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Artificial intelligence such as deep neural networks exhibited

remarkable performance in simulated video games and ‘Go’. In

contrast, most humanoid robots in the DARPA Robotics

Challenge fell down to ground. The dramatic contrast in

performance is mainly due to differences in the amount of

training data, which is huge and small, respectively. Animals

are not allowed with millions of the failed trials, which lead to

injury and death. Humans fall only several thousand times

before they balance and walk. We hypothesize that a unique

closed-loop neural circuit formed by the Purkinje cells, the

cerebellar deep nucleus and the inferior olive in and around the

cerebellum and the highest density of gap junctions, which

regulate synchronous activities of the inferior olive nucleus, are

computational machinery for learning from a small sample. We

discuss recent experimental and computational advances

associated with this hypothesis.
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Introduction
Deep neural networks have been remarkably useful for

image classification and phoneme recognition [1�]. Com-

bined with reinforcement learning algorithms, deep neural

networks have outperformed human experts in simulated

video games and the game ‘Go’ [2,3�]. To achieve such

successes, millions of images, hundreds of millions of

phonemes, and tens of millions of records of game plays

have been utilized as training data sets in the supervised

learning or training trials in the reinforcement learning.

Meanwhile, in the 2015 DARPA robotics challenge final
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competition(2015DARPARoboticsChallengeFinals;URL:

https://www.youtube.com/watch?v=dv9Wm20UrcU), many

humanoid robots fell while walking on sand, going up

stairs, turning bulbs, or getting out of a car (DARPA

Robotics Challenge; URL: https://web.archive.org/web/

20160428005028/http://www.darparoboticschallenge.

org). A small number of humanoids completed all the

tasks, but they were extremely slower than humans. By

age 5, human infants are able to execute all of the above

tasks more quickly and reliably than humanoid robots

developed by world premier researchers. What could be

the reasons of this dramatic contrast between success and

failure for simulated versus real-world tasks by artificial

intelligence?

Challenges of motor learning in humanoid robots

In the simulated video games and ‘Go’, the world as a

control target has relatively small degrees of freedom

(DOF), it does not possess hidden variables, and its state

transitions are simple with little noise. Thus, the com-

puter simulations are exactly correct without errors. For

the final reason, tens of millions of simulated games are

generated by software players, and they can be used

efficiently for DeepQ learning (a Q-learning algorithm

of reinforcement learning combined with deep neural

network learning) [2,3�]. In contrast, a humanoid robot

in the real world is a complicated nonlinear dynamical

system with huge DOF. A humanoid with 100 joints, for

instance, may have 300 DOF in total, assuming that each

joint has 3 DOF (acceleration, velocity, position). If we

digitize each DOF by only 10, the system has still 10 to

the power of 300 possible states at least, while neglecting

noise, hidden states, actuator dynamics, etc. On the other

hand, ‘Go’ has only 3 (black, white, vacant) to the power

of (19 � 19) possible states. Quantitative comparison

yields that even a simple humanoid with 100 joints has

the DOF 10 to the power of 128 times higher than those of

‘Go’, implying the curse of dimensionality in the learning

of humanoids. If the DOF of a controlled system

increases, the DOF of the corresponding learning system

should be increased to deal with complexity of the

control. Indeed, hidden states can be situated far above

the measured sensory signals and far below the issued

motor commands, causing a poor interface with the exter-

nal world. Since many physical processes, including con-

tact and friction, are difficult to model, quantitatively

reliable simulations of humanoid robots in real-world

environments are extremely difficult even if not impossi-

ble. Thus, reinforcement learning in humanoids designed

to operate in the real world has been typically conducted
www.sciencedirect.com
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using real experimental trials. However, when humanoids

fall, they are often damaged such that no further trials can

be accumulated before painful, expensive and laborious

repairs are made. In artificial intelligence, or more pre-

cisely, in neural networks learning and machine learning,

it is well established that when a learning system with a

fixed DOF n is utilized, approximately 10n training

samples are necessary [4–6]. Note that the DOF n corre-

sponds to the number of free parameters adjusted by the

learning system, in most cases of neural networks, the

number of neurons and the number of weight parameters.

