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Abstract--For recognition and control of  multiple manipulated objects, we present two learning schemes for neural- 
network controllers based on fi, edback-error-learning and modular architecture. In both schemes, the network consists 
of a recognition network and modular control networks. In the first scheme, a Gating Network is trained to acquire 
object-specfw representations Jbr recognition of  a number o[objects (or sets of objects). In the second scheme, an 
Estimation Network is trained to acquire.[itnction-speco~c, rather than object-specftc, representations which directly 
estimate ph)'sical parameters. Both recognition net~;z~rks are trained to ident~[.i, manipulated objects usit~e somatic 
and~or visual in./brmation. After learning, appropriate motor commands./br manipulation of  each object are issued 
by the control netu'orks which have a modular structure. By simulation of  simple examples, the potential advantages 
and disadvantages o.f the two schemes are examined. 

Keywords--Modular architecture, Object manipulation, Feedback-error-learning, Gaussian mixture, Multimodal 
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1. INTRODUCTION 

In previous studies of the adaptive/learning motor 
control using a neural network model, Barto, Sutton, 
and Anderson ( 1983 ), Jordan (1988), and Psaltis, Sid- 
eris, and Yamamura (1987) addressed the problem of 
how to obtain the error signal for a neural network 
feedforward controller. In supervised learning (Barto, 
1989), the difference between the desired response and 
the actual response cannot directly be used as the error 
for controller adaptation. The error for controller ad- 
aptation should not be trajectory error (plant perfor- 
mance error) but command error. 

As one possible solution to this problem, Kawato, 
Furukawa, and Suzuki (1987) proposed a learning 
method to acquire a feedforward controller, which uses 
the output of a feedback controller as the error for 
training a neural network model. They called this 
learning method feedback-error-learning. Using this 
method, the neural network model for feedforward 
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control acquires an inverse dynamics model of a con- 
trolled object. They successfully applied the feedback- 
error-learning scheme to several objects (Miyamoto, 
Kawato, Setoyama, & Suzuki, 1988; Kawato, 1990; 
Katayama & Kawato, 1991 ). Additionally, Kawato 
(1990) clarified the differences between several methods 
for training the neural network feedforward controller. 

However, conventional neural network feedforward 
controllers (Barto et al., 1983: Psaltis et al., 1987; Ka- 
wato et al., 1987; Kawato, 1990; Jordan, 1988; Katay- 
ama & Kawato, 1991 ) cannot cope with multiple ma- 
nipulated objects or disturbances because they cannot 
immediately adjust the control laws corresponding to 
several different objects. In interaction with manipu- 
lated objects, or, in more general terms, in interaction 
with an environment which contains unpredictable 
factors, feedback information is essential for control 
and object recognition. From these considerations, 
Gomi and Kawato (1990) have examined the adaptive- 
feedback-controller learning schemes using feedback- 
error-learning, from which impedance control ( Hogan, 
1985 ) can be obtained automatically. However, in that 
scheme, some higher system needs to supervise the set- 
ting of the appropriate mechanical impedance for each 
manipulated object or environment. 

In this paper, we introduce semi-feedforward control 
schemes using neural networks which receive feedback 
and/or  feedforward information for recognition of 
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multiple manipulated objects based on both feedback- 
error-learning and modular network architecture. 
These new schemes have two advantages over previous 
ones: (a) Learning is achieved without an exact target 
motor command vector, which is unavailable during 
supervised motor learning; and (b) Although somatic 
information alone was found to be sufficient for rec- 
ognizing objects, object identification is predictive and 
more reliable when both somatic and visual informa- 
tion are used. 

2. RECOGNITION OF 
MANIPULATED OBJECTS 

The most important issues in object manipulation are 
(a) how to recognize the manipulated object, and (b) 
how to achieve uniform performance for different ob- 
jects. For the first issue, there might be several ways to 
acquire helpful information for recognizing manipu- 
lated objects. Visual information and somatic infor- 
mation (i.e., signals obtained from motor commands 
and performance outcomes during execution of move- 
ments) are most informative for object recognition for 
manipulation. For the second issue, the motor com- 
mands should be changed in order to produce the same 
performance for different objects. For example, when 
I lift a cup from a table to my mouth, my muscle- 
motor commands are adjusted according to the quan- 
tity in the cup. If appropriate motor commands are not 
sent, I am likely to spill some of the contents. When 
manipulating a particular object, therefore, the manip- 
ulated object should be clearly recognized by integrating 
several kinds of information, and the appropriate motor 
command should be generated based on the charac- 
teristics of the recognized object (i.e., dynamical prop- 
erties and kinematical properties, etc.) to achieve good 
performance. 

