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Abstract-This paper presents new learning schemes using feedback-error-learning for a neural network model
applied to adaptive nonlinear feedback control. Feedback-error-learning was proposed as a learning method for
forming a feedforward controller that uses the output of a feedback controller as the error for training a neural
network model. Using new schemes for nonlinear feedback control, the actual responses after learning correspond
to the desired responses which are defined by an inverse reference model implemented as a conventional feedback
controller. In this respect, these methods are similar to Model Reference Adaptive Control (MRAC) applied to linear
or linearized systems. It is shown that learning impedance control is derived when one proposed scheme is used in
Cartesian space. We show the results of applying these learning schemes to an inverted pendulum and a 2-link
manipulator. We also discuss the convergence properties of the neural network models employed in these learning
schemes by applying the Lyapunov method to the averaged equations associated with the stochastic differential
equations which describe the system dynamics.
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1. INTRODUCTION

Adaptive control theory has been applied to nonlinear
robot control as a method of adjusting linear param­
eters. Dubowsky (Dubowsky & DesForges, 1979) ap­
plied Model Reference Adaptive Control (MRAC) to
a robot manipulator control using the locallineariza­
tion technique. Craig, Hsu, and Sastry ( 1986) and Slo­
tine and Li (1987) proposed an adaptive control
method based on the Lyapunov function for a manip­
ulator whose nonlinear characteristics were known in
advance.

In previous studies of adaptive learningcontrol using
a neural network model, Barto (Barto, Sutton, & An­
derson, 1983), Jordan (Jordan, 1988), and Psaltis
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(Psaltis, Sideris, & Yamamura, 1987) addressed the
problem of how to obtain the error signal for a neural
network controller. In supervised learning (Barto,
1989), the difference between the desired response and
the actual response (i.e., plant performance error) can­
not directly be used as the error for controller adap­
tation. The error for controller adaptation should not
be the trajectory-error (i.e., plant performance error)
but the command-error (i.e., plant input error). Thus,
Jordan proposed forward-inverse-modeling (Jordan,
1988) and Albus (1975), Miller (Miller, Hewes, Glanz,
& Kraft, 1990), Atkeson (Atkeson & Reinkensmeyer,
1988), Psaltis (Psaltis et al., 1987), Kuperstein (Ku­
perstein& RUbinstein, 1989) and Martinets (Martinets,
Ritter, & Schulten, 1990) used direct-inverse-modeling
to obtain command-error for forming the inverse dy­
namics model as a feedforward controller. In reinforce­
ment learning (Barto et al., 1983), it is possible to im­
prove plant performance over time by means of on­
line learning methods in less structured situations. As
an example of reinforcement learning, Barto proposed
using ASE (associative search element) and ACE
(adaptive critic element) techniques (Barto et al.,
1983).

Kawato, Furukawa, and Suzuki (1987) proposed a
learning method to acquire a [eedforward controller,
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which uses the output of a feedback controller as the
error for training a neural network model. They called
this learning methodfeedback-error-learning. Using this
method, the neural network model for feedforward
control acquires the inverse dynamics model of a con­
trolled object. They successfully applied feedback-error­
learning to trajectory-learning and force-control of a
PUMA robot (Kawato, 1990a; Miyamoto, Kawato,
Setoyana, & Suzuki, 1988), a kinematically redundant
manipulator (Kana, Kawato, Uno, & Suzuki, 1990),
and a manipulator driven by rubber actuators with dy­
namical redundancy (Katayama & Kawato, 1991a,
1991b, 1991c). This method was originally proposed
as a model of voluntary movement learning in the cer­
ebellum (Tsukahara & Kawato, 1982). However, no
methods oflearning for an adaptive feedback controller
using feedback-error-learning had yet been examined.

In this paper, we propose learning schemes using
feedback-error-learning for a neural network model
applied to an adaptive nonlinear feedback controller.
In these learning schemes, a conventional feedback
controller (CFC) is provided both as an ordinary feed­
back controller to guarantee global asymptotic stability
in a compact space and as an inverse reference model
of the response of the controlled object. If a CFC is
prepared as an inverse reference model of the response
in Cartesian space, impedance control (Hogan, 1985)
is derived after learning as shown in Section 2.1. In
Section 3, we introduce simulated results of proposed
learning schemes. In Section 4, we also point out the
relationship of these learning schemes to the posture
and locomotion adaptive control mechanisms in the
cerebellum which receives proprioceptive feedback sig­
nals as the inputs. Finally, in the Appendixes, we discuss
the convergence properties of the neural network mod­
els by applying the Lyapunov method to the averaged
equations associated with the stochastic differential
equations that describe the system dynamics.
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2. ADAPTIVE NONLINEAR FEEDBACK
CONTROLLER

In this section, we propose two adaptive learning control
schemes using feedback-error-learning for neural net­
work feedback controllers.

In the first learning scheme, the neural network
feedback controller ultimately acquires an inverse dy­
namics model of the controlled object. Thus, we call
this learning scheme Inverse Dynamics Model Learning
(IDML). In the second learning scheme, the neural
network model is trained to become a nonlinear reg­
ulator to compensate for the nonlinearity of the con­
trolled object (except for the inertia term) through
learning. Accordingly, this is called Nonlinear Regulator
Learning (NRL). These two learning schemes are de­
scribed in detail below.Convergence properties of these
two learning schemes will be examined in the Appen­
dixes using procedures similar to those used by Kawato
(Kawato, 1990b) for adaptive feedforward control.