If it is possible to conduct tens of millions of learning

trials, a large learning system, such as deep neural net-

works, can be utilized. For instance, under an extremely

simplified condition such as 14 equivalent manipulators

participating in a robotic grasping from monocular images,

enough amount of training samples can be collected [7].

This is, however, a very rare situation for robotic learning,

under which much fewer learning trials can be executed

in general. If only 100 trials can be accumulated, only very

simple learning systems with ten DOF should be utilized

to avoid over-fitting problems in learning [8]. We postu-

late that these differences in the number of training

samples and consequently resulting allowed DOF of

the control systems readily explain the dramatic contrast

between the success of the simulated learning and the

failure of the real-world learning mentioned above.

Challenges of motor learning in animals and humans

Animal brains are confronted with sensorimotor problems

that are much more challenging than those faced by

humanoid robots. Animal bodies are flexible and possess

an enormous number of muscles, sensors, and motor

neurons. Neurons are slow-computing devices with a

significant degree of noise. Thus, physical modeling of

animal movements is very difficult, as there are many

DOF, hidden variables, a high noise level, and a risk of

injury or death in the case of failure. The human brain

contains 10 to the 11th neurons and 10 to the 14th

synapses. As a learning control system, it has enormous

DOF. If we assume that the number of synapses corre-

spond to the DOF of the learning system, and that a

single reinforcement learning trial can be obtained within

100 seconds, then it follows that an animal brain will need

10 to the 15th training trials, and thus 10 to the 17th

seconds for learning time to avoid over-fitting, which is

about the age of the earth, and is much longer than an

animal life. In contrast to this estimate, humans learn

motor control very quickly. For example, humans can

learn new dynamic environment within a few trials [9].

Human infants learn to walk after only several thousands

falls [10�]. Even if we take into account other learning

trials that were not counted as obvious falls in the infant

playroom, the trial number should be much less than that

of the deep neural networks. Moreover, some animals

start to walk within few hours after birth [11]. Through

computational neuroscience research of sensorimotor
www.sciencedirect.com 
learning, we hope to understand a mystery to break the

common sense in artificial intelligence: 10 to the 11th

DOF learning system can learn to control an extremely

complicated nonlinear dynamical system only after sev-

eral thousands failures.

So far, several attempts have been made to elucidate the

mechanism underlying such efficient motor learning.

Kawato and Samejima [12] reviewed several computa-

tional schemes for enabling efficient reinforcement learn-

ing from small training samples. They include internal

models [13,14], sparse estimation algorithms [15,16],

multiple-paired forward and inverse models [17–19],

and a hierarchical reinforcement learning algorithms

[20,21]. Attention [22��], consciousness, metacognition

[23], and episodic memory are important research topics

in cognitive neuroscience, and have recently attracted the

interests of artificial intelligence researchers with the

hope that they could provide computational mechanisms

to decrease high dimensionality of data in learning. They

may play essential roles in constructing abstract concepts

[24�], dimensions [25�], and attributes that are high-level

representations necessary in the upper layers of hierar-

chical reinforcement learning. With respect to reducing

the dimensionality of high-dimensional data, electrical

synapses that transmit information via gap junctions are

attractive elements in neuronal circuits because they tend

to synchronize neurons and effectively reduce the DOF

of the circuit.

Motor learning in the olivo-cerebellar system

Among various regions of the brain, we focus on the

cerebellum as a potential region that may regulate the

DOF of the neuronal circuit to realize an efficient learn-

ing. The cerebellum is important for motor control and

motor learning and plays essential roles in fine adjust-

ments of multi-joint movements such as reaching, walk-

ing, and balancing [26,27]. The inferior olivary (IO)

nucleus sends climbing fiber inputs to Purkinje cell

(PC), the only output of all motor coordination in the

cerebellar cortex, and possesses the highest density of gap

junctions in the mammalian brain (Figure 1A). As a good

candidate for a neuronal system that plays a central role in

motor learning and that may be useful in investigating the

above-mentioned disparity between the large DOF of

learning systems and conditions where only a small num-

ber of training trials are available, we focus on the olivo-

cerebellar system [28,29,30,31��]. Of special interest is

the network of IO neurons, which may control the DOF

by adjusting their synchronous/asynchronous firing activ-

ities to provide an adaptive framework for the learning

machinery [32��,33]. In the cerebellar motor learning, it

has been known that the IO neurons transmit error signals

to the PC [26,34,35], inducing plasticity at the parallel

fiber-PC synapses [13,36] (Figure 1B). Recent investiga-

tions have also revealed multiple plasticity mechanisms

[37–41] as well as evidence that parallel fiber-evoked
Current Opinion in Neurobiology 2017, 46:58–67