How should the abilities to recognize objects and to 
generate commands be obtained in motor learning for 
object manipulation? The physical characteristics useful 
for object manipulation, such as mass, softness, slip- 
periness, and center of gravity, cannot be predicted 
without prior experience in manipulating similar ob- 
jects. And we do not know what kind of information 
is important for a particular manipulation task for 
which there is no experience. In this respect, object 
recognition for manipulation should be learned through 
object manipulation. And likewise, the ability to gen- 
erate proficient motor commands to achieve uniform 
performance for different objects should also be si- 
multaneously acquired through object manipulation. 

Manipulated object recognition has also been in- 
vestigated in robotics research. In many cases, the ob- 
ject recognition problem is usually defined as a 3D- 
shape reconstruction of the object by using vision and/  
or tactile sensing (Allen, 1987). 3D-shape represen- 
tation is heuristically adopted as the internal represen- 

tation for manipulation planning. Of course 3D-shape 
representation of objects is sufficiently available for 
manipulation planning, but it is still an open question 
whether this internal representation is effective for hu- 
man-like manipulation or not. Furthermore, object 
recognition problems in their statement are usually 
discussed separately from control problems (i.e., motor 
command generation problems) in which recognized 
properties should be utilized. In the most of these cases, 
straightforward calculations are done to get some con- 
trol-parameters, such as grasping points, hand shape, 
and input forces for each grasping point, taking into 
consideration the dynamic and kinematic properties 
such as the object shape, center of gravity, and surface 
conditions, etc. For computational reasons it is difficult 
to effectively change the internal representations of ob- 
jects by taking account of the final performance error. 

We will now examine the computational models of 
manipulation learning as combined recognition and 
control problems in the following sections. 

3. MODULAR ARCHITECTURE USING 
A GATING NETWORK 

Jacobs, Jordan, and Barto (1990), Jacobs and Jordan 
(1991), Nowlan (1990), and Nowlan and Hinton 
( 1991 ) have proposed a competitive modular network 
architecture which was applied to the task decompo- 
sition or classification problems. Jacobs and Jordan 
(1991) applied this network architecture to a multi- 
payload robotics task in which each expert network 
controller was trained for a different category of ma- 
nipulated objects in terms of object mass. In their 
scheme, the payload's identity was fed to the gating 
network in order to select a suitable expert network 
which acts as a feedforward controller. 

We examined the modular network architecture us- 
ing feedback-error-learning for simultaneous learning 
of object recognition and control task as shown in Fig- 
ure 1. In our study cases, several physical properties, 
not only mass, but also viscosity and stiffness, are dif- 
ferent for each object. In this learning scheme, the quasi- 
target vector for the combined output of the expert net- 
works is employed, instead of the exact target vector. 
This is because it is unlikely that the exact target motor 
command vector can be provided in supervised motor 
learning ( Kawato, 1990; Jordan, 1988 ). The quasi-tar- 
get vector for feedforward motor command, u', is given 
by: 

u ' = u + u l b ,  (I) 

where u denotes the motor command fed to the con- 
trolled object and Urb denotes the feedback motor com- 
mand. Because Urb approximately represents the degree 
of error in the motor command vector, u, we repre- 
sented the quasi-target motor command vector as 
shown in eqn ( 1 ). Using this quasi-target vector, the 
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FIGURE 1. Configuration of the modular architecture using a Gating Network for object manipulation based on feedback-error- 
learning. 

gating and expert networks are trained to maximize 
the log-likelihood function, In L, by using back prop- 
agation. 

n 

lnL = In ~ gie -II''-~'~t2/2d (2) 
i = 1  

Here, u~ is the i-th expert network output, ai is a vari- 
ance scaling parameter for the i-th expert network, and 
gg is the i-th output of the gating network, which is 
calculated by 

eS~ 
gi - E~=, e ' '  (3) 

where s~ denotes the weighted input received by the i- 
th output unit. The total output of the modular net- 
work, uff, is 

n 

uf/ = ~, gdti. (4) 
i = l  

The adaptation rules for the weights in each network 
are derived from the partial derivative of eqn (2) with 
respect to each weight, and are represented as follows. 

