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Abstract. In this study, human arm movement was re- 
constructed from electromyography (EMG) signals using 
a forward dynamics model acquired by an artificial 
neural network within a modular architecture. Dynamic 
joint torques at the elbow and shoulder were estimated 
for movements in the horizontal plane from the surface 
EMG signals of 10 flexor and extensor muscles. Using 
only the initial conditions of the arm and the EMG time 
course as input, the network reliably reconstructed a var- 
iety of movement trajectories. The results demonstrate 
that posture maintenance and multijoint movements, 
entailing complex via-point specification and co-contrac- 
tion of muscles, can be accurately computed from mul- 
tiple surface EMG signals. In addition to the model's 
empirical uses, such as calculation of arm stiffness during 
motion, it allows evaluation of hypothesized computa- 
tional mechanisms of the central nervous system such 
as virtual trajectory control and optimal trajectory 
plannihg. 

1 Introduction 

Over the years, the neurophysiology and biomechanics of 
muscle systems have been investigated quite extensively 
in order to characterize the relations between muscle 
activity (electromyography, EMG) and various dynam- 
ical and/or kinematic aspects of the ensuing movement 
behavior. There have been numerous efforts to correlate 
the duration, magnitude, and timing of phasic EMG 
bursts with the amplitude, duration, and maximum speed 
of limb motion (Gottlieb et al. 1989; Brown and Cooke 
1990; Karst and Hasan 1991). Although the complexity 
of musculoskeletal systems has made it difficult to recon- 
struct movement accurately from EMG signals, this goal 
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is central to efforts to model motor control mechanisms 
of the central nervous system (CNS) computationally. 

For example, quantitative dynamic models of the arm 
and muscle force generation have been used to predict 
muscle tension and/or motion from EMG signals 
(Akazawa et al. 1988; Wood et al. 1989; Winters 1990; 
Clancy and Hogan 1991). Typically, these models have 
been based on the spring-like properties of muscles: 
Muscle tension can be derived by controlling muscle 
length and activation level (Rack and Westbury 1969). It 
was hoped that piecemeal examination of the basic dy- 
namical parameters would result in progressively better 
quantitative models of the musculoskeletal system (i.e., 
muscle model, neural model, skeletal system model with 
variable muscle moment arms, Lagrangian dynamics 
model of the arm). To this end, our group earlier pro- 
posed a 6-muscle human arm model (Katayama and 
Kawato 1993) and a 17-muscle monkey arm model 
(Dornay et al. 1992). A problem with this approach, 
however, is that assumptions have to be made at each 
step about the largely unknown nonlinear properties of 
the musculoskeletal and nervous systems. 

The aim of the current study was to construct a com- 
plete forward dynamics model (FDM) of the human arm 
that affords accurate estimation of movement trajectories 
from the input of physiological signals such as muscle 
EMG. To achieve this, we used an artificial neural net- 
work that learned nonlinear functions relating physio- 
logical recordings of EMG signals to simultaneous 
measurement of two-joint planar movement trajectories. 
Previously, we have used surface EMG signals to esti- 
mate: (1) joint torques under isometric conditions in the 
horizontal plane (Koike et al. 1993); (2) three-dimen- 
sional posture (three degrees-of-freedom at the shoulder 
and one degree-of-freedom at the elbow) (Koike and 
Kawato 1994a); and (3)joint angular acceleration with 
subsequent reconstruction of movement trajectories in 
the horizontal plane (Koike and Kawato 1994b). 

The model developed here incorporated the following 
as domain-specific information: (1) the relationship be- 
tween the EMG input signal and quasi-tension, (2) the 
dynamics of the arm, and (3) nonlinear muscle properties. 
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To implement (1), a network was prepared to act as 
a temporal finite impulse response (FIR) filter. For  (2), 
the physical parameters of the subject arm were cal- 
culated from the measured three-dimensional (3D) shape 
of the arm, and the arm dynamics were described by 
Lagrange equations. To efficiently implement (3), various 
nonlinear properties of the musculoskeletal system were 
obtained through training of the modular network. 

In Sect. 2 of this paper, we describe how these three 
domains of knowledge were incorporated into our 
model. Section 3 outlines the procedures used to collect 
and process the experimental data. Section 4 shows simu- 
lation results for joint torque estimation and trajectory 
formation using the obtained neural network. In Sect. 5, 
we discuss the reliability of the model and the directions 
of further development. 

