of sensorimotor skills in the human M1.
The error-related increase in fMRI signal was also reported in the
human sensorimotor areas when subjects learned visuomotor per-
turbations, which could be used as training signals for acquisition of

internal models (Diedrichsen et al., 2005). These findings indicate
the role of the sensorimotor cortex in representing motor skills, and
they are generally consistent with the view that the primary motor
cortex is not a low-level static controller of muscles but rather con-
tains higher level representation of various movement parameters
(for review, see Scott, 2003). Our results support this view, indicating
that distinct visuomotor mappings are stored in the sensorimotor
cortex.

Human neuroimaging has shown activities related to the ac-
quisition of an internal model in the cerebellum (Imamizu et al.,
2000, 2003; Seidler and Noll, 2008). Imamizu et al. (2003)
showed that the learning of different types of sensorimotor per-
turbations (rotation and velocity) is subserved with the acquisi-
tion of multiple internal models in the cerebellum. Our study
revealed significant above-chance accuracy in the anterior cere-
bellum in the ROI analysis, which supports the existence of mul-
tiple internal models in the cerebellum. However, since the
accuracy in the cerebellum did not survive the threshold cor-
rected for the multiple comparisons in the both the ROI and the
searchlight analysis, we do not consider the cerebellum result to
be robust and discuss it no further.

Previous studies indicated a role of the posterior parietal cor-
tex (PPC) in visuomotor rotational learning (Inoue et al., 2000;
Graydon et al., 2005). In contrast, we did not observe significant
classification accuracy in the parietal cortex. While the previous
research reported changes of activity in the midst of learning, our
studies focused on activations when subjects sufficiently adapted
to rotations after intensive practice. Our results indicate that the
parietal cortex might be related to the early middle phases of a
learning process, rather than long-term storing of motor memo-
ries. A recent computational model-based study also predicted
that the site for learning is not in the PPC but in the connectivity
between the PPC and the motor areas (Tanaka et al., 2009).

This study investigated opposite rotational perturbations that
cause interference in joint learning. However, it is known that
positive transfer of learning occurs when the rotational degrees of
perturbations are close to each other (e.g., 30° or 45°) (Seidler and
Noll, 2008). Future studies are needed to examine whether dis-
tinct visuomotor mappings exist in such cases, or if multivoxel
pattern analysis can identify the mappings for close perturba-
tions, if any. Extension of our studies to joint learning between
various degrees of visuomotor rotations would give us important
clues to understanding the modular units used for sensorimotor
learning as well as the neural mechanisms used for positive and
negative (interference) transfer of learning.

In summary, our findings indicate that the sensorimotor cor-
tex represents conflicting visuomotor mappings, which subserves
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simultaneous adaptation of multiple sensorimotor mappings.
We hypothesize that similar neural mechanisms underlie joint
adaptation of opposing force fields. In future applications, de-
coding of a specific parameter in sensorimotor transformation
could be used as a neurofeedback signal to achieve efficient struc-
tural learning with reduced interference (Braun et al., 2009), us-
ing a method recently applied to perceptual learning (Shibata et
al., 2011).
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