dwgate ~ Osi 
dt = Oga,~ i-t o--(g(ilX'w~,~ U') - gi) 

dwex¢, i Ou, ( u' - ui ) ( 5 ) 
dt - oox¢ni Owex¢ni g(il  X,  u') cr---"'~i 

where W~te denotes the gating network weight, Wexm~ i 
denotes the i-th expert network weight, nsate, rhxp~ni 
determine the learning rate in each network and g(i[ X, 
u') is the following equation corresponding to posterior 
probability. 

gie-"U'-u'~12/2"2' 
g( il X,  u') = Z]-i g2e -Ilu'-u'~lz/2"] ' (6) 

where X denotes the input vector of the gating network. 
By maximizing eqn 2 using the steepest ascent method 
(i.e., adaptation rule eqn (5)), the gating network learns 
to select the expert network whose output is closest to 
the quasi-target command, and each expert network is 
tuned correctly when it is chosen by the gating network. 
The desired trajectory is fed to the expert networks so 
as to make them work as feedforward controllers. 

4. SIMULATION OF OBJECT 
MANIPULATION BY MODULAR 

ARCHITECTURE WITH 
A GATING NETWORK 

We used simulation to demonstrate the efficacy of the 
learning schemes presented above. The configuration 
of a controlled and manipulated object is shown in Fig- 
ure 2. M, B, K denote the mass, viscosity, and stiffness, 
respectively, of the coupled object (controlled- and ma- 
nipulated-object). The manipulated object is changed 
every epoch ( 1 [sec]), while the coupled object is con- 
trolled to track the desired trajectory. Figure 3 shows 
(a) the selected object in each epoch, (b) the feedfor- 

x 

,. B j ~  M 

Manipulated / 
"° d Object h 

Cont olled -I-." 

FIGURE 2. Configuration of a controlled object and a manipu- 
lated object. 
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FIGURE 3. Temporal patterns of (a)  objects, (b)  motor commands, and (c)  desired and actual trajectories before learning. 

ward and feedback motor commands, and (c) the de- 
sired and actual trajectories, before learning. 

The desired trajectory vector, Xd, which consists of 
acceleration, velocity, and position, was produced by 
using the Ornstein-Uhlenbeck random process. As 
shown in Figure 3, the error between the desired tra- 
jectory and the actual trajectory was not eliminated 
because the feedback controller with fixed gains was 
used. The physical characteristics, M, B, K, of the ob- 
jects used are listed in the second column of Figure 6. 

4.1. Somatic Information for Gating Network 

We call the actual trajectory vector, x, (this vector con- 
sists of acceleration, velocity, and position) and the final 
motor command, u, "somatic information." Somatic 
information is most useful for on-line (feedback) rec- 
ognition of the dynamical characteristics of manipu- 
lated objects. We used somatic information from the 
last four sampling time period (sampling period is 2 
[ msec ] ) as the gating network inputs for identification 
of the coupled object in this simulation. Then, s in eqn 
(3) is expressed as: 

s ( t )  = 4~,(x(t), x ( t -  I), x(t - 2), 

x(t - 3), u( t ) ,  u ( t  - 1), u(t - 2), u(t - 3)), (7) 

where x( t )  denotes the actual trajectory vector at time 
t and u ( t )  denotes the final motor command at time t. 
The task of the gating network is to divide the 16-di- 
mensional input space into three subsets for each object. 
The physical characteristics, M, B, K, of the coupled 
objects are listed in Figure 6. The object was changed 

every epoch ( 1 [sec]). The variance scaling parameter 
in eqn (2) was ai = 0.8 and the learning rates in eqn 
(5) were ~Tga,e = 1.0 × 10 -3, and r/ex~,i = 1.0 × 10 -5. 
A three-layered feedforward neural network (input 16, 
hidden 30, output 3 ) was employed for the gating net- 
work, and two-layered linear networks (input 3, output 
1 ) were used for the expert networks. 