2.1. Inverse Dynamics Model Learning (IDML)

We explain the configuration and the behavior of this
learning system using Figure 1. Subsequently, we show
learning impedance controlas an application ofIDML
in Cartesian space.

The components, a CFC, a neural network applied
to an adaptive nonlinear feedback controller (NNFC) ,
and a controlled object, are connected as shown in Fig­
ure 1. The CFC is used both as an ordinary feedback
controller to guarantee global asymptotic stability dur­
ing the learning period, and as a reference model for
the responses of the controlled object. The sum of the
output of the CFC and the external input for a con­
trolled object is fed to the NNFC as the error signal.
This corresponds to the inputs for parameter modifi­
cation. The NNFC also receives oj, and 0as ordinary

B"

1:. = c:l>rO, e, 6,w)

, NNFC"I

~~
T"
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FIGURE 1. Block diagram of Inverse Dynamics Model Learning (IDML).
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For simplicity, a linear controller is used as the CFC
in the following explanation:

T c "" K2(Or - 8) + K1(8r - 0) + Ko(Or - lJ). (2)

inputs. Here, 8, il, and (j are the state vectors of the
controlled object: its position, velocity, and acceleration.
As the neural network acquires the inverse dynamics
model of the controlled object through learning with
sufficiently rich external inputs or sufficiently rich ref­
erence responses, the output responses of the controlled
object are governed by the inverse reference model im­
plemented as the CFC. Thus, in the absence of external
inputs after learning, the actual responses finally co­
incide with the reference responses.

Following are the equations representing the dy­
namics of each component and this learning scheme.
The controlled object dynamics fis expressed as:

(8)

(7)

(5)Timag = T - Tn = T c + Text·

where 7] is a positive-definite matrix which determines
the learning rate. The convergence property of this
leaning scheme is examined in Appendix A. After
learning, the NNFC acquires an arbitrary close model
of the inverse dynamics of the controlled object, and
the response of the controlled object is governed by:

Equation 5 can be rewritten as the following equation
using eqn 2.

K2(O - Or) + K1(O - Or) + Ko{O -Or) = Text- Timag' (6)

The learning rule ofthe feedback-error-learning scheme
is:

(I)fed, 8, 0) = T.

where Text is the external input to the controlled object.
The difference between T and Tn is expressed as T imag.

Here, 8 is the actual position vector, 8, is the reference
position vector, and w is the matrix set of synaptic
weights (i.e., adaptive parameters) of the NNFC. The
NNFC can be one of several types of neural network
models in which the error of the output vector will
decrease by changing the internal adaptive parameters
[e.g., Multi-Layer Perceptron (MLP) (Irie & Miyake,
1988; Rumelhart & McClelland, 1986), Cerebellar
Model Articulator Controller (CMAC) (Albus, 1975),
associative content addressable memory (Atkeson &
Reinkensmeyer, 1988), Memory Based Reasoning
(MBR) (Stanfill & Waltz, 1986), or Radial Based
Function (RBF) network (Poggio & Girosi, 1990)].
The optimum structure and the size of the neural net­
work model depend on the target function f to be
learnt. This problem has been frequently discussed in
contexts such as functional approximation or the
learning generalization problem, and is beyond the
scope of this paper. Our assumption about the neural
network model is that the nonlinear function of the
controlled object,!, can be arbitrarily modeled closely
by <I> with an appropriate wwithin a compact set. This
approximation property has been validated for several
neural network models (e.g., Ide & Miyake, 1988;
Funahashi, 1989). For more satisfactory treatment of
the functional approximation problem, readers are en­
couraged to refer to Sanner and Slotine (1992) in which
the RBF network is used to discuss this problem.

The equation of the system is

The CFC is represented by the following equation using
the Cartesian coordinates

(9)

( 10)

R(8)O + N(O, 8) "" T.

where X e =X, - x. Equation ( 10) defines the reference
model of the manipulator responses. M, B, and K re­
spectively represent the virtual mass, virtual viscosity,
and virtual stiffness of the manipulator as derived by
impedance control. The function <I> of the neural net­
work is the same as in eqn (3). The total system is
shown in Figure 2. Similarly to the joint-space scheme,
if the NFC acquires an approximate model of the in­
verse dynamics of the controlled object by learning, the
total input to the controlled object, T, is given by the
following equation.

where ~ = () - 8r • That is to say, the tracking-error, 0,
- 8, converges to zero in accordance with the reference
model represented by eqn (8) while 'Text =: O. When the
external input, r ext, is served, the tracking-error is given
by eqn (8).

The above describes the learning scheme in joint
space. This can also be applied in Cartesian space. Us­
ing this learning scheme in Cartesian space allows for
the impedance control proposed by Hogan ( 1985). To
apply impedance control to a robot manipulator or
some mechanical system, it is necessary to fully know
the dynamics of the controlled object in advance. By
using IDML scheme in Cartesian space, however, the
controlled object dynamics will be obtained by learning.
Thus, we call this learning scheme as applied to Carte­
sian space learning impedance control. Next, learning
impedance control is explained briefly as an application
of the IDML. The manipulator dynamics can be ex­
pressed as:

(3)

(4)T=Tn+Tc+1ext ,

The NNFC output is expressed as:

r« = <1>(8,0,8, w).
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FIGURE 2. Block diagram of Learning Impedance Control.

results of learning. In Appendix B, we will discuss the
convergence property briefly.