2 The model which estimates trajectories 
from surface EMG signals 

Figure 1 compares a view of information flow in a human 
(A) to the computational procedure adopted in this paper 
(B). Figure 1A shows a process of transformation from 
motor commands to a trajectory. The CNS first sends 
a command to the muscles, causing them to exert tension. 
Nonlinear relationships exist between muscle-exerted 
tension and motor  commands. Muscle tension is related 
to motor  command (firing rate) through a sigmoid func- 
tion (Rack and Westbury 1969; Mannard and Stein 
1973). This nonlinearity is caused not only by the firing- 
rate-tension relationship but also by recruitment of c~- 
motor  neurons. Moreover, there are two nonlinear rela- 
tionships: between muscle tension and muscle length, and 
between muscle tension and muscle contractile velocity 
(Fig. 1A) (Basmajian and De Luca 1985). One is called 
the length-tension curve, which describes how muscle 
tension increases with length even if the motor command 
does not change. The other is called the velocity-tension 
curve and describes how muscle tension decreases with 
contractile velocity for a constant motor  command. 

The joint torque is then calculated from the muscle 
tension and muscle moment arms. The distance between 
the joint axis and the force action line of the muscle is the 
muscle moment arm. The moment arm changes nonlin- 
early depending on the joint angle and because muscles 
wrap around other muscles, bones, and connective tis- 
sues. Joint torque is produced as the difference between 
agonist and antagonist muscle torques, which depend on 
the muscle tension and the muscle moment arm. Arm 
dynamics exist between the joint torque and the joint 
angle, velocity, and acceleration. Understanding the dy- 
namics, however, is difficult because of the presence of 
complex, nonlinear interaction forces among the moving 
joint segments. 

Our aim has been to construct a forward model of the 
human arm using data obtained from physiological 
measurements. This model took the E M G  signal as input 
and produced end-point trajectories as output. Figure 1B 
shows the current procedure employed to compute end- 
point trajectories from EMG signals. We have been able 
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Fig. 1. Comparison of the information flow in the organism (A) to the 
computational procedure adopted in this paper (B). In (A), control 
signals from the central nervous system (CNS) are sent to each muscle 
via c~ motor neurons. The signals activate the muscles (muscle tension), 
the contraction causes joint torques, and then the arm moves along 
movement trajectories according to the arm dynamics. In (B), we can 
measure electromyography (EMG) signals and trajectory: they both 
have a double-line box around them. EMG signals, though temporally 
and spatially distorted, reflect the motor commands fed to the muscles. 
Since we cannot measure motor neuron activity directly, though not 
ideal, we will treat the low-pass-filtered EMG activity as a substitute for 
the firing rate of motor neurons 

to measure the behavior of EMG  signals and trajectories 
of the hand, elbow, and shoulder (measured quantities 
are shown with a double-line box around them). We treat 
E M G  signals as a record of the motor commands to the 
muscles, since we cannot directly measure the motor 
neuron activity. Though not ideal, EMG  activity is a rea- 
sonable reflection of the firing rate of a motor neuron. 
Actual EMG  activity was transformed by a linear, 
second-order, low-pass filter. The transformed signal is 
called 'quasi-tension,' because it seems to be highly corre- 
lated with the true muscle tension. We also used a neural 
network with a modular architecture to convert quasi- 
tension to estimated dynamic torque. If a single, multi- 
layer network performs different tasks under different 
occasions, there will generally be strong interference 
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effects which lead to slow learning and poor generaliz- 
ation. If we know in advance that a set of training cases 
may be naturally divided into subsets that correspond to 
distinct subtasks, interference can be reduced by using 
a modular architecture. From the physiological view- 
point, this division is natural. Muscle has nonlinear prop- 
erties, such as the length-tension relationship and 
velocity-tension relationship. In the case of movement, 
both nonlinear properties have to be considered. In the 
case of posture control, however, the velocity-tension 
relationship does not need to be considered. It is also 
widely known that the dynamic characteristics of spinal 
and supraspinal reflex loops differ greatly between move- 
ment and posture maintenance. In this part, the neural 
network learned nonlinear muscle properties, such as the 
length-tension curve and the velocity-tension curve, and 
nonlinear properties of musculoskeletal systems, such as 
the muscle moment arms. We did this by using actual 
torques as teaching signals and actual joint kinematics as 
additional inputs. The actual joint kinematics were ob- 
tained from the measured cartesian trajectories of the 
joints. The teaching torque signal was computed using 
the actual joint angle kinematics and the measured phys- 
ical parameters of the arm using inverse dynamics equa- 
tions. Finally, the estimated torques and the actual joint 
kinematics were used to estimate joint angle acceleration 
using the forward dynamics equations. These angular 
accelerations were integrated to predict the next-time- 
step joint state, and end-point trajectories were estimated 
using forward kinematics equations. In this manner, we 
were able to construct a forward model that transformed 
EMG signals at the current time step to end-point trajec- 
tories at the next time step. The following details each 
step. 