Figure 4 shows the time courses of the moving av- 
erage of Uch and Uc.rsquared, and Figures 5 (a ) - ( c )  show 
the time courses of weights in each expert network dur- 
ing the learning phase. The feedback motor command 
gradually decreased during learning and the expert 
network weights (i.e., gains for each input) approach 
asymptotic values. Comparing the expert network 
weights for each input after learning listed in the third 
row of Figure 6 and the actual physical characteristics 
of the coupled objects listed in the second column of 
Figure 6, we realize that expert networks No. 1, No. 2, 
and No. 3 obtained the inverse dynamics of coupled 
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FIGURE 4. The moving average over time of the squared motor 
commands. 
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work  input,  

objects %/3, and a, respectively, which were employed 
during the learning phase. 

Figure 7 shows (a) the time variation of the objects, 
(b) the gating network outputs, (c) the motor com- 
mands, and (d) the trajectories, after learning. The gat- 
ing network outputs for the objects responded correctly 
throughout most of the test phase (compare Figure 7 (a) 
with 7(b)) .  In the several parts of the test phase, how- 
ever, results were poor. For example, even though the 
correct gating network outputs were obtained in the 
latter half of the test phase, gating network outputs g~ 
and g2 at around 1 [sec] and 4.5 [sec] were wrong. 
This is because the learning for the gating network was 
not completely successful. In other words, the correct 
gating network outputs were learned for the gating net- 
work input vector in the latter half of the test phase 
but were not learned for the input vectors in the first 
half of the test phase. The statistical correspondences 
are shown in Figure 6. Each bar height in Figure 6 
denotes the averaged value of each gating network out- 
put while each object was selected during the test phase. 

We can see the ratio of the correct to the wrong gating 
network output during the test phase from each row 
in this figure. 

In spite of the unsatisfactory discrimination results, 
the value of the feedback motor command, Ufb, was 
almost zero and the actual trajectory almost perfectly 
corresponded to the desired trajectory. In other words, 
the gating network successfully executed the "recog- 
nition task for manipulation" and each expert network 
acquired the "internal model of an object for manip- 
ulation." Moreover, learning generalization in a "com- 
pact state space" was almost ascertained because the 
simulation was done for a random desired trajectory 
(O-U process). In the object recognition process using 
the somatic information shown above, gating network 
required complicated calculations. By using a limited 
trajectory or by using a network which has more ca- 
pacity, better discrimination results might be obtained. 
On the other hand, more satisfactory results were ob- 
tained by using visual information, as described below, 
because visual cues are very simple and there are only 
a few patterns. 

4.2. Visual Information for Gating Network 

Consciously or unconsciously, we usually make some 
assumption about the manipulated object's character- 
istics by using visual information before we actually 
manipulate the object. Visual information might be 
quite helpful for feedforward recognition. Object dis- 
crimination tasks by using modular networks from vi- 
sual images were investigated by Jacobs ( 1991 ) in which 
teacher signals (i.e., target object identities) were em- 
ployed in training. 

When visual information is available in the proposed 
scheme, s in eqn (3) is expressed as: 

S(t) = ~ 2 ( V ( / ) ) ,  ( 8 )  

where V(t)  denotes the retinal matrix values at time 
t. We used three simple visual cues corresponding to 
each coupled object in this simulation as shown in Fig- 
ure 8. At each epoch in this simulation, one of three 
visual cues of the size 3 × 3 is selected randomly and 
then randomly placed at one of four possible locations 
on a 4 X 4 retinal matrix. Each black pixel of these 
cues takes the value one and each white pixel on the 
retinal matrix takes the value zero. The value set of 
V(t)  was fixed during each epoch. The visual cues for 
each object are different, but objects a and a* have the 
same physical characteristics, M, B, K, as listed in the 
second column of Figure 8. The gating network should 
identify the object and select a suitable expert network 
for feedforward control by using this visual information. 
The learning coefficients were ai = 0.7, r/~,e = 1.0 × 
10 -3 ,  and rlex~rti = 1.0 X 10 -5. The same networks 
used in the above experiment were used in this simu- 
lation. 
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Object 
physical retinal 
characteristics image 
M B K  

O~ 1.o 2 .0  8 .0  n o n e  

j• 5.0  7 .0  4.0 n o n e  

8 .0  3 .0  1.0 n o n e  .~:.~: . . . . . . . . .  

FIGURE 6. Gating Network outputs vs. objects using Somatic information. The second column shows the physical characteristics 
of each object, and the third row shows the acquired parameter values for the inputs to each expert network. The bar height denote 
the averaged gating outputs in the test phase after learning. 