The dynamics of the controlled object is represented
here as:

R is an inertia matrix that is nonlinear. N is another
term of the controlled object dynamics (i.e., Corioris­
force, Centrifugal-force, Viscosity, and Stiffness). As
with the above method, IDML, and CFC serves the
same two purposes (see Section 2.1.). We use only the
output ofthe CFC, T cs as the error signal (i.e., adaptive
modification input) for the NNFC as shown in Figure
3. This is expressed as:

T = Tn + JT(Fc + F ex, ) ~ R(O)O + N(O, 8)
+ JT(M(x, - x) + si», - x) + K(x, - x) + F ext ) . (11)

Hence, the response ofthe end-point ofthe manipulator
is governed by:

M(x - xr) + R(x - ,ir) + K(x - x,) ~ Fex,' (12)

Thus, this learning method derives impedance control
for a manipulator that has unknown nonlinear char­
acteristics. Moreover, we can change the virtual imped­
ance of the manipulator simply by changing the pa­
rameters, M, B, and K, ofthe CFC without relearning,
because the NNFC learns only the inverse dynamics
model of the controlled object.

R(B)9 + N(B, 6) = T. ( 13)

(14)2.2. Nonlinear Regulator Learning (NRL)

In this learning scheme, the actual acceleration is not
used as the input of the NNFC. Instead, we feed the
reference trajectory (position, velocity, and accelera­
tion) to the NNFC in order to acquire the feedforward
controller and to obtain desired responses. We explain
here the configuration of this learning scheme and the

~~ = n(::rT C'

In this learning scheme, the external input is considered
to be absent during learning.

In this case, we feed the reference values, 0" Oro On
and the tracking-errors ofthe controlled object, 6, - 0,
Or - 0, to the NNFC as ordinary inputs. Hence, con-

~

FIGURE 3. Block diagram of Nonlinear Regulator Learning (NRL).
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If <I> is represented as:

sidering that 8, 0 is reproduced by using the reference
values and the tracking-errors, the function of the
NNFC is:

The total dynamics is given by the following equa­
tion.

T = Tc + Tn *'* (R(O) + K2)(Or - 0) +K1(O, - 0)

+ Ko(O, - 0) + <I> - N(O, 0) - R«()Or = O. (16)

Tn = 0(0" 0" ()r, ()r - (), Or - 0, w)

= 4>(0" 0" ()" 0, fJ, w). (15)

a fourth order, fixed-step-size Runge-Kutta method
(with !:it = 2 X 10-5 (s) for inverted pendulum simu­
lations, and !:it = 2 X 10-4 (s) for manipulator simu­
lations).

3.1. Inverted Pendulum Controlled by IDML

The dynamics of the controlled object, an inverted
pendulum, is expressed as:

.. (2 )- (J + m[2) 0 - . - 1
1 + exp( -aO)

+ mgl sin 0 = ml-r cos 0. (21)

where

The ideal values of the weights in IDML are repre­
sented as follows for the controlled object expressed as
eqn(21).

(22)

(23)

Po = tan 0

PI = (2/(1 + exp(-aO») - l)/cos()

Pl = O/cos 0.

The output of the NNFC, -rn, is

m: pendulum mass 0.0411 [kg],

I: pendulum length 1.26 [m],

J: pendulum inertia 0.0647 [kg-rn/s "],

0: pendulum angle [rad],

T: input acceleration for the cart [rn/s "],

g: gravity acceleration 9.806 [rn/s"].

The second term on the left side of eqn (21) cor­
responds to Coulomb friction. This is a typical regulator
problem because the reference values Or, 0" Or are al­
ways zero.

The following nonlinear functions, Pi, are used as
the input to the two-layered neural network in the
NNFC. This is because we can show the convergence
of the adaptive parameters to the ideal values, and the
learning problem can be made considerably easier by
using known nonlinearity, as shown by Khosla & Kan­
ade (1985), and others (Atkeson & Reinkensmeyer,
1988; Craig et al., 1986; Kawato et al., 1987; Miyamoto
et al., 1988; Slotine & Li, 1987).

(20)

Here ~ = 8 - 8,.
Roughly speaking, to obtain the desired response

during tracking-error convergence movement without
external inputs [i.e., eqn (20)] by compensating for
the nonlinear object dynamics, the neural network
model is trained to become a nonlinear regulator ex­
pressed in eqn (17). As with the IDML method, we
can also apply this learning scheme in Cartesian space.
However, perfect impedance control cannot be derived
by using NRL because the NNFC does not have the
feedback acceleration signal, 8. Therefore, it is impos­
sible to make the inertia term of virtual impedance
smaller than the inertia term ofinherent impedance of
the controlled object by using NRL in Cartesian space.

Consequently, this equation yields the tracking-error
responses without an external input to the controlled
objects on the condition, J + R(8)K21 oF 0, as:

(I + R«())K"2 1
) (K1(Or - 0) + K 1(0, - 0)

+ Ko(O, - ());;; O. (19)

This gives:

(R(O) + K2 )(0, - 0) + K1(0, - 0) + Ko(O, - 0)

+R(0)K"2 I{K
1(0, - 8) + Ko(O, - 0»);;; O. (18)

Equation ( 16) can be expressed as:

3. SIMULATION RESULTS

<I> ;;; <l>d = N(fJ, 0) + R(O)O,+ R(0)K"2 1(K1(0, - 0)

+ Ko(lJr - 0), (17)

Using these known nonlinearities and linear parameter
adaptation, the desired function with ideal weights for
the adaptive controller are exactly obtained by the
feedback-error-learning rule.

