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One of themajor obstacles in estimating cortical currents fromMEG signals is thedisturbance causedbymagnetic
artifacts derived from extra-cortical current sources such as heartbeats and eyemovements. To remove the effect
of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) pro-
posed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source
currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data
for an EOG forwardmodel that describes the relationship between eye dipoles and electric potentials. In contrast,
our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain
sources.We propose a newmethod, “extra-dipole,” that optimally selects hyper-parameter values regarding cur-
rent variances of the cortical surface and extra-brain source dipoles.With the selected parameter values, the cor-
tical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance
of this method was demonstrated to be better than conventional approaches, such as principal component anal-
ysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we
applied our proposedmethod tomeasuredMEG data during covert pursuit of a smoothlymoving target and con-
firmed its effectiveness.
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Introduction

Onemajor obstacle in estimating cortical currents fromMEG signals
is the disturbance caused by magnetic artifacts derived from extra-
cortical current sources such as heartbeats and eye movements. These
artifacts can be orders of magnitude larger than signals from the brain.
Thus, cortical current estimation is a difficult inverse problem with an
extremely low signal-to-noise ratio. Principal component analysis
(PCA) and independent component analysis (ICA) have been applied
to remove the influence of extra-brain sources (Barbati et al., 2004;
Bell and Sejnowski, 1995; Comon, 1994; Jung et al., 2000; Vigario,
1997; Vigario et al., 2000). Although these statistical methods are effi-
cient in many circumstances, removing artifacts correlated with brain
signals is, in principle, difficult. This is because these methods rely on
either the orthogonality or statistical independence between cortical
and extra-brain time-series signals, which may not be satisfied in
many interesting situations. Additionally, these methods face difficulty
in determining which principal and independent components are
“artifacts,” because the selection process of artifact components is
often subjective.

Fujiwara et al. proposed the hybrid hierarchical variational Bayesian
method (hyVBED, 2009), which simultaneously estimates not only cor-
tical currents but also eye currents, thus giving it the ability to objective-
ly isolate these currents based on a physical and physiological forward
model rather than ad hoc statistical assumptions. Consequently, artifact
components can be objectively selected and removed because they de-
pend on physical dipole locations. However, thismethod requires just as
many additional electrical or magnetic data as extra-brain sources for
preparing the forward models. Measured MEG data are affected not
only by eye movements but also by heartbeats and muscle activations.
If all extra-brain components are to be removed, the hyVBED method
requires so many electrical or magnetic sensors to be simultaneously
placed on a subject's body that it becomes unrealistic and impractical
as a denoising method for clinical applications (e.g., for a purpose of
brain–machine interfaces).

In general hierarchical Bayesian frameworks, some hyper-
parameters must be predetermined. They are usually selected under a
constraint that maximizes the marginal likelihood or free energy. In
the early stage of our research, we tried to find an optimal hyper-
parameter set using this method. It was possible to select proper
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hyper-parameter sets for relatively large current sources such as eye
and heartbeat artifacts, but selecting them for such small current
sources as brain activities was difficult. Although the free-energy ap-
proach is theoretically elegant, it is neither robust nor practical for
MEG data. For such reasons, we need to develop alternative methods
to help us find the optimal hyper-parameters for the MEG inverse
problem.

This paper proposes a less demanding, thus more practical,
denoising method, “extra-dipole,” to overcome these difficulties associ-
ated with either statistical or physical/physiological methods. Our
approach requires no additional sensor data other thanMEG, and gener-
ally necessitates less a priori knowledge about the current variance of
extra-brain sources. Instead of statistical and physical/physiological in-
formation, we used the fMRI spatial activation patterns as informative
signals to find the optimal hyper-parameters. With these values, we
evaluated our proposed method by estimating the cortical and extra-
brain dipole currents from simulated andmeasuredMEG data. By intro-
ducing appropriate constraints on prior information, our approach ob-
tained a more accurate estimate of cortical and extra-brain currents
from obfuscated MEG signals than previous methods. We especially
demonstrated better performance of this method compared with con-
ventional statisticalmethods, such as PCAand ICA, aswell as the original
variational Bayesianmethod of Sato et al. (2004), named VBMEG in this
paper.