2.1 The relationship between EMG signals and 
quasi-tensions 

Surface EMG signals are spatiotemporally convoluted 
action potentials of the muscle membranes and involve 
not only descending central motor commands but also 
reflex motor commands generated from sensory feedback 
signals. There have been considerable efforts to estimate 
muscle force from surface EMG signals (Basmajian and 
De Luca 1985; Akazawa et al. 1988; Wood et al. 1989; 
Clancy and Hogan 1991). From these previous studies in 
medical electronics and biological engineering (Basmajian 
and De Luca 1985), it can be expected that low-pass- 
filtered EMG signals (quasi-tension) reflect the firing rate 
of a motor neurons as high-frequency components of 
EMG reflect the shape of individual action potentials, 
while low-frequency components reflect the firing-fre- 
quency of motor nerve fibers. In neurophysiological stud- 
ies, it was found that a second-order, low-pass filter was 
sufficient for estimating muscle forces from the nerve im- 
pulse train (Mannard and Stein 1973). The relationship 
between the EMG input signal and T (quasi-tension) the 
output signal can be represented as an FIR filter, 

T(t) = ~. h j ' E M G ( t - j  + 1) (1) 
j = l  

where hj is the filter, EMG represents EMG signals, 
represents 'quasi-tensions', and j is the number of 

discrete time. EMG is actually the digitally rectified, 
integrated, and filtered signal. The second-order fre- 
quency response of the filter H(s) is represented as 
follows: 

2 
6 0  n 

n(s) = (s 2 + ~o,s + co 2) (2) 

where ~o, and ( denote natural frequency and damping 
coefficient, respectively. The impulse response of the 
function in (2) is 

h(t) = a x (exp -bt - exp -ct) (3) 

The coefficients hj in (1) can be acquired by digitizing h(t) 
with the given coefficients a, b, and c. 

2.2 The relationship between quasi-tensions and 
joint torques 

Each joint torque was estimated from quasi-tension, joint 
angle, and velocity using an artificial neural network 
model with a modular architecture as shown in Fig. 2 for 
the shoulder network. The modular architecture consists 
of two types of networks: expert and gating networks 
(Jacobs and Jordan 1991; Nowlan and Hinton 1991). 
Two modular shoulder and elbow networks were used to 
estimate the two joint torques respectively in order to 
improve the accuracy of the torque estimation. 

2.2.1 Modular learning 

We briefly illustrate the modular learning algorithm 
which was proposed by Jacobs and Jordan (1991) and 
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Fig. 2. Structure of the artificial neural network which estimates the 
shoulder joint torque using a modular architecture. EMGs is the EMG 
signals of muscles related to the shoulder movement. EMG=tt is the 
EMG signals of all muscles. ?~ and ?~ are the square of the approximate 
torque of the shoulder and elbow, respectively, calculated by the ap- 
proximate torque estimation network. ~1 and ~t  are shoulder joint 
torques estimated by the expert network 1 and 2, respectively. See (4) for 
gl and g2 
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Nowlan and Hinton (1991) and used in this study. Thejth 
output of the gating network, g~, is calculated by the 
following soft-max function 

eSJ 

gJ -- 2 iN= t e ~' (4) 

where si is calculated from the input signals to the gating 
network, and N denotes the number of outputs. The total 
output of the modular network is as follows: 

N 
= Y~ ~i~i (5) 

i = 1  

where ~i is the output of the ith expert network. 
The gating and expert networks are trained to maxi- 

mize the following log-likelihood function: 

N ii~_ ~,112 
In L = In ~ gie 2a? (6) 

i = l  

where ai is the variance scaling parameter of the ith 
expert network. 

The adaptation rules of the weights in the gating 
network are derived from the partial derivative of (6) by 
applying the chain rule. 

aln L 
- -  = h i  - g i  (7) 

Osi 

where hi is defined by the following equation correspond- 
ing to the posterior probability. 

lit - -~,112 
gie  2.2 

hi = Ih~ - ~112 (8) 
Ys~l ~je 2~ 

Similarly, the adaptation rules of the weights in the 
expert networks are derived from the partial derivative of 
(6) by applying the chain rule. 

~ln L ~ - "~i 
- hi a~-.2 (9) 

2.2.2 A neural network that estimates each joint torque 

In Fig. 2, each expert network estimated shoulder joint 
torque. For the case of elbow joint torque, the same 
modular architecture was used except that the expert 
input signals were EMGe: the EMG signals of muscles 
related to the elbow joint movements. The expert net- 
work 1 estimated joint torques ~,1 mainly during posture 
control, and the expert network 2 estimated joint torques 
§ mainly during movements. This division of their roles 
was first attained by pre-training and further refined by 
the automatic modular learning algorithm. 

The gating network switched the expert networks by 
judging whether the arm moved or not. To judge whether 
the arm moved or not, the square of the angular velocity 
and torques which change faster than velocity signals 
were used. To calculate this torque input, an approxim- 
ate torque estimation network was prepared at the input 
side of the gating network (Fig. 2). 