Figure 4 shows the time courses ofthe weights during

In this section, we show the simulation results to the
learning schemes described in the previous section ap­
plied to particular control problems. In the first ex­
periment, an inverted pendulum is used as the con­
trolled object for IDML and NRL in joint space. In
the second experiment, a two-link manipulator is used
as the controlled object for IDML in Cartesian space
(i.e., learning impedance control). All simulations used

1110 = g,
A I
WI=-­

ml '

J+ ml?
1112 = ---­

ml
(24)



938 H. Gomi and M. Kawato

-0.3 I--,-~.........--,-_................_-,-_,----,-_,,----J

012345678910
Time [sec]

FIGURE 6. The responses of the controlled object for external
input. T..I = -5 sin('ll"t/2) [m/s1 ] .
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FIGURE 4. Time courses of weights (adaptive parameters)
during IDML.
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IDML. We used the Ornstein-Uhlenbeck Process,
which is a strongly mixing process (i.e. , past and future
becomes asymptotically independent) , as the external
input, T eXI ' in this learning period. During the leaning
period, the feedback gains are K2 = 1, KI = 3.5, Ko
= 20, and I,h, WI , Wo are the ideal values for the actual
values, W2, WI , Woo Each actual value gradually ap­
proached the ideal value. Figure 5 shows the moving
average of the square of the NNFC output and the error
for the NNFC during IDML. The NNFC output in­
creased to compensate for the controlled object dy­
namics. This adaptation decreased the error for the
NNFC.

The responses of the pendulum to each condition
are compared in Figure 6. The response after learning

corresponded perfectlyto the desired response governed
by the reference model:

K2(ii -Or) + K 1(fJ - Or) + Ko(lJ - (Jr) = T ex, . (25)

(In this case, iir = Or = (J, = 0, K2 = I, K 1 = 3.5, ~ = 20.)

To compare with a conventional method, we show the
response controlled by the linear controller which was
designed to obtain the desired response for a linearized
controlled object without the friction term:

- (J + m12 )'O+ mglO = mlr . (26)

The response driven only by the linear controller did
not correspond to the desired response because of the
nonlinearity ofthe controlled object and the unexpected
factor in the controller design (i.e., the friction term of
the actual object dynamics).

3.2. Inverted Pendulum Controlled by NRL

We show here a result of the second learning scheme,
NRL, using the same controlled object, an inverted
pendulum. by using the prepared nonlinearities, we
have already confirmed that the actual weights in this
learning scheme approached the ideal weights.Accord­
ingly, the following result was derived by using a 3­
layered neural network (2 input units , 5 hidden units,
I output unit) with direct connections from the input
units to the output unit to confirm the ability of this
learning scheme.

Figure 7 shows the desired response, the response
using the linear controller, the response before learning,
and the response after learning. The linear controller
was designed to perform the desired response for the
controlled object expressed in eqn (26). However, we
did not obtain the desired response using a linear con-

40
x 105

80

Error signal for NNFC

_....,L-L ~.__~
o

100

~
~

~

~o

~--.
IE::=-

t
>
'"

I 0.1

10 20 30
Iteration number [times]

20 40 60
Iteration time [sec]

FIGURE 5. Moving averages of the square of the NNFC output
and the error for NNFC during IDML.
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M = diag[O.l, 0.1] [kg]

B = diag[7.0, 7.0] [N/(m/s)] (noncontact phase)

B = diag[700, 7.0] [N/(m/s)] (contact phase)

K = diag[lOO, 100] [Nr m].

The parameters of the CFC are shown below for each
condition.

After learning

M = diag[O.l, 0.1] [kg]

B = diag[7.0, 7.0] [N/(m/s)]

K = diag[lOO, 100] [N/m],

F; = -[Mx + Bx + K(x - x,)] x = [x, yV.

Before learning

54

response
beforelearning

response
afterNRL

desired response

controlled by
linear controller

2 3
Time [sec]

FIGURE 7. The responses of the controlled object from initial
position of 60°. The parameters in feedback controller, K2 , K1 ,

Ko, are 1.0, 3.5, 20.0, respectively.
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Before learning, the actual trajectory differed from the
reference trajectory in free movement, and the perfor­
mance of the contact task was much poorer, as shown
in Figures 9 and 10. After learning, the actual trajectory
in free movement was much closer to the reference tra­
jectory as shown in Figure 11. The impact force at the
time of collision was much lower than before learning
as shown in Figure 12, because the virtual impedance
of the manipulator was lowered. Moreover, the contact
task was so smooth that the external force was propor­
tional to the magnitude of the difference between the
actual trajectory and the reference trajectory as shown
in Figure 12. This is because the NNFC acquired ap­
proximate model of the inverse dynamics, and the vir­
tual impedance settled in the CFC was changed to allow
a stable contact in this phase.

beforelearning

j\,\..
....

\\,

0.0 0.1

0.2

0.1

-0.1

-0.2

:g0.0
;>,

troller because of the nonlinearity and friction of the
actual controlled object. The actual response after
learning approached the desired response because the
nonlinear adaptive controller compensated for the
nonlinearity of the controlled object through learning.