60 Computational neuroscience

Figure 1
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Neural computation and anatomy of the olivo-cerebellar circuit. (a) Schematic diagram of the neural computation in the cerebellum. Purkinje cell

(PC) in the cerebellar cortex receives two types of inputs: (1) sensory input via many parallel fibers and (2) a teaching signal from the inferior olive

(IO) via a sole climbing fiber. The cortex then sends motor commands to the peripheral system via cerebellar nuclei (CN), which inhibit IO neurons.

(b) Circuit diagram of the PC-CN-IO triangle. When parallel fiber inputs and the climbing fiber input are conjointly activated at the PCs, plasticity is

induced in the parallel fiber-PC synapses. The inhibitory signals from the CN are located very close to gap-junctions in the glomeruli, thus

regulating the coupling strength between the IO neurons. Circles show excitatory synapses, and triangles inhibitory synapses. Horizontal lines

show electrical gap junctions.
simple spikes to PCs contribute to cerebellum-dependent

learning to some extent [42,43�]. One dominant view over

the last several decades suggests that complex spikes

transmitted through the climbing fibers provide instruc-

tive signals to the PCs to drive learning [44,45�].

To examine the functions of the IO, computational

modeling has been one of the promising driving forces

[46]. As the carrier of the teaching signals, the IO has been

modeled to provide the climbing fiber inputs in the

simulation studies of the cerebellar learning [13,47–

51,52�,53]. To explore the IO dynamics in detail, a class

of simplified conductance-based models has been devel-

oped to reproduce experimental observation of sub-

threshold oscillations [54–58]. Further details of the

electrophysiological properties of the IO neurons have

been described by multiple compartment models [59],

which have been applied to elucidate experimental obser-

vation of the sub-threshold activities [60], to examine the

capability of their information transmission [61��], and to

estimate conductance levels of the IO network from

experimental data [62�,63��]. Owing to the advanced

experimental methods as well as the rapid growth in

computer power, the computational models have been

nowadays utilized for quantitative understanding of the

experimentally measured IO dynamics and furthermore

for testing hypotheses regarding IO functions. Here, we

review recent advances in the computational modeling of

the olivo-cerebellar system.
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Synchronized neuronal firings for regulating
degrees of freedom and temporal resolution
One of the long-term questions on the role of the IO in

the cerebellar learning has been the reason for the low

firing rate of the IO neurons with at most a few spikes

per second (typically one or two spikes per movement).

This presents a severe limitation for the IO neuron in

terms of precisely transmitting detailed error signals

with a high temporal resolution. To resolve this issue,

desynchronized firings of the IO neurons, which can be

regulated by the electrical coupling, may play a crucial

role [61��]. The central point is that, as far as the IO

neurons are active in a synchronous manner, an ensem-

ble of IO neurons behaves as a single neuron, which

does not improve the limited capability of the error

transmission. However, if the IO neurons behave in an

asynchronous manner, the spike timings of individual

neurons will be scattered, and this will increase the

temporal resolution of the population coding of the error

signal.

Numerous studies have suggested that electrical coupling

regulates the level of synchrony between IO neurons and

thus plays a central role in the cerebellar learning [60,64–

68]. On the basis of the compartment model [59], a

network of IO neurons coupled by gap-junctions was

constructed. The simulation study revealed that, with

an intermediate strength of the coupling, irregular or even

chaotic firings of the IO neurons were induced. The
www.sciencedirect.com
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chaotic dynamics effectively desynchronized the firing

activities of the IO neurons and consequently improved

the information transmission capability. The phenomena

have been termed as ‘chaotic resonance’ [61��]. The

chaotic resonance has been also reproduced in a large

network of conductance-based IO models [69]. The

feedback-error learning was further implemented in a

network of IO neuron models, and electrical coupling

was found to enhance the cerebellar learning of multi-

joint arm control [70]. In these studies, the intermediate

strength of the coupling, which optimized the error

transmission as well as the learning procedure, corre-

sponded to the coupling strength that provided the largest

value of the first positive Lyapunov exponent, implying

that chaotic dynamics was effective for desynchronizing

the firing activities of the IO neurons.