Materials and methods

Cortical and extra-brain dipole current model

Cortical electrical currents associatedwith neuronal activities induce
weak transient magnetic fields. These current sources were modeled
using I current dipoles with fixed positions and orientations, and these
current moments were expressed as I-dimensional vector Jbrain. The
C
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Fig. 1. (A) Cortical and extra-brain source dipole locations. (B) Experimental protocol. (C) Flow
target of attention, respectively.
observed magnetic fields were generated by not only cortical currents
but also various extra-brain source currents. Each extra-brain source
was modeled using the three-dimensional resultant dipole current in
the x–y–z direction. The number of extra-brain sources was K, and the
extra-brain source was modeled using 3K dipoles, and these current
moments were expressed as 3K-dimensional vector Jartifact. When ob-
servation noise was ignored, the relationship between dipole currents
and observed magnetic fields was expressed as follows:

B tð Þ ¼ Gbrain Jbrain tð Þ þ Gartifact Jartifact tð Þ; ð1Þ

where B(t) is an M-element vector for the magnetic field on M MEG
channels.Gbrain denotes the leadfieldmatrix for cortical current sources,
which also represents in its row a magnetic field generated by a unit
current moment. This lead field matrix was calculated by the linear
Galerkin method using the boundary element method (Ferguson et al.,
1994). The dipole current directions were assumed to be perpendicular
to the cortical surface. A positive currentwas defined as one directed to-
ward the inside of the cortex (Fig. 1A). These settings are based on
knowledge that cortical currents induced by pyramidal cells play the
major role of generatingMEG signals that originate frombrain activities.

We considered three extra-brain sources, the left and right eyeballs,
and the heart, as the main noise source; nine dipoles (three extra-brain
sources × three directions) were thus located there. The lead field ma-
trix for the eye and heart current sources Gartifact was calculated by the
Biot–Savart law.

Hierarchical Bayesian estimation

To estimate cortical and extra-brain source currents at the dipole lo-
cations, hierarchical Bayesian estimation (Variational Bayesian Multi-
modal Encephalography: VBMEG) has been used (Sato et al., 2004;
Yoshioka et al., 2008). This method uses functional magnetic resonance
B
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imaging (fMRI) information as prior knowledge for source estimation
and yields more accurate source localization. Additionally, not only cor-
tical but also extra-brain currents can be estimated simultaneously with
prior information about the current intensities of extra-brain source
currents.

We expressed current distributions of the L dipoles located on the cor-
tical surface and the extra-brain sources as J=[Jbrain, Jartifact]= {Jl|l=1, ⋯,
L = I + 3K}. In hierarchical Bayesian estimation, a Gaussian probability
distribution P(B|J), wheremagnetic field B is observed for a given current
J, is given by

P Bj Jð Þ∝ exp −β
2

B−G � Jk k2
� �

; ð2Þ

where β and G denote the inverse observation-noise variance and the
leadfieldmatrixG=[Gbrain, Gartifact], respectively. Theposterior probabil-
ity distribution for source currents Ppost(J, α|B), which represents the
probability of source current J and inverse current variance α under ob-
served MEG data B and prior information, is expressed as follows:

Ppost J;αjBð Þ ¼ P Bj Jð ÞPpri Jjαð ÞPpri αð Þ
P Bð Þ ; ð3Þ

where P(B) denotes amarginal likelihood. Ppri(J|α)Ppri(α) is the hierarchi-
cal prior distribution for the source current that is determinedby the prior
current variance.

The estimation results using the hierarchical Bayesian method de-
pend largely on prior information that is given by a hierarchical prior
distribution with two kinds of hyper-parameters. This implies that the
selection of the two hyper-parameters must largely influence whether
the estimation results are good or bad. Hierarchical prior distributions
are introduced to the source current dipoles as follows:

Ppri J tð Þjαpri; β
� �

∝ exp −β
2
J tð ÞT A J tð Þ

� �
; ð4Þ

Ppri αpri

� �
¼ ∏Gamma αpri lð Þjαpri lð Þ;γpri lð Þ

� �
; ð5Þ

Gamma αjα;γð Þ ≡α−1 αγ
α

� �γ
Γ γð Þ−1e−

αγ
α ; ð6Þ

Ppri βð Þ ¼ 1
β

; ð7Þ

whereA is a diagonalmatrixwith elementsαpri= {αpri(l)|l=1, ⋯, L}.αpri(l)

is the inverse current variance corresponding to the l-th current dipole.
Γ(γ) represents the Gamma function. A prior distribution of current vari-
ance νpri(l) = αpri(l)