3.3. Learning Impedance Control of
a 2-link Manipulator

In this section, we show some results of learning
impedance control using a 2-link manipulator in the
horizontal plane. A 3-layered neural network model
with 9 input units, 13 hidden units, and 2 output units
was used in this simulation. To demonstrate the effi­
ciency of learning impedance control, we compared
the responses of the end-point of the manipulator to
the external force input in each condition (before
learning, after 1000-s learning, and the ideal response),
as shown in Figure 8. The virtual impedance which is
decoupled along the x and y axes (i.e., nondiagonal
components of the inertia-, viscosity-, stiffness-matrix
are zero), is required for the manipulator. For a step
external force input along the x or y axis, the response
of the ideal system which has such decoupled imped­
ance, traces a straight path along each axis as shown
in Figure 8. When an ideal inverse model is supplied
to the NNFC, the responses will be ideal, even though
the inherent dynamics of the controlled object's com­
ponents interference each other, such as a 2-link ma­
nipulator. As shown in Figure 8, the responses after
learning were closer to the ideal response than before
learning. Thus, we can conclude that the NNFC ac­
quired an approximate model of the inverse dynamics
model in the work space which was explored during
learning.

Next, we examined the responses in the contact task
to the wall, which was simulated using a strong spring.
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FIGURE 9. Trajectory during the contact task before learning. FIGURE 11. Trajectory during the contact task after learning.

4. DISCUSSION

4.1. Differences Between the Two Learning
Schemes, IDML and NRL

Comparing the results of IDML and NRL, the same
linear autonomous responses (r ext = 0) can be obtained
after learning as shown in eqn (8) and eqn (20). How­
ever, the two methods give different responses for the
same external input (i.e., constrained movement). As
shown by eqn (19), NRL cannot provide the motor
command to satisfy a desired response for the external
input, Text. This is because the dynamics of the con­
trolled object cannot be fully compensated for using
an adaptive feedback controller, whose inputs are only
actual position and velocity. When the desired response
to the continuous external input should be satisfied in
a particular control task, it is necessary to use IDML,
and when only the convergence response without ex-

ternal input (i.e., the autonomous response) should be
improved, NRL is preferable to use because it is not
necessary to measure the external input, and we do not
need the acceleration input to the adaptive controller,
NNFC. Therefore, the choice of learning scheme de­
pends on the object to be controlled.

4.2. Relation to Previous Work

4.2.1. Adaptive Control Methods .. As we noted in Sec­
tion I, previous adaptive control methods mainly use
the local linearization technique (Dubowsky & Des­
Forges, 1979) or a priori knowledge of the nonlinearity
of the controlled object to regulate linear parameters
(Craig et al., 1986; Slotine & Li, 1991). On the other
hand, some nonlinear adaptive controllers, such as ar­
tificial neural networks, can be directly utilized for
nonlinear problems (Sanner & Siotine, 1992). A suf­
ficiently large capacity of a neural network and a suf-

Ol-------,....------:~-----i,
-100

~
"0 -200
~

II)

~ -300
..s
] -400
£
~ -500

1.00.80.2 0.4 0.6
time [sec]

FIGURE 12. External force at the end effector during the contact
task after learning.

1.00.80.2 0.4 0.6
time [sec]

FIGURE 10. External force at the end effector during the contact
task before learning.
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ficiently powerful training method in the work space
make it unnecessary to know the exact nonlinearity of
the controlled object in advance. In practice, however,
it is difficult to achieve these ideal conditions. Thus, it
is preferable to partially use neural network controllers
for controlled objects that have unknown characteris­
tics.

schemes, IDML and NRL, as shown in Figure 13. In
this case, the reference model of tracking-error con­
vergence is prepared separately from the CFC as shown.
In the IDML case, the desired acceleration, Od, is cal­
culated by the reference model using the reference re­
sponse, 0" the actual response, 8, and the external input,
r ext, such as:

4.2.2. Neural Network Controllers.. Robot control has
been studied using neural networkswhich employ direct
inverse modeling (Barto, 1989; Jordan, 1988). This
research can be categorized into two areas: creating an
inverse kinematics model (Kuperstein & Rubinstein,
1989; Martinets et al., 1990) and creating an inverse
dynamics model (Miller et al., 1990; Psaltis et al.,
1987) .

As we pointed out in the introduction, the funda­
mental problem of training a nonlinear adaptive con­
troller such as a neural network is how to obtain the
error signal for the controller. The forward-inverse­
modeling method (Jordan, 1988) uses back propaga­
tion (Rumelhart & McClelland, 1986) through a for­
ward dynamics model (direct dynamics model) to ob­
tain the input-error (command-error) from the output­
error (trajectory-error). Mathematically, this corre­
sponds to a steepest-descentmethod. On the other hand,
it has been pointed out (Kawato, 1990b) that feedback­
error-learning corresponds to a Newton-like method.
These two methods, steepest descent and the Newton­
like method, are well known numerical solutions for
nonlinear optimization problems. Thus, wecan employ
not only feedback-error-learning but also back propa­
gation through a forward model in the proposed

Od = rr«; + K, (Or - 0) + Ko(8r - 8») + Or'

Narendra and Parthasarathy ( 1990) examined in detail
neural network controllers that use another kind ofref­
erence model and error-back propagation through a
forward dynamics model.