After learning, expert network No. 2 acquired the 
inverse dynamics of objects a and ~* (which have the 
same physical characteristics), and expert network No. 
3 accomplished this for object 3' (compare the object 
physical characteristics with the expert network weights 

for each input listed in Figure 8). Figure 8 summarizes 
the statistical analysis of the correspondence between 
the objects and the gating network output. The gating 
network almost always selected expert network No. 2 
for object ~ and o~*, and almost always selected expert 
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FIGURE 7. Temporal patterns of (a) objects, (b) gating outputs, (c) motor commands, and (d) trajectories after learning using 
Somatic information. 
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O ,ect i I I   e Ne,.Weiihtva,ues,oreachii u,. physical retinal after learning 
characteristics image No.1 No.2 No.3 
M B K (randomly Xd Xd Xd Xd J('d Xd Xd Xd Xd 

moved) 4.3 3.0 -0.34 1.2 2.0 8.0 8.0 3.0 0.99 

1.0 2.0 8.0 

1.0 2.0 8.0 

8.0 3.0 1.0 

FIGURE 8. Gating Network outputs vs. objects using Visual information. (Same notation with Figure 6.) 

network No. 3 for object % as shown in Figures 8 and 
9. Expert network No. I, which did not acquire inverse 
dynamics corresponding to any of the three objects, 
was not selected in the test phase after learning. That 
is to say, the redundant expert network did not con- 
tribute to control tasks by learning as mentioned by 
Jacobs (1990). The actual trajectory in the test phase 
corresponded almost exactly to the desired trajectory. 

4.3. Somatic and Visual Information for Gating 
Network 

We show here the simulation results using both somatic 
and visual information as the gating network inputs. 
In this case, s of eqn (3) is represented as: 

S(I) = lP3(X(/) . . . . .  X(l -- 3) ,  

u(t) . . . . .  u ( t -  3), V(t)). (9) 

~ m 
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FIGURE 9. Temporal patterns of (a) objects, (b) gating outputs, (c) motor commands, and (d) trajectories after learning. 
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Object I Expert Net. Weight values for each input, -~,l k a x  
physical I retinal I I X I ~ ~ L J r  after learning 
characteristics image No.1 No.2 ~ N o . 3  
M B K (randomly "" 2 d X d X d "" 

moved) 8.1 2.4 0.8 5.1 6.9 4.0 1.0 1.9 8.0 

1.0 2.0 8.0 

5.0 7.0 

8.0 3.01.o'1  

FIGURE 10. Gating Network outputs vs. objects using Somatic and Visual information. (Same notation with Figure 6.) 

In this simulation, the objects a and/3* had different 
physical characteristics but shared the same visual cue 
as listed in Figure 10. Thus, to identify the coupled 
objects one by one, it is necessary for the gating network 
to utilize not only visual information but also somatic 
information. The learning coetficients were a~ = 1.0, 
r/gat e = 1.0 X 10 -3 ,  and r/~,o~ i = 1.0 × 10 -5. The gating 
network had 32 input units, 50 hidden units, and 3 

output units, and the expert networks were the same 
as in the above experiment. 

After learning, expert networks No. 1, No. 2, and 
No. 3 acquired the inverse dynamics of objects 3', fl*, 
and a, respectively, as listed in Figure 10. As shown in 
Figure 11, the gating network almost always identified 
the object correctly. As shown in the statistical analysis 
in Figure I0, the recognition performance (the average 
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FIGURE 11. Temporal patterns of (a)  objects, gating (b) outputs, (c) motor commands, and (d) trajectories after learning using 
Somatic and Visual information. 
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value of the gating network output to each expert net- 
work for each object) is better than that in Section 4.1. 
The recognition performance for object % however, was 
not as good as the result in Section 4.2, even though 
visual information was also available for recognizing 
object % This might be because the sensory signals, 
visual and somatic, were not normalized or slanted 
properly in this simulation. 