−1 represents the prior distribution of Jl with mean cur-
rent variance vpri lð Þ ¼ α−1

pri lð Þ and degree of freedom γpri(l).
Hyper-parameter νpri ið Þ i ¼ 1; ⋯; Ið Þ , which expresses the mean

current variance of the cortical dipole, is defined using fMRI activation
(t-value) andmagnification parametermpri (Yoshioka et al., 2008). i de-
notes the index of the cortical dipole. νpri ið Þ is a monotonic increasing
function of the fMRI t-value at each dipole. When the baseline variance
is νbase, νpri ið Þ is expressed as follows:

νpri ið Þ ¼ νbase þ mpri−1
� �

νbase f 2ið Þ ; ð8Þ

where f(i) is a normalized fMRI-dipole t-value with a maximum value of
1. Consequently, νpri ið Þ takes values from νbase tompri νbase.

νpri kð Þ k ¼ 1; ⋯;3Kð Þ denotes the mean current variances of extra-
brain dipoles located on the left and right eyeballs and the heart. k is
the index of an extra-brain dipole.
In our previous proposed method, VBMEG and hyVBED/VBED, we
empirically defined the hyper-parameters for cortical dipoles (mpri =
100 ~ 500, γpri(i) = 500, 100, 10 or 0) (Aihara et al., 2012; Fujiwara
et al., 2009; Sato et al., 2004; Shibata et al., 2007; Toda et al., 2011;
Yoshimura et al., 2012). Unlike cortical currents, fMRI activation is not
available for prior information of eye currents. Because it provides less
knowledge about eye currents, hyVBED/VBED used a non-informative
prior information for the eye dipoles. In contrast to these previous stud-
ies, a method must be developed not based on practical experience but
on observed data to provide more precise estimates of dipole currents.

Hyper-parameters for extra-brain sources

The actual current intensities for extra-brain dipoles are generally
unknown toMEG users. To determine the hyper-parameters for current
variances of extra-brain source dipoles, we adopted the following two
criteria. Criterion 1: Prior and posterior variances for each extra-brain
source dipole should be the same, and Criterion 2: a high correlation co-
efficient should be obtained between the spatial patterns of fMRI activ-
ities and MEG estimation as the magnitude of the estimated mean
current variance. A unique parameter can be determined so that it max-
imizes the correlation coefficient Criterion 2, among the parameter set
that satisfies condition Criterion 1. The two criteria are based on the fol-
lowing assumptions:

Criterion 1. The prior and posterior variances for each extra-brain dipole
should be the same.

Our proposed method assumed that the prior and posterior current
variances (νpri(k) and νpost(k)) should have the same order of magnitude
if prior information on the current intensities is reasonable. In other
words, if the a priori information about the solution (prior variance) is
appropriate, the obtained solution (posterior variance) should be the
same order of magnitude as the a priori knowledge. By varying two
hyper-parameters, prior current variance and γpri(k), for each extra-
brain source, we estimated the dipole currents and calculated the
index as follows:

Opri kð Þ ¼ log10 νpri kð Þ
� �

; ð9Þ

Opost kð Þ ¼ log10 νpost kð Þ
� �

; ð10Þ

Oartifact kð Þ ¼ Opost kð Þ−Opri kð Þ ; ð11Þ

where Opri(k) and Opost(k) are the orders of magnitude for the prior and
posterior current variances, respectively. Oartifact(k) is the difference be-
tween the prior and posterior current variances in the order of magni-
tude. νpri(k) and νpost(k) are the parameters for the prior and posterior
current variances. Note that νpost depends on prior information νpri

and γpri because νpost is estimated from MEG data using hierarchical
Bayesian estimation. Several hyper-parameter sets of near-zero O-
artifact(k) were selected and became candidates for the optimal hyper-
parameter set.