#, 

quasi-tensi, 

EMGma(n-N+ 1 ) 

Fig. 3. One of the expert neural networks which estimate the shoulder 
joint torque. The approximate torque estimation network also has 
a similar structure except that it has two output units for the shoulder 
and elbow torques 

Each expert network consisted of a four-layer net- 
work, as shown in Fig. 3. The first-layer inputs of this 
four-layer network were the EMG signals recorded from 
some of the 10 muscles over a 0.5-s intervaL.The EMG 
signals from double-joint muscles, related single-joint 
muscles, the joint angle, and the joint angular velocity of 
the elbow and shoulder were the expert network inputs. 
The number of units in the second layer was 11 for the 
shoulder expert network and 9 for the elbow expert 
network. The calculation of the 'quasi-tension' from the 
EMG signals was implemented in the expert network 
between the first and the second layers. In a strict sense, 
'quasi-tension', a linearly filtered EMG signal, cannot 
represent muscle tension. Because the FIR filter is linear, 
the nonlinear muscle properties found in the motor- 
command-tension, length-tension, and velocity-tension 
curves are not represented between the first and second 
layers. Thus, the network learns these nonlinear proper- 
ties between the second and the fourth layers. The sec- 
ond-layer inputs were the joint angles and joint angular 
velocities of the elbow and shoulder, as well as the quasi- 
tensions. The third layer consisted of 30 hidden units. 
The fourth, the output layer, estimated the joint torque. 
Activation functions, relating the weighted sum of synap- 
tic inputs to the output of an artificial neuron model, of 
only the third layer are the nonlinear sigmoid functions. 

The gating network consisted of a three-layer net- 
work. The first-layer inputs were the square of each joint 
torque and joint velocity. Thus, the number of units in 
the first layer was four (2 x 2). The second layer consisted 
of 10 hidden units. The third, the output layer, consisted 
of two units which calculate sj in (4) corresponding to two 
expert networks (j = 1, 2). Again, only the second layer 



units are nonlinear. The outputs of the gating network 
are 91 and 92 as defined in (4). 

The approximate torque estimation network also con- 
sisted of a four-layer network like the expert networks 
shown in Fig. 3. The first-layer inputs were the EMG 
signals from all 10 muscles over a 0.5-s interval. The 
second-layer inputs were the joint angles and joint angular 
velocities of the elbow and shoulder, as well as the 10 
quasi-tensions. Thus, the number of units in the second 
layer is 14. The number of units in the third layer is 30. The 
fourth, the output layer, consisted of two units which 
estimated shoulder and elbow joint torques ~, and Ze. 
Again, only the third layer is nonlinear. This network had 
less accuracy than the expert networks, but it could pro- 
vide sufficiently good information to judge whether the 
arm moved or not. The training method of the approxim- 
ate torque estimation network was standard. The actual 
torques zs and re are given as the teaching signals, and the 
objective function is defined as the squared sum of the 
difference between real and estimated joint torques. 

2.3 The relationship between joint torques and trajectories 

In this paper, we deal with horizontal planar movements 
of the shoulder joint and the elbow joint (flexion-exten- 
sion) at the shoulder level. Therefore, the controlled ob- 
ject is the two-link system comprised of the upper arm 
(link 1) and forearm (link 2) shown in Fig. 4. We use the 
following dynamics equations for two-joint horizontal 
movements of the upper arm and the forearm: 

(11 + 12 + 2M2L11g2 cos Oe + M2L2)Os 

+ (I2 + MzLlla2coSOe)'Oe 

-- M2Lll,2(20, + 0e)0eSin 0e = Zs (10) 

(I2 + MzLllo2cosOe)O, + 120e 

+ M2Ltla2(O~)2sinOe = re 
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Fig. 4. Experimental settings and definitions of joint angles and link 
physical parameters of the two-link arm model. L a, length of upper arm; 
L2, length of forearm; lga, distance from the center of mass of upper arm 
to the shoulder joint; Ig2, distance from the center of mass of forearm to 
the elbow joint; 0s, shoulder joint angle; 0e, elbow joint angle. Black 
circles show 5 points where the subject exerted isometric hand forces in 
experiment 1. Black diamonds show the start, via, and target points of 
movements in experiment 2. White squares show 23 points where 
postures are maintained in experiment 3 
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where z, 0, 0, ~J represent the joint torque, joint angle, 
velocity, and acceleration, respectively. Mi, Li, loi, Ii rep- 
resent the mass, length, distance from the center of mass 
to the joint axis, and rotary inertia around the joint for 
each link, respectively. 