4.4. Unknown Object Recognition by Using Somatic 
Information 

It is possible that the scheme shown in Figure I might 
also be applied to unknown objects because the gating 
network switches between the expert networks not cris- 
ply but fuzzily. This is because the desired output of 
the gating network has Gaussian distribution, as shown 
in eqn (6).  To examine this, we applied the modular 
network trained in the experiment described in Section 
4.1 to unknown objects. Figure 13 shows the temporal 
responses for unknown objects whose physical char- 
acteristics were slightly different from known objects 
(the different parameters are shown in Figures 6 and 
12), using somatic information as the gating network 
inputs. Even though each tested object was not exactly 
the same as any of the known (learned) objects, the 
gating network selected the expert network whose in- 
verse dynamics model was the closest to the unknown 
object's (compare Figure 12 with Figure 6 ). For object 
~', expert network No. 3 was chosen with high prob- 
ability and for object ~', expert network No. 2 was se- 
lected with a higher probability than the other two ex- 
pert networks. For object y', expert network No. 1 was 
selected most often. As shown in the middle part of 
Figure 13, during some period in the test phase, the 
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feedback command increased because of an inappro- 
priate feedforward command. 

5. MODULAR ARCHITECTURE USING 
ESTIMATION NETWORK 

The modular architecture shown in the above section 
is competitive in the sense that expert networks compete 
with each other to occupy a niche in the input space. 
We propose here a new cooperative modular architec- 
ture where expert networks specialized for different 
functions (i.e., preprocessing for different physical pa- 
rameters, not for different objects) cooperate to produce 
the required output. In this scheme, estimation net- 
works are trained to recognize the physical parameters 
of manipulated objects by using feedback information. 
Using this method, an infinite number of manipulated 
objects in a limited domain can be handled by using a 
small number of estimation networks. This is because 
the values of each object's parameters is interpolated 
and estimated directly by the estimation networks, and 
the number of estimation networks is limited to the 
number of effective parameters necessary for controlling 
the target objects. 

Figure 14 shows the configuration for manipulation 
control employing this idea. In this figure, the inverse 
dynamics model (IDM) network is prepared for the 
controlled object (i.e., manipulator etc.) and expert 
networks No. 1, 2, and 3 are trained to represent dif- 
ferent functional forces which correspond to different 
physical characteristics of manipulated objects. Each 
output of the expert networks is multiplied by each 
output of the estimation network to produce the motor 
commands. Each expert network works cooperatively 
rather than competitively. The number of the estimation 

Object 
physical retinal 
characteristics image 
M B K  

a '  2.0 3.0 7.0 none 

Expert Net. Weight values for each input, x.a J(a xa, 
after learning 

i i 2e xe xd 37d xe xe 2e 2e xe 
8.1 2.5 0.87 5.0 6.9 4.0 0.97 1.9 8.0 

4.0 6.0 5.0 none i 

9.0 2.0 2.0 none 

FIGURE 12. Gating Network outputs vs. objects during an unknown object recognition task using Somatic information. (Same 
notation with Figure 6.) 



494 H. Gomi and M. Kawato 

(a) 

(b) 

(c) 

(d) 

~ 

z. 

m m m m 

m m n m 

n m I m m 

gl '  

g 2  

g3 

20 -1 ,~ utb 
~ ~ ~  . . . . . . . . . . . . .  u 

~, ,r, ~ ~ ~!" ~ .t'~ ~!: i  : :- Y'. f f  

-20 , ', , ' "; 

E 1 ~ actual 

m -1 
0 

c~ -2 I I I I I 
0 5 10 15 2O 

time [sec] 

FIGURE 13. Temporal patterns of (a) objects, (b) gating outputs, (c) motor commands, and (d) trajectories during an unknown 
object recognition task using Somatic information. 
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FIGURE 14. Configuration of the modular architecture using an Estimation Network for object manipulation by feedback-error- 
learning. 
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network outputs is restricted to the number of effective 
parameters of the manipulated objects. For example, 
to properly control the manipulated object which is 
attached at the top of the two-link manipulator shown 
in Figure 15, the feedforward motor command, rff,  
should be expressed as follows. 

r f f=  J r(M/x:a + B.;ca + Kxa) + riam, (10) 

where 

' 0 ' 0 " 

j r denotes a transposed Jacobian matrix, and :ca is the 
desired trajectory position vector in Cartesian space. If 
the IDM network perfectly compensates only for the 
controlled object, the appropriate feedforward motor 
command for the manipulated object (i.e., one that is 
produced by expert networks No. 1, 2, and 3 and the 
estimation network shown in Figure 14) is expressed 
as" 

r,m = Mqt,(Oa,  Od' Od) + Bql,_i('Oa, Od, Od) 

+ Kq13i ( Oa, Oa, Oa), ( 11 ) 

where r , ,  denotes the feedforward motor command for 
the i-th link and M, B, K, respectively, denote mass, 
viscosity, and stiffness of the manipulated object and 
0d, 0d, and Od, respectively, denote the angular accel- 
eration, angular velocity, and angular position vector 
of the manipulator, ff'ji is a preprocessing nonlinear 
function realized by each expert network according to 
the following equations for producing the appropriate 
feedforward motor command for the manipulated ob- 
ject. 