Sanner and Slotine showed a learning scheme (San­
ner & Slotine, 1992) similar to the NRL scheme pro­
posed above and before Gomi and Kawato (1990).
They examined the convergence of their learning
schemes based on the adaptive control method pro­
posed by Slotine and Li (1987) and the functional ap­
proximation by the Fourier series to translate nonlinear
function to linear parameters with basis functions. They
also discussed how to actually combine neural network
learning with conventional sliding control (Slotine &
Li, 1991). Their scheme has the merit of not using the
current acceleration of the controlled object. However
the applications are restricted to trajectory tracking
control. If external inputs are provided, the adaptive
mechanism changesthe adaptive parameters to improve
the trajectory tracking performance, which is lowered
by the external inputs. Thus, the adaptive parameters
willchange continuously because of the varying external
inputs, and parameter convergence cannot be obtained.
When the changing rate of the external inputs is faster

8,8,8

e;

8

8,0

Cont rolled t-----.........
object

9" e.», -
+

Reference 8d

Model 1----4-....

FIGURE 13. IDML and NRL scheme by using back propagation through a forward model. The error for forming the forward model
is the difference between the actual output of the controlled object and the output of the forward model, e/. The error for training
the NNFCis produced from the tracking-error, e,,, by using back propagation through the forward model of a controlled object (i.e.,
partial derivative of the output error with respect to the input of the forward model).
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than the adjusting rate of the parameters (which is rel­
atively slow in usual neural network learning), accurate
trajectory tracking cannot be obtained. Moreover, when
the controlled object is modeled as a second order me­
chanical model, it might not be possible to directly
apply their scheme to regulation control in which the
reference acceleration is always zero, such as positional
regulation control or velocity regulation control. For
example, if their scheme is applied to control an in­
verted pendulum without the boundary of the param­
eter adaptation, the adaptive parameters will diverge
because of unlimited positional regulation. Addition­
ally, even if adaptation is stopped after the trajectory­
error and the parameters both converge, the desired
autonomous response cannot be supplied, because the
design of their adaptive control is focused only on the
trajectory tracking control rather than on obtaining the
desired response during the tracking-error convergence.
In contrast to their scheme, although the current ac­
celeration is required, the adaptation mechanisms in
IDML and NRL work not only for tracking control
but also for regulation control as shown in the inverted
pendulum simulations above, and the desired auton­
omous response can be obtained after learning.

4.3. Adaptive Motor Control in the Central
Nervous System (eNS)

Originally, this research was launched to reveal the
computational schemes of motor learning in the central
nervous system (CNS). Hence, we discuss here the re­
lationships between the learning schemes proposed
above and the actual animal motor learning ability.

Humans can stand upright stably and walk smoothly,
because various sensors observe the present state, and
the CNS controls posture with a real-time feedback
loop. This ability is gradually learnt during growth. It
has been pointed out that proprioceptors such as the
muscle spindles and the tendon organs of Golgi, the
vestibulo organ and vision all playa major part as sen­
sors for observing the present state. The proprioceptors
observe the position, velocity, and force of the limbs
and the body trunk. The vestibulo organs observe the
head velocity and acceleration, and the visual sensor
also detects the head velocity. Even if one sensor is se­
riously damaged, the other sensors can compensate in
order to maintain the upright posture. It is known that
there are some tracts descending in the spinal cord from
the brain stem and cerebellum to the limb and body
trunk muscles which serve to harmoniously control
posture and locomotion (Carew, 1985).

Ito (1984) has revealed physiologically that the cer­
ebellum plays an important role in adaptation for the
vestibulo-ocular reflex. There are four main parts of
the cerebellum: the flocculus, the vermis, the hemi­
sphere intermediate part, and the hemisphere lateral
part. Fujita ( 1982) gave a hypothesis for the adaptive
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mechanism regulating the vestibula-ocular reflex in the
flocculus, and Kawato et al. (1987) gave a hypothesis
for the adaptive mechanism regulating voluntary
movement in the hemisphere lateral part. Nashner
found that the adaptation of posture control is severely
impaired in patients with cerebellar disease (Nashner,
1976). Thus, we assume that the cerebellum also plays
an important role in the adaptation of posture control.

The inputs and outputs of these four parts have al­
ready been investigated in anatomical studies (Ghez &
Fahn, 1985). The principal afferentinputs of the vermis
in the cerebellum are from the vestibular labyrinth, the
proximal body parts, and the visual organs. The prin­
cipal outputs of the vermis are to the medial brain stem
and the axial regions of the motor cortex. The function
ofthe vermis is thought to be axial and proximal motor
control. The hemisphere intermediate part receives the
afferent information from the spinal cord, and sends
the output to the red nucleus and the distal region of
the motor cortex. The function of the hemisphere in­
termediate part is thought to be distal motor control.

These physiological and anatomical observations
support the hypotheses that the vermis and the hemi­
sphere intermediate part have an adaptive mechanism
for posture control and locomotion control. In addition
to the previous two models by Fujita and Kawato, we
propose two other models of adaptive control in the
cerebellum for posture and locomotion control, as
shown in Figure 14. These adaptive mechanisms are
based on the feedback-error-learning mechanism which
has some similarities with the Adaptive Vector Inte­
gration to Endpoint (VITE) model studied by Gau­
diano and Grossberg ( 1991). These two adaptive mod­
els of the vermis and the hemisphere intermediate part
correspond to the learning scheme that we proposed in
this paper. The details of the physiological aspects for
these models have been examined in Gomi and Kawato
( 1992) and Kawato and Gomi ( 1992). The physiolog­
ical evidences for creating these precise models are not
yet adequate, but these models might play an important
role in revealing the computational schemes for motor
learning by the CNS.