Criterion 2. The spatial patterns of the fMRI activities and the estimated
current power should be highly correlated.

fMRI activation areas are expected to have high correlations with
neuronal activities. Here, we assume that the spatial pattern of fMRI is
a reliable information source for a spatial pattern of estimated source
currents for MEG data. The correlation coefficients between fMRI
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activity patterns f(i) and current intensities C(i) were calculated as
follows:

C ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

Ẑ2
ið Þ tð Þ;

vuut ð12Þ

corr ¼
XI

i¼1
C ið Þ−C

� �
f ið Þ− f

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1
C ið Þ−C

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1
f ið Þ− f

� �2
rs

;

ð13Þ

where Ẑ is a trial average of the estimated cortical currents (Supplemen-
tary information 1; The design of the “trial” is explained in more detail
in the subsection “Task settings”), T is the sampling number, and f
andC are the trial averages of fMRI activations {f(i)|i=1, ⋯, I} and current
intensities {C(i)|i = 1, ⋯, I}, respectively. Correlation coefficients corr
were calculated using trial average values of the estimated cortical cur-
rent and fMRI activations, and several hyper-parameter sets of corr that
were as large as possible were selected and became candidates for the
optimal hyper-parameter set.

In a nested and recursive parameter search algorithm shown in
Fig. 1B, to find the optimal hyper-parameter set that satisfies Criterion
1 andmaximizes Criterion 2we set the obtained parameter set as initial
values and repeated the parameter search process. This process re-
quired four repetitions until the obtained parameter set converged to
the same values. Then, we regarded our obtained parameter set as the
optimal hyper-parameter set for the extra-brain source dipoles. In gen-
eral, current amplitudes of the eyes and heart are considered to be about
10 and 1000 nAm, respectively, with current variances of 102 and 106

[nAm]2, respectively (Katila et al., 1981; Nousiainen et al., 1986).
These parameter search ranges for the eyes and heartbeat source di-
poles were set sufficiently wide to contain the expected value. Their
search rangeswere 100.5–105[nAm]2 and 104–108.5[nAm]2, respectively.
A preliminary analysis of our data indicates that an overly largeγpri (e.g.,
N107) causes identical prior and posterior current variances on a con-
stant basis irrespective of prior current variance. To avoid this, the
range of γpri(k) was changed to 101–106, and hierarchical Bayesian esti-
mation was conducted using hyper-parameters as current variances
and γpri(k) (prior current variance: 10 types, γpri(k): 14 types, hyper-
parameter total: 140 sets were the target of the global search).

Hyper-parameters for cortical current dipoles

For the cortical current dipoles, we also simultaneously selected
hyper-parameter sets to satisfy Criterion 1 and 2. However, unlike
extra-brain source dipoles, the cortical surface has many current di-
poles. To reflect the difference, we revised Criterion 1:

Criterion 1′. The prior and posterior variances for each cortical dipole
should be the same.

By varying hyper-parametersmagnification parametermpri and reli-
ability γpri(i) for the cortex, we estimated the dipole currents and calcu-
lated the index as follows:

Opri ið Þ ¼ log10 νpri ið Þ
� �

; ð14Þ

Opost ið Þ ¼ log10 νpost ið Þ
� �

; ð15Þ

Obrain ¼ 1
I

XI

i¼1

Opost ið Þ−Opri ið Þ
� �

; ð16Þ
whereObrain is themean difference between the prior and posterior cur-
rent variances in the order of magnitude. Several hyper-parameter sets
of near-zeroObrain were selected and became candidates for the optimal
hyper-parameter set.

The hyper-parameter set was selected to satisfy the Criterion 1' and
maximizes Criterion 2 among that parameter set. The selected parame-
ter set was regarded as optimal for the cortical dipoles. Hierarchical
Bayesian estimation was conducted using hyper-parameters as mpri

and γpri(i), and their search ranges were 100–106 and 101–106, respec-
tively (mpri: 9 types, γpri(i): 11 types, hyper-parameter total: 99 sets).
The mpri search range for the cortical dipoles was set sufficiently wide
to contain values 10–500, which were commonly used in previous
VBMEG applications (Aihara et al., 2012; Callan et al., 2010; Fujiwara
et al., 2009; Sato et al., 2004; Shibata et al., 2007; Toda et al., 2011;
Yoshimura et al., 2012; Yoshioka et al., 2008).