Y M B , K  

O 2 

f 

FIGURE 15. Configuration of the two-link manipulator and a 
manipulated object. 
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• ,L('Oa, Oa, Oa) = Oa,(l~ + 1~ + 2/l/zcos Oaz) 

+ "0a2(1]_ +/t/_,cos Oa2) - (2ha, + Oa2)Oa2lll2sin 0d2. (12) 

~t'zt(Oa, Oe, Oa) = [Oat(/,sin Oal + /2sin(Oel + Oaz)) 

+ bafl2sin(Oaj + Oa2)](ltsin Oal + /2sin(Oal + Oa2)). (13) 

~ ( O e ,  be, Oa) =(/,cos Oa~ + /2cos(Oa, + Oa,_)) 

× (llsin Oaj + 6sin(Oal + 0a2)). (14) 

~,2(Od. Oe, Oa) 

= Oa~(l~_ + 2/d.,cos Oa2) + Oa21~ - O~/t/2sin Oa:. (15) 

#z2(Od, Od, Od) = Oat/2(ltsin Oat + /2)sin(Oak + 0d2) 

+ ba2l~sin(Odl + 0d2). (16) 

qIa2('Od, Oa, Oa) = /2(/,COS Oat 

+ 12COS(Odt + Od2))sin(Odl + 0d2). (17) 

Here, l~, 12, Odl, and O~, respectively, denote the first 
link length, second link length, first link desired angle, 
and second link desired angle of the manipulator. We 
expect that these preprocessings are obtained for each 
expert network and that the parameters, M, B, K, will 
be compellingly represented as the estimation network 
outputs by using the constraint of the limited number 
of estimation-network outputs. This expectation comes 
from previous studies in which etficient and compressed 
representations were obtained in the hidden layer of 
the network when the number of hidden units was kept 
small (Cottrell, Monroe, & Zipser, 1987; Bourlard & 
Kamp, 1988; lrie & Kawato, 1990). 

We applied this idea to recognizing the mass of ma- 
nipulated objects in one-dimensional movement, with 
configurations similar to that in Figure 2. Generally, 
expert networks in this learning scheme are expected 
to acquire the preprocessing as shown in the example 
for the two-link manipulator control shown above. In 
this preliminary case, however, nonlinear preprocessing 
was not necessary for the expert network, which meant 
that we only confirmed the capability of estimation 
network learning in this simulation. (That is, the feed- 
forward signal was directly multiplied by the estimation 
network output without any calculation at the expert 
network.) Figure 16(a) shows the output of the esti- 
mation network compared to actual masses. The re- 
alized trajectory almost coincides with the desired tra- 
jectory as shown in Figure 16(b). This learning scheme 
can be applied not only to estimating mass, but also to 
other physical characteristics, such as softness or slip- 
periness. 

6. DISCUSSION 

6 . 1 .  A c q u i s i t i o n  o f  T a s k - B a s e d  R e p r e s e n t a t i o n  

In the simulation of manipulation learning using visual 
information (Section 4.2), the internal models for ob- 
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FIGURE 16. (a) Comparison of actual and estimated mass; (b) 
Desired and actual trajectories. 

ject manipulation (in this case, inverse dynamics) were 
represented not in terms of visual information, but 
rather, of motor commands. That is to say, the same 
internal representation is acquired when the same mo- 
tor command is required for obtaining the final per- 
formance, even if the input visual cues are different. 
This is good not only for saving the internal represen- 
tation, but also for deriving the common features be- 
tween objects in terms of motor control. Although the 
current simulation is preliminary, it indicates the very 
important issue that task-based internal representations 
of objects (or environments), rather than declarative 
ones, are automatically acquired by motor learning. 
This observation supports the "functional representa- 
tion" notion in Artificial Intelligence research as a 
promising strategy in high-level recognition processes. 
For example, the abstract idea of "chair" cannot simply 
be acquired from many image examples of"chair," but 
task-based (i.e,, functional) representation, i.e,, a "chair 
is an object on which people can sit," makes the many 
different shapes of chairs comprehensible. 