When the problem is to find the joint motion corres- 
ponding to a known sequence of input torques, the trans- 
formation (10) is referred to as forward dynamics. If the 
initial conditions (joint angles and velocities) and the 
control signals (joint torques from the initial time to the 
final time) are given, then the time course of 0 and 0 
are obtained by numerical integration of the dynamics 
equations (10). 

When the problem is to find the joint torques corres- 
ponding to the desired time sequence of joint angles, the 
transformation (10) is referred to as inverse dynamics. In 
the experimental procedure of this paper, to calculate the 
joint torques from measured trajectories, the dynamics 
equations (10) are also used. In the case of forward 
dynamics, the information flows from the right side to the 
left side of (10), and in the case of inverse dynamics, the 
information flows from left to right. 

3 E x p e r i m e n t a l  procedures  

3.1 Experiment 1: is�9 force generation 

One healthy subject, 29 years old, participated in this 
study. The seated subject's shoulder was restrained by 
a harness. In the first experiment, to analyze the relation- 
ship between EMG signals and quasi-tension, the forces 
generated at the hand under isometric conditions and 
surface EMG signals were measured. 

His wrist was secured by a cuff and supported hori- 
zontally using the beam which was attached to a force- 
torque sensor. The subject was trained first to exert 
a hand force of about 50% maximum. The subject 
exerted isometric hand forces in two different directions: 
forward and backward, left and right, at five different 
locations (0e, 0~) of (30 ~ 110~ (40 ~ 80~ (50 ~ 90~ 
(60 ~ 100~ or (70 ~ 70 ~ indicated by the black circles 
in Fig. 4. These trials lasted for seven seconds and 
involved various rates of force production. At each of 
the 5 positions, the subject made two attempts in each 
direction. Thus, the rate of the hand-force change was 
intentionally varied, and the peak magnitude was rough- 
ly controlled. 

The hand force was measured by a force-torque 
sensor and filtered at an upper cut-off frequency of 
130 Hz in hardware. These signals were first sampled at 
2000 Hz with 12-bit resolution and were then re-sampled 
at 200 Hz. The positions of the hand, elbow, and shoul- 
der were recorded at 400 Hz using the OPTOTRAK 
position sensing system. The shoulder and elbow joint 
angles were calculated from those position data. The 
joint angle data were digitally filtered at an upper cut-off 
frequency of 10 Hz by a Butter-worth filter. Then, they 
were re-sampled at 200 Hz. The shoulder and elbow joint 
torques were calculated from the measured hand force 
within the horizontal plane (two degrees-of-freedom) 
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Fig. 5. Electrode positions in EMG measurement. See text for muscle 
name abbreviations 

multiplied by the transpose of the jacobian of the coordi- 
nate transformation. 

EMG signals were recorded from the 10 muscles 
shown in Fig. 5. For flexion/extension of the shoulder 
joint, the deltoid-clavicular part (DLC), deltoid-acromial 
part (DLA), deltoid-scapular part (DLS), pectoralis ma- 
jor (PMJ), and teres major (TEM) were measured. For 
double-joint muscles, the biceps-long head (BIL) and 
triceps-long head (TRL) were measured. For flexion/ 
extension of the elbow joint, the brachialis (BRC), 
triceps-medial head (TRM), and triceps-lateral head 
(TRA) were measured. 

The EMG signals were recorded using a pair of 
silver-silver chloride surface electrodes in a bipolar con- 
figuration. The electrodes each had a 10-mm diameter 
and were separated by approximately 15 mm. Test man- 
euvers were used to verify electrode placement. Each 
signal was sampled at 2000 Hz with 12-bit resolution. 
This signal was digitally rectified, integrated for 0.5 ms 
(EMG, ve), sampled at 200 Hz, and finally filtered (25-ms 
moving average window). This signal was denoted 
E M Gm,. 

1 
EMGave(t - i) (11) EMGma(t) = -~ i= - -2  

The EMGma signals were used as the input signals in (1), 
i.e., EMG. 

3.2 Experiment 2: movement generation 

These measurements of arm positions and EMG signals 
were simultaneously continued during movements and 
maintenance of posture using the same method as in 
experiment 1. Again, the subject's wrist was secured by 
a cuff and supported horizontally. In Fig. 4, the target 
positions are indicated by the black diamonds. T1 to 
Z 6 a re  starting and ending positions, and P1 and P2 are 

Table 1. Parameters of the human arm 

Link 1 Link 2 
(upper ann) (forearm) 

Li [m] 0.256 0.315 
10i [m] 0.104 0.165 
Mi [kg] 1.02 1.16 
li [kg m 2 ] 0.0167 0.0474 

via points (see Uno et al. 1989a). The subject was asked to 
produce five different unrestrained point-to-point move- 
ments between the five targets, i.e., T 3 --* T6, T 2 ~ Tr ,  

Tt ~ T3, T4 --* T1, T4 ~ T6; movements were repeated 
in the opposite direction. Then the subject made via- 
point movements between two targets in the horizontal 
plane. Two cases, T 3 ~ P1 ~ T5, T3 ~ P2 --~ Ts, were 
tested in both directions. The movement durations 
ranged from about 600 ms to about 800 ms. Each of the 
14 movements consisted of 10 trials. During movement, 
joint angular velocity and acceleration were computed 
using numerical differentiation. The joint torques were 
calculated from the trajectories using the dynamics equa- 
tions (10), because dynamical torques cannot be meas- 
ured directly during movement. 