To characterize the quantitative feature of the IO net-

work dynamics in cerebellar learning, Onizuka et al. [62�]
and Hoang et al. [63��] estimated the strength of the

electric coupling from experimentally observed spike

train data (Box 1). As a computational model of the IO

network, the two-compartment model developed by

Schweighofer et al. [59] was modified by adding spine

compartments that form gap-junction connections to

neighboring neurons (Figure 2A,B). Two types of con-

ductance were estimated, namely, gap-junction conduc-

tance and inhibitory synaptic conductance, that are
Box 1 Estimating model parameters from experimental spike

data

To date, various techniques have been developed to estimate the

parameters of computational models from neuronal spike train data

[97]. A simple yet popular approach is to define an error function,

which measures the distance between the spike trains and the

simulated data, and then to seek for the model parameters by

minimizing the error using a variety of optimization techniques

[56,97,98]. Nonlinear filtering and observer-based methods have

been also developed [99–102]. In practical situations, however, these

approaches are severely limited due to: (1) non-stationarity of the

measured data and (2) huge difference in system complexity, i.e.

hierarchy, granularity, and degrees-of-freedom, between the model

and the brain. To address such mismatch problem, Onizuka et al.

[62�] developed a segment-wise approach to minimize the modeling

errors. The key assumption is that, in the non-stationary data, the

parameter values may change from one time-segment to another.

Accordingly, the spike data are divided into short time-segments,

within which the data can be considered stationary. Multiple fea-

tures, e.g., firing frequency, local variance, auto-correlograms and

cross-correlograms were incorporated into the error function to

bridge the mismatch between the model and the data [62�]. Hoang

et al. [63��] further introduced a hierarchical Bayes framework,

composed of two estimation steps, to the segment-wise approach.

In the first step, the conductance parameters were estimated for

each time-segment of the spike data by the Bayesian inference. In

the second step, parameter values, which were separately estimated

for individual time-segments in individual neurons, were merged into

single ones using a neuronal constraint. This segment-wise

approach relaxes the condition of the parameter search and, as a

result, enables the model to capture complicated features of the

experimental data.

www.sciencedirect.com 
considered as the main regulators of the electrical cou-

pling between the IO neurons [71–73]. Comparison of

two pharmacological conditions (carbenoxolone, picro-

toxin) with their control revealed a basic tendency that

the control condition with an intermediate strength of the

coupling gives rise to low level of neural synchrony and

high level of complexity (Figure 2C) [74]. This implies

that desynchronized chaotic firings are indeed present in

the in vivo experiment (N. Schweighofer, personal

communications).

Adaptive coupling during motor learning
The chaotic resonance hypothesis brings light to the

question: what is the possible underlying mechanism that

tunes the coupling strength between the IO neurons to an

optimal level? The answer may come from the ‘micro-

zone’ structure in the cerebellum, which is characterized

by particular spatiotemporal patterns of cellular activities

that occur in synchrony [75–79]. Anatomically, the micro-

complex combines the PCs that discharge inhibitory

inputs to the DCN, which in turn has inhibitory synapses

on the dendritic spines that connect the IO neurons

(Figure 1B). Recent studies have shown that the PC-

DCN-IO triangle forms a closed loop of neural computa-

tion, which provides various functional modules in the

cerebellum [80�,81�,82�]. In particular, highly synchro-

nous complex spikes significantly decrease firing activity

in the DCN [83�]. The inhibitory synapses from the DCN

decrease the strength of the electrical coupling and con-

sequently lower synchronous activities of the IO neurons

[84�,85�,86,87]. The level of the IO synchrony deter-

mines the complex spike waveform injected to the PC

[88�], which regulates synaptic plasticity in the cerebellar

learning [89�].