5. CONCLUSIONS

We have proposed new learning schemes using feed­
back-error-learning for a neural network model applied
to adaptive nonlinear feedbackcontrol. After the neural
network has compensated perfectly or partially for the
nonlinearity of the controlled object through learning,
the responses of the controlled object followthe desired
responses supplied by inverse reference model imple­
mented in the conventional feedback controller. Each
learning scheme does not require perfect knowledge of
the nonlinearity of a controlled object in advance. The
learning schemes proposed here can also be used to­
gether with previous adaptive control methods to use
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FIGURE 14. Schematic block diagrams of the adaptive motor control in each region of cerebellum. (a) Adaptive modification of
vestibulo-ocular reflex and optokinetic response; (b) adaptive control for posture; (c) adaptive control for locomotion; (d) learning
control for voluntary movement. 10: inferior olivary nucleus, VN: vestibular nuclei, SRCT: spino-reticulo-cerebellar tracts, DSCT:
dorsal spino-cerebellar tracts, SOCPs: spino-olivo-cerebellar paths. 8h : head position, 8.: eye position, 8... : external visual world
position, e: retinal error velocity, s: derivative operator, P: controlled object dynamics.

a priori knowledge. Therefore, these learning schemes
can be used to control many kinds of objects, such as
chemical plants, mechanical systems, robots, etc.
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APPENDIX A

Stochastic space is used in the discussion of the convergence of the
NNFC below, because the nonlinearity of the controlled object is not
specified [compare with Slotine and Li ( 1987) in which the nonlin-
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earity ofthe object dynamics is perfectly known}. Geman's Theorem
( 1979) and Lyapunov's second method are used under the following
three assumptions.

ASSUMPTION 1. The learning rate, 71, is very small and positive­
definite.

ASSUMPTION 2. The inputs, Text and 0" ii" IJr, are strongly
mixing and strongly stationary stochastic processes.

ASSUMPTION3. TheCFCisdesigned toguarantee theasymptotic
convergence oflJ in a compact setduringlearning when Tex equalzero
and 0, is constant.

Using the above assumptions, the system dynamics canbe represented
as the following random differential equations instead of the deter­
ministic equations, eqn (4) and eqn (7).

AO(t, w), O(t, w), o(t, w» - 4>(O(t, w), OU, w), OCt, w), wU, w»

= K2(Or(l , w) - O(t, w» + KI(ilrU, w) - O(t, w»

+ Ko(Or(t, w) - o(t, co) + Tex/(t, w), (A.l)

dw(t, w) = (04)(0(1, w), OU, w), o(t, w), w(t, W»)T
m ~ aw

X {Te(O(t, w), o(t, w), O(t, w), Or(t, w),

iI,(I,w), Or(t, w» + Tex,(t, w)}. (A.2)

Here, w is a sample point in probability space. The solution of the
following averaged equation is a good approximation to the solution
of eqn (A.2) for small 1), as proven by Geman's theorem (1979).

dM = E[(o34>(O(l, w), O(t, w), OU, w), wet, W»)T
dr ~ o3w

X {Te(O(t, w), o(t, w), OCt, w), Or(l, w),

o,(t,W)8r(t,W»)+Text(t,W)}] . (A.3)
_1>1

Thus, we consider the following function Vas a possible Lyapunov
function for the averaged eqn (A.3) by using the following function
L:

L = ! {T.(O(t, w), O(t, w), OCt, w), Or(t, e), 9,(l, w), (JAt, w))

+ Tex/(t, W)}TX {Te(U(t, w), o(t, w), OCt, w),

or(t, w), O,(t,w), (Jr(t, w» + 1'ex/(t, w)} (A.4)

V( M, t) = E[L(8U, w), O(t, Cd), o(t, w),

O,(t,w), Or(t, w), O,(t, w),1'extU, W»]w-M2: O. (A.5)

The time derivative of V is calculated as follows:

dV(M, t) [... ..,
dt = E {Te(O(l, w), OCt, w), 0(1, w), 0r(t, w), Or(l, w),

T d .. .
0,(1, w» + Tex,(t, w)} X de {Te(O(t, w), O(t, w), 0(1, w),

O,(t, w), Or(t, w), O,(t, w» + T"",(t, W)}] . (A.6)
_1>1

To simplify the expression, we shorten each variable by omitting
(t, w).

dV = E[(T + T )T{o3:: do + o3~e dO + aTe dO + a:.c do,
dt c exl ao dt 00 dt ao dt aOr dt

+ o3:e dOr+ OTeo3Or + dT exl}] . (A.7)
ao, dt 00, dt dt w-I>I
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Equation (A.l) can be expressed in explicit form with respect to 6
as follows:

Then, eqn (A.12) can be expressed as:

A +A T

B=--~O
2

(A.IS)

(A.14)

(
a/ a<1' )-1 a<l> (a<1')1'A = K2 r-rr - -;-:' + K2 - 1) -ao iJO aw aw '

where

x :: ll(::r(rc + r"",) LM'
Therefore, if the followingsymmetric matrix B is positive semi-definite,
that is,

By differentiating eqn (A.8) with respect to t, and then substituting
it for dO/dt in eqn (A.7), the following equation is obtained:

dV [ {( ail dw ao dO ao dO-=E (r +r )T -K --+--..,.-+-­
dt c ea Z aw dt ao dt ao dt

+ a~ do, + a~ ao, + a"& dO +~ dr""I) _K1dO _ K
o

dO
do, dt ao, dt ao, dt are:a dt dt dt

do, dO, dO, drext } ]
+ K2 dt + K1 dt + s; dt +dt W-M' (A9)

0(1, w) = h(O(I, w), ott, co ), w(t, w), O,(t, w), iW, zo),

0,(1, e), rcx,{t, w». (A.8)

Wesort the above terms into two parts with respect to wand 0whose
changing rate are quite different from each other.