3.2.1 The physical parameters of the subject arm 

The physical parameters of the arm of a human subject 
were calculated from its 3D shape. First, the shape of the 
subject arm was scanned in 3D space by the Cyberware 
Laser Range Scanner. Then, assuming a uniform material 
with a specific gravity of 1.0, the mass, the center of mass, 
and the rotary inertia were calculated from the cubic 
volume. The density of water is a good approximation 
both for soft and hard tissues. Table 1 shows the esti- 
mated physical parameters of the subject arm for the (10). 

3.3 Experiment 3: posture maintenance 

In experiment 3, the subject produced co-contraction of 
muscles while maintaining the same posture without 
exertion of force at 23 points over the workspace in- 
dicated by the white squares. Thus, the net torques gener- 
ated were 0. Three trials at each point lasted for 6 s and 
were of various co-contraction levels. 

4 Simulation results 

4.1 Joint torque estimation using an artificial neural 
network model 

In order to train the network, the popular back-propaga- 
tion algorithm (Rumelhart et al. 1986) in conjunction 
with the steepest ascent method was examined first. Be- 
cause its rate of convergence is slow, we used the kick-out 
method (Ochiai and Usui 1994) in which learning rates 
are adjusted according to the rate of increase in the 
objective function during the last few steps. 



4.1.1 Estimation of the weights between the first and 
second layers (filter) 

To specify the relationship between EMG signals and 
quasi-tension, joint torques under isometric conditions 
measured in experiment 1 were first estimated from sur- 
face EMG signals using a simple, nonmodular, four-layer 
neural network such as shown in Fig. 3. The network was 
trained with the odd-numbered trials from experiment 1, 
and the even-numbered trials were used for a cross-vali- 
dation test. The training employed 10 000 sample points 
from 5.0 s x 10 trials x 200 Hz sampling rate (10000 = 
5 x 10 x 200). The weights between the first layer and 
second layer after learning are shown in Fig. 6. The 

1 . 0 -  

0 . 8 -  

0 . 6 -  

0 . 4 -  

0 . 2 -  

0 .0  

0 .0  

[ ~ r  elbow. 1 
.... elbow 2 \ shoulder. 1 / \ : : -  

,~ ",., ulder.2 
! \ \ ' - ,  

.% -.,. ... / 

I I I I I 
0.1 0 .2  0.3 0 .4  0.51 

time [sec] 

Fig. 6. Impulse response of the second-order temporal filter which 
determines the quasi-tension from EMG. The ordinate scale is arbitrary 
with the peak response of 1.0 
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dotted lines for shoulder.1 and elbow.1 indicate weights 
obtained from a previous study using the same subject 
(Koike et al. 1992). The dotted lines for shoulder.2 and 
elbow.2 indicate the weights obtained this time. The 
coefficients of (3) were estimated from shoulder.1 and 
elbow.1 using the least squares error method for 0.25 s. 
A comparable calculation for 0.5 s yielded weights which 
were less stable and variable for different joints. The solid 
line in Fig. 6 shows the resulting impulse response with 
a = 6.44, b = 10.80, and c = 16.52 in (3). Using these 
coefficients, the isometric torques were estimated accu- 
rately. Because the coefficient of determination (square of 
the correlation coefficient between actual torques and 
estimated torques) for the test data was 0.897 and, more- 
over, shoulder.2 and elbow.2 which were obtained from 
the present experiment fit the estimated impulse response 
well, we can conclude that the obtained filter was reliable. 
The coefficients a, b, and c of the filter were fixed when 
the torques were estimated during movement in the next 
step. 

Figure 7 shows EMG signals EMG,,,, calculated from 
(11), and quasi-tension T given by (1). We can see that the 
quasi-tension signal (smooth curve) lags about 100 ms 
behind the EMG,,,, signals. 