6.2. Convergence Rate by Feedback-Error-Learning 

The quasi-target motor command in the first scheme 
and the motor command error in the second scheme 
are not exactly correct because the proposed learning 
schemes are based on the feedback-error-learning 
method. Thus, the learning rates in the proposed 
schemes should be slower than in those schemes in 
which exact target commands are employed (Gomi & 
Kawato, 1990). In our preliminary simulation, it was 
about five times slower. We emphasize that exact target 
motor commands, however, are not available in super- 
vised motor learning. 

6.3. Limitation of the Number of Manipulated 
Objects and the Number of Estimation Parameters 

The limited number of controlled objects which can 
be dealt with by the modular architecture with a gating 
network is a considerable problem (Jacobs & Jordan, 
1991; Nowlan, 1990; Nowlan & Hinton, 1991 ). This 
problem depends on choosing an appropriate number 
of expert networks and an appropriate value for the 
variance scaling parameter, a. Once this is done, the 
expert networks can interpolate the appropriate output 
for a number of unknown objects. The simulation re- 
sults in Section 4.4 show a successful example for un- 
known objects. Our second scheme provides a more 
satisfactory solution to this problem. 

On the other hand, one possible drawback of the 
second scheme is that it may be difficult to estimate 
many physical parameters for complicated objects, even 
though the learning scheme which directly estimates 
the physical parameters can handle any number of ob- 
jects. 

6.4. Modular Architecture as a Structural Constraint 
for Network Design 

Modular architecture is one of the structural constraints 
in neural network design for a particular task. As Jacobs 
et al. (1990) described, modular architecture might be 
a good constraint for many kinds of underconstrained 
learning problems. If a single neural network is used 
for the object recognition problem shown here, learning 
will not be successful because the network has too many 
degrees of freedom. In particular, the importance of 
modular architecture will increase for problems in 
which many kinds of tasks should be learned together. 

7. CONCLUSION 

We presented basic examinations of two types of mod- 
ular architecture using neural networks--a gating net- 
work and a direct estimation network. Both networks 
can use feedback and/or  feedforward information for 
recognition of multiple manipulated objects. In order 
to examine the fundamental performance of modular 
networks, we did not take into account the geometrical 
properties of manipulated objects, which are important 
in deciding the grasping points and forming the hand 
shape. In the future, we will attempt to integrate the 
two proposed network architectures and to advance this 
combined architecture with sophisticated visual pro- 
cessing in order to model tasks involving skilled motor 
coordination and high-level recognition. 
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NOMENCLATURE 

ll' 

ll 
zqh 
lti 

ffi 

gi 
si 

t(t:r 
X 
Wgate 

Wexpert i 

~gate, /'/expert i 
g(il X, u') 
M , B , K  

~ff i , ~1 i 
Xd 

V 

/3' ,%3/ 
j r  

xd 

M , B , K  

?'mi 

0,, Oa, O, 

Oat, Oaz 

quasi-target vector of feedforward 
motor command 

motor command 
feedback motor command 
i-th expert network output 
variance scaling parameter of the 

i-th expert network 
i-th output of the gating network 
weighted input received by the i-th 

output unit 
total output of the modular network 
input vector of the gating network 
gating network weight 
i-th expert network weight 
learning rate in each network 
posterior probability 
mass, viscosity and stiffness, of the 

object 
nonlinear function 
desired trajectory vector which con- 

sists of acceleration, velocity, and 
position 

actual trajectory vector which con- 
sists of acceleration, velocity, and 
position 

retinal matrix value set 
object name 

transposed Jacobian matrix 
desired trajectory position vector in 

Cartesian space 
inertia matrix, viscosity matrix, and 

stiffness matrix 
feedforward motor command for 

i-th link 
angular acceleration, angular veloc- 

ity, and angular position vector of 
the manipulator 

first link length, and second link 
length of the manipulator 

first link desired angle, and second 
link desired angle of the manip- 
ulator. 