Combining these pieces of evidence, Kawato et al. [32��]
and Schweighofer et al. [33] proposed a scheme of adap-

tive electrical coupling of the IO network within the

micro-zone. The cerebellar learning process is roughly

described in two phases (Figure 3). In the early phase of

the learning, the motor commands are strongly disturbed

and do not closely resemble the desired commands. Then

the amplitude of error signals is large, and the synaptic

inputs to IO neurons are large. This leads to higher firing

frequency of the IO and PCs. The PCs, which are in this

way strongly modulated by motor commands, excessive

sensory inputs, and large error signals, suppress the

inhibitory effect of the DCN on the IO coupling. Thus

the IO neurons are initially strongly coupled. Because of

the limited temporal resolution of the synchronized neu-

rons, the IO network may respond only to low-frequency

component of the error signals, which may convey infor-

mation on the gross feature of the motor behavior. Wide-

spread synchrony among the IO neurons potentially leads

to massive synaptic changes in the parallel fiber, resulting

in a fast but crude learning in the cerebellar cortex. Here,

the DOF in the cerebellum are low because the neurons
Current Opinion in Neurobiology 2017, 46:58–67



62 Computational neuroscience

Figure 2
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Computational modeling of the inferior olive (IO) neuronal network. (a) A conductance-based model of an IO neuron has three compartments:

soma, dendrite, and spine. The somatic compartment contains ionic channel conductances for the inward sodium current (gNa), the delayed

rectifier outward potassium current (gK_dr), the low-threshold calcium current (gCa_l), the anomalous inward rectifier current (gh), and the leakage

current (glo). The dendritic compartment includes ionic channel conductances for the high-threshold calcium current (gCa_h), the calcium-activated

potassium current (gK_ca), and the leakage current (gld). The spine compartment includes a conductance for a leakage current (gls). A neuron

connects to its neighboring neurons via gap-junctions (conductance: gc) through their spines. (b) 3 � 3 neurons are connected to the neighboring

neurons. To take into account inhomogeneity in connectivity of the IO neurons, the coupling strengths (illustrated by the width of connecting lines)

were uniformly distributed with maximum deviation set to 20% of the mean. (c) Spike trains of 10 representative IO neurons under three

experimental conditions (upper panels) and those reproduced by the compartment model (lower panels). (i) Carbenoxolone condition (low

frequency, periodic firings), (ii) control condition (irregular, asynchronous firings), (iii) picrotoxin condition (high frequency, synchronous firings).
in the olivo-cerebellar system behave in a synchronous

manner. In the late phase of the learning, on the other

side, as the motor error becomes smaller, the PCs are only

weakly modulated and hardly inactivate the DCN cells.

This, in turns, effectively suppresses the IO coupling.

The IO neurons are desynchronized as a result of the

weakened coupling and consequently transmit high fidel-

ity error signals with high-frequency components, result-

ing in a sophisticated learning. The olivo-cerebellar neu-

ronal activity is relatively low but occurs in an

asynchronous mode that increases the DOF. Therefore,

the hypothesis implies that, in the actual cerebellar

learning, the coupling strength is adaptive and should

decrease as the learning proceeds. Utilization of a large

number of DOF only in the late stage could make the

learning process fast and robust against the over-fitting

difficulty at the beginning while sophisticated and com-

plicated at the end.
Current Opinion in Neurobiology 2017, 46:58–67 
The adaptive coupling scheme has been implemented in

a network of IO neurons that learn two-joint arm move-

ment [90��]. For simplicity, the PC-DCN-IO triangle was

not constructed but only the coupling strength of the IO

network was monotonously reduced during the learning.