4.1.2 Estimation of the weights between the second and 
fourth layer (nonlinear transformation) 

Next, data from experiments 2 and 3 explained in 
Sects. 3.2 and 3.3 were used to finally determine the 
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Fig. 7. Measured EMG signals and quasi-tension for the four muscles (DLC, TEM, BIL, TRL) 
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weights between the second and fourth layers. Thus, 
nonlinear properties of the musculoskeletal system were 
evaluated from the data of movements and posture main- 
tenance without exerted forces. The network was trained 
with the odd-numbered trials from experiment 2, and the 
even-numbered trials were used for a cross-validation 
test. The training employed 35000 sample points 
(2.5 s • 70 trials x 200 Hz sampling rate). 

The data from the first and third trials for posture 
control from experiment 3 were also used to train the 
network. In this case, the target dynamic torque is zero 
because no movement or exerted force was generated in 
experiment 3. The second trial was saved for a perfor- 
mance test. The training employed 50 600 sample points 
(5.5 s • 46 trials x 200 Hz sampling rate). The test em- 
ployed 25 300 sample points (5.5 s • 23 trials • 200 Hz 
sampling rate). The learning was broken off before the 
error in the test data began to increase (cross validation 
method; Wada and Kawato 1992). This is the standard 
way of cross-validation to avoid 'over learning' in which 
synaptic weights are tuned too much to the training data, 
and generalization capability is lost. This was routinely 
used for all training sessions. 

Before modular learning, the approximate torque es- 
timation network and the gating network were trained 
using both movement and posture data. Expert network 
1 was pretrained using the posture maintenance data 
from experiment 3. In contrast, expert network 2 was 
pretrained using the movement data from experiment 2. 
After prelearning, modular learning was done with the 
values of 0.05 for both al and (9" 2 in (6) using both moving 
and stationary position data. The purpose of pretraining 
of the gating, expert, and approximate torque estimation 
networks is to lay 'seeds' in those network weights before 
the usual modular learning takes place. Good initial 
synaptic weights obtained by this pretraining greatly 
enhanced automatic division of two expert networks as 
well as dramatically reduced the overall learning time. 

Figure 8 shows one example of the estimation result 
of the joint torques for the shoulder and elbow (upper 
traces) and the output of the gating network for test data 

. _ shoulder torque elbow torque 

4[ ~ Estimated I ii Estimatedl 
z ~ " " T ~ ........ 

0.0 0.5 1.0 1.5 0.0 0,5 1.0 1.5 time [sec] time [sec] 
shoulder elbow 

1.5 

o 0.5 ' , 

0 0  00: . . . .  
-0,5 0,0 0.5 1.0 1,5 0.0 0,5 1.0 1,5 time [sec] time [sec] 

Fig. 8. Estimation results of joint torques for shoulder (left) and elbow 
(right). Dot ted  curves show the actual torque, and solid curves show the 
estimated torque in the upper row; solid curves show results for expert 1, 
and dotted curves show results for expert 2 in the lower row 

(lower traces). Prediction was made at each time step 
from the position, velocity, and EMG data from the test 
set. As far as the torque is concerned, the dotted line is for 
the actual torque, and the solid line is for the network 
output. For the output of the gating network, the solid 
line corresponds to expert 1, and the dotted line corres- 
ponds to expert 2. Overall for test data from experiments 
2 and 3, the determination coefficient of dynamic torque 
was 0.887. Thus, the dynamic torques were reliably pre- 
dicted by our proposed network. Expert l's output cor- 
responds to 'posture', and expert 2's output corresponds 
to 'movement'. From the lower trace of Fig. 8, we can 
assert that the gating network switched the expert 
networks correctly for both the stopping and moving 
conditions. 

4.2 Trajectory formation 

The trajectories were calculated from the initial position 
and velocity and the continuous EMG signals for point- 
to-point movements and via-point movements. This was 
done in the following recursive way. 

�9 Step 1. At each time step, the dynamic torque was 
predicted by the neural network model from the posi- 
tion and velocity values at the current time step and the 
past 500 ms of EMG data. Then this predicted torque 
was used as the control input to the dynamics equa- 
tions (10). 

�9 Step 2. Numerical integration of (10) by Euler's 
method from the current values of the position, velo- 
city, and torque provides the next step value of position 
and velocity. 

These two steps were repeated until the end of the record- 
ing duration. Figure 9 shows one example of the simula- 
tion results of trajectory generation for T3 to T6. In 
descending order, the joint angle, angular velocity, angu- 
lar acceleration, torque, and output of the gating network 
are shown. The left column corresponds to the shoulder 
and the right one to the elbow. In the upper 4 rows, the 
solid curve is the network output, and the dotted curve is 
the experimental data. In the bottom row, the solid curve 
is the output for expert 1, and the dotted curve is the 
output for expert 2. Similar to the one-step prediction 
described before, the gating network switched the expert 
networks correctly for both the stopping and moving 
conditions. It should also be noted that at the start and 
end of a movement, the output of the gating network 
began to change in advance of the velocity change, allow- 
ing the expert network output to follow. 