Even though eqn (A. 15) is a sufficient condition for convergence,
not a necessary one, selective adaptation can be applied to guarantee
the nondivergence during learning. We can calculate matrix A in eqn
(A.IS) if the object inertial property, afl a"&, is known. Thus, the neural
network parameter, W, can be changed using the adaptation rule, eqn
(A.2), while Bin eqn (A.IS) is a positive-definite matrix (i.e., all
eigenvalues of B are positive). Consequently, the Lyapunov function
V might be decreased. Near the ideal final state, aeI>I ao converges to
a//ao. Then,

dV = E[(r + r )T{-K2 ao} dW]
dl c eXI aw dt w=-M

+ E[(r + r T{-K (a~ dO + ~ dO + a.~ do, + a~ dO,
c ext) Z ao dt ao dt dO, dt ao, dt

+ a"& dO, +~ drexl) _ K dO _ Ko dO + K
2

d"&,
ao, dt arexi dt I dt dt dt

+ K, dO, + s, dO, + drm}] (A.IO)
dl dt dt wRM

we obtain:

dV
di;s;O. (A.l6)

(A.18)

(A.I9)

(A.17)

dV _ T
'd!-E[-(r,+r"",) A.(1',+r<lXI)] ....M;S; 0

A= K(a!.. _a~ K)-I ileI> (CJiJ.»T ~ iJ<I>. (a<I»T
2 ao ilO + Z aw 1) ilw aw 11 iJw .

Then,

is positive semi-definite.

Equations (A.S) and (A.I6) hold only when w = wfor sufficiently
rich 0 except at the local minimum, where a<1' I aw = O.Consequently,
we conclude that w asymptotically converges to the optimal set of
synaptic weights, W, in the sense of quadratic mean convergence, if
the local minima are avoided during learning. By using an annealing
method for changing the weights, as in Gernan ( 1979), the solution
of eqn (A.2) will converge to the global minimum.

Thus, the final state is locally stable because d VI dt is negative semi­
definite.

For strict convergence of this learning scheme in the general case,
we might use the following modifications. Kz«iJ//iJO) - (a<IJliJO) +
KZ)-I can be calculated if all ae is known. Thus, the learning rule
can be modified as:

APPENDIX B

The convergence of the neural network in the NRL scheme is briefly
explained below. The difference between the actual output and the
desired output of the NNFC, <1'd' is defined as P. P is given by the
next equation using eqns (13 ), ( 16), and ( 17) .

(A.12)

We calculate the partial derivative of eqn (A.8) with respect to
w while referring to eqn (A.!) in order to replace ao/aw in
eqn(A.12).

a!. ao _a~ a"& _a<I> = _ K
z

ao <=> ao
ao aw ao aw aw aw aw

= (af. _ a~ +KZ)-I a<IJ .ao ao aw (A.l3)

Here, we use the proposition that the expectation of any Baire function
of a strongly stationary stochastic process does not depend on time
[see for example, Ito (1953)]. Because of ASSUMPTION 3,"&,8,0, and
L are Baire functions of the strongly stationary processes, 0" 0" 0"
and T "",. Consequently, VM """'I does not depend on time, and d VM comtl
dt is equal to zero. Thus, the second term on the right in eqn (A.IO)
vanishes. Hence, we obtain:

The second term, E[·), on the right in eqn (A.IO) vanishes if 0,0,
"&, 0" 0" "&" T ex' are strongly stationary stochastic processes and the
changing rate of w is sufficiently slow (i.e., the learning rate 1) is very
small). The reason for this is explained below.

The second term of eqn (A. I0) is the same with d V/ dt when M
is constant, as shown in the following equation:
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P=<l>-iI>d=-(I+R(Ii)Kil)TC I: unit matrix (B.I)

We consider the followingfunction J as a possible Lyapunov function
of this learning scheme:

J = E[~prPIW=M~ O. (B.2)

By the same procedure as used to prove the convergence of the IDML
scheme, the following equation is obtained:
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TI, is very small. Thus, we next examine the first term in the right of
eqn (B.3). When the followingsymmetric matrix D can be designed
to be positive-semi-definite during learning, for example,

(BA)

where

dJ = E[-.r{{l + R(IJ)Ki') lJil> TI( ail»TTe] + d!
dt aw oW _M dt

where

(B.3)

we can obtain:

Consequently, the function <l> of the neural network ideally acquires
nonlinear compensation represented in eqn (17) after learning
under the same assumptions used in Appendix A and the condition
[eqn. (BA)).

dJ ['j I oP d (dkIJ) 2 ap d ( dkfJ,) 1]
di = E pl k~ a( ~::) dt dt

k + k~ a( ~~r) di dik W-M'

The second term in the right ofeqn (B.3) vanishes because 0, 0, are
assumed to be mixing process, i.e., when the rate of changing weights,

dJ -s O.
dl

(B.5)