Decreased coupling was indeed beneficial for the learn-

ing, because the optimal strength of the coupling was

dependent upon the magnitude of the error signals. In the

early phase of learning, the initially large error signals,

which commonly drive the IO neurons, tend to induce

synchronous IO activities. Under such circumstance, rel-

atively large coupling with chaotic modulation was effec-

tive in lowering the synchronous IO dynamics so as to

improve the error transmission rate. In the late phase of

learning, the reduced error signals do not strongly drive

the IO neurons to synchrony, and so a small coupling is

sufficient to elicit desynchronized IO dynamics that

enhance learning. By slowly reducing the coupling
www.sciencedirect.com
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Figure 3
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Hypothesis regarding the two learning stages. It is hypothesized that the cerebellum controls the DOF of motor learning via the PC-CN-IO

circuitry, which adaptively synchronizes or de-synchronizes the neural activities depending upon the stage of the learning. In the initial stage, since

the real trajectories are far from the desired trajectories, the error signal is large and distributes broadly in the cerebellar cortex. The motor

commands strongly drive the PCs and the activated PCs suppress CN cells. Since the inhibitory synaptic effect from the CN cells is also

suppressed, the IO neurons are strongly coupled via the gap-junctions. As a consequence, the olivo-cerebellar neurons behave actively but in a

synchronous mode to quickly reduce the error signal. The DOF is low. By contrast, in the late stage of the learning, since the movements become

smooth and closely resemble the desired movements, the error signal is small and distributes in only a restricted region in the cerebellar cortex.

The inputs to the PCs thus become weak. The weakly modulated PCs do not strongly inhibit the CN cells and, consequently, the coupling

between the IO neurons is weakened due to the inhibitory synaptic effect from the activated CN. Because of the desynchronized neuronal

activities, which should be effective for sophisticated learning, the DOF is high. The activated and deactivated neurons are shown by filled and

unfilled shapes, respectively.
strength, the learning process of the arm movement was

successfully accelerated [90��].

Conclusion
In this review, we discussed the network of IO neurons as

one of the central coordinators of cerebellar learning. We

revisited the chaotic resonance hypothesis to emphasize

the importance of the effective coupling that efficiently

regulates the cooperative behavior of the IO neurons to

improve the error transmission rate and enhance learning.

As an attempt to examine the chaotic resonance hypoth-

esis, recent studies have been illustrated on how to

estimate synaptic conductance, i.e., the determinants of

the effective coupling, from experimental data. A self-

organized mechanism that may adaptively tune the cou-

pling strength to an optimal level has been discussed in

terms of a neural computation carried out by the PC-

DCN-IO triangle loop within the micro-zone.
www.sciencedirect.com 
In contrast to the deep learning neural networks, which

recently draw immense attention, the olivo-cerebellar

system learns complex motor tasks from only a small

training sample. Considering the high-dimensional sen-

sorimotor inputs coming from the real-world environ-

ment, this is a striking feature of the brain. To resolve

the problem of ‘curse of dimensionality’, the DOF of the

control system should be somehow adapted to the limited

training sample. We postulate that the cerebellar circuitry

embedded in the triangle close loop plays a key role of

adjusting the DOF by regulating the synchronous firing

activities of the IO neurons.

To further unveil the unknown functions of the IO

network in the cerebellar learning, computational meth-

ods should be well combined with the advanced experi-

mental technology. Of particular interest with respect to

future research is the application of model-based data
Current Opinion in Neurobiology 2017, 46:58–67



64 Computational neuroscience
analyses to the in vivo measurement of spatio-temporal

spike data. For measurement of neuronal activities, a

rapid progress has been made by two-photon imaging

technique of the calcium (Ca2+) status of cells, which

enables whole-cell recording of behaving animals [91].

Climbing fiber inputs to PCs have been detected, even at

the level of individual spines that receive parallel fiber

inputs [92]. Additionally, synchronized activities of PC

complex spikes have been observed within a functional

unit [93�]. Strengthening of the climbing fiber inputs to

PCs has been observed during cerebellar development

[94]. However, analysis of the complex spike dynamics is

restricted by the relatively low temporal resolution of the

two-photon recordings (typically, 10–30 Hz). Several

attempts have been made to detect the spike timings

at high temporal resolution from low-sampled Calcium

response data ([95,96�]; K. Toyama, M. Sato, O. Yama-

shita, and K. Kitamura, personal communications). When

combined, the method for inferring computational mod-

els and the improved in vivo two-photon imaging of spike

inputs to PCs may represent a new horizon for further

examination of the learning hypothesis in the olivo-cere-

bellar system.
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