Figure 10 shows trajectories on the X - Y  plane. Over- 
all, for test data shown in Fig. 10 from experiment 2, the 
coefficient of determination for position data predicted 
from initial conditions of position and velocity and EMG 
time course is 0.948. Therefore, even though there was 
a gradual accumulation of error because the angle and 
angular velocity at the next time step were recursively 
calculated by summing the predicted accelerations with 
the current angular velocity, the trajectories were recon- 
structed accurately. Some trajectories on the X - Y  plane 
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were slightly different from the actual trajectories be- 
cause of the error accumulation. There is, however, al- 
most no significant error for the joint angle. This is the 
first demonstration that multijoint movements and pos- 
ture maintenance can be fairly accurately predicted from 
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multiple surface EMG signals while allowing complic- 
ated via-point movements as well as co-contraction. 

5 Discussion 

Joint torques and then human arm movements have been 
estimated from surface EMG signals using a four-layer 
artificial neural network with a modular architecture. In 
the implementation, we took account of the following 
domain-specific knowledge: (1) the relationship between 
the EMG input signal and quasi-tension; (2) the dynam- 
ics of the arm; and (3) nonlinear muscle properties. To 
implement (1), a network was prepared to work as a tem- 
poral FIR filter between the first and second layer. For 
this filter, we found about a 100-ms lag between EMG 
signals and quasi-tension. Soechting and Roberts (1975) 
reported the natural frequency of the impulse response 
relating EMG to force of human muscle was 2.5 Hz. 
Moreover, Bawa and Stein (1976) reported that the 
natural frequency of the impulse response for the human 
soleus muscle was around 2 Hz. These natural frequen- 
cies correspond to about a 60- to 100-ms delay between 
EMG signals and muscle tension. Bennett (1993) 
also pointed out this low-pass property of muscles and 
reported delays of approximately 60-90 ms between 
surface EMG signals and human arm muscle tension. To 
implement (2), the physical parameters of the subject 
arm were calculated from the measured 3D shape of 
the arm, and the arm dynamics were described by lagran- 
gian equations. Furthermore, some nonlinear properties 
of the musculoskeletal system were obtained by training 
the neural network; expert networks were trained separ- 
ately from training data focusing on movement or pos- 
ture control to efficiently implement (3). There are 
several reasons for using two expert networks. For 
example, from the physiological viewpoint, the use 
of muscles differs depending on whether the arm moves 
or not. When the arm is moving, the relationship between 
velocity and tension has to be considered. In the case 
of posture control, however, the velocity-tension 
relationship does not need to be considered. It is 
also widely known that the dynamic characteristics 
of spinal and supraspinal reflex loops differ widely 
between movement and posture maintenance. The ap- 
proximate torque estimation network was added to cal- 
culate joint torques to provide the information useful for 
the gating network. 

Until now, mainly qualitative descriptions have been 
made regarding the relationship between movements and 
EMG, such as recognizing registered movement patterns 
from surface EMG signals (Suzuki and Suematsu 1969; 
Mori et al. 1992). In this paper, however, trajectories were 
estimated quantitatively from surface EMG signals. The 
complexity of musculoskeletal systems makes it difficult 
to reconstruct movement trajectories accurately from 
EMG signals. We use point-to-point movements or via- 
point movements in the horizontal plane, which almost 
covered the workspace. Also, the link dynamics is not 
simple because of the presence of complex interaction 
forces among moving link segments. 
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The comparison of the estimated and measured tra- 
jectories is a severe test of the goodness-of-fit of the 
model because it is essential to estimate the shoulder and 
elbow joint torques not only qualitatively but also quant- 
itatively to reconstruct trajectories accurately. We have 
also confirmed that each joint torque was accurately 
reconstructed by comparing the estimated torque wave- 
forms and data torques as shown in Fig. 8. Moreover, the 
model was examined by using the test data which were 
not employed for training: this is further confirmation of 
the generalization capability of the model. 

The constructed forward dynamics model can serve 
as a fundamental tool for the computational study of 
multijoint arm movements. Other than this scientific use, 
several engineering applications might also be possible. 
For example, by using the network, EMG signals could 
be used as human interface inputs to control a 'virtual 
arm' in a virtual reality environment. A further possibili- 
ty is for the motor command produced by a minimum- 
muscle-tension-change model (Uno et al. 1989b) based 
on the neural network forward dynamics model to be 
applied to a paralyzed limb. 

Regarding computational studies of motor control 
based on the acquired forward dynamics model, our 
future work includes (1) calculating of virtual trajectories 
to critically examine the virtual trajectory hypothesis 
(see Koike and Kawato 1993 for preliminary results), 
(2) learning the inverse dynamics model, and (3) examin- 
ing a minimum-motor-command-change model (Kawato 
1992). 
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