Flow of selecting hyper-parameters

Ideally, the optimal hyper-parameter set based on the two criteria
should be prepared for each current dipole of the cortex and the
extra-brain source. However, this process requires a huge amount of
computational time because the total number of current dipoles ex-
ceeds 10,000. To reduce time, some approximation is required. Only
one hyper-parameter set mpri and γpri is prepared for many cortical di-
poles. Furthermore, each optimal parameter set is determined in the
order of extra-brain source and cortical dipoles (Fig. 1B), because the
extra-brain sources have larger current intensities than the cortical
ones (Hämäläinen et al., 1993). This sequential search method is ex-
pected to provide quick convergence to the same values compared
with a simultaneous search for all hyper-parameter sets. Because the
optimal hyper-parameters for the cortex were not yet determined on
the selection step for the extra-brain source dipoles, tentative values
were used (mpri = 500, γpri(i) = 500; Yoshioka et al., 2008).

Evaluation of a selected magnification parameter using simulated MEG
data

When evaluating the selected prior current variances for the extra-
brain source dipoles from the simulated MEG data, it is only necessary
to compare the actual and estimated current variances directly. Howev-
er, becausempri is not a prior current variance for the cortical dipoles but
a magnification parameter of the fMRI activations (t-values), we must
calculate the true mpri value.

Jvar denotes the maximum value of the actual cortical current vari-
ances. We assume that the posterior current variance meets value con-
sistency with Jvar. The posterior current variance also satisfies the
optimality criterion where prior and posterior current variances should
be the same. The effects of the smoothing spatial filters are ignored.
Under these conditions, the true value of mpri is expressed as follows:

mpri ¼ Jvar= νbase � ρð Þ : ð17Þ

Because we calculatedmpri with Eq. (17), it became a true value. We
then used it to evaluate the selected hyper-parameter set for the cortical
dipoles.

Subjects

Three men (aged 27–30 years with normal or corrected-to-normal
visual acuity) participated in both the MEG and fMRI experiments,
which were approved by the Ethics and Safety Committee of Advanced
Telecommunications Research Institute International (ATR).Written in-
formed consent was obtained from each subject.
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Task settings

The subjects covertly pursued the target motion (white circle in
Fig. 1C) with eyes gazed at the fixation point (red circle in Fig. 1C). We
prepared three target motion patterns. The target motions were ap-
proximately sinusoidal, and its frequency was changed when the target
velocity was zero (Supplementary information 2). The mean sinusoidal
frequency was 0.5 Hz, and the peak velocity was 10°/s. Peak-to-peak
amplitudes of the three target motions were 8.9, 8.9, and 9.5°, respec-
tively. Subjects pressed a start button when they were ready (Fig. 1C
(1)). The fixation point and target of attention were presented in the
center of the monitor. The subjects were required to maintain fixation
after the targets were presented for a variable length of time in the
range of 0.5–1.5 s (Fig. 1C (2)). Then, the target of attention started to
move in a horizontal direction. The subjects began to pursue the target
of attention covertly (Fig. 1C (3)). The fixation point and target of atten-
tion disappeared after 4 s of moving, and subjects then took a short rest
(Fig. 1C (4)). These processes were regarded as a “trial”. One session
consisted of 30 repetitions of a trial for three target motions. Each
subject performed 270 trials (30 trials × 3 moving target motions × 3
sessions = 270 trials). The three target motions were randomly pre-
sented within a session.

Dipole locations of cortical and extra-brain current sources

We constructed a polygon cortical surface model for each subject
using FreeSurfer software (version 5.0.0; http://surfer.nmr.mgh.
harvard.edu/) (Dale et al., 1999) with a T1 structural image for the sub-
jects. The number of cortical surface dipoles of subjects A, B, and C was
20,004. The cortical current sourceswere located on the vertex points of
the cortical surface model, and the orientation of the current sources
was perpendicular to the cortical surface. A positive currentwas defined
as one directed toward the inside of the cortex (Yoshioka et al., 2008).

The eyeball has a steady electric polaritywith a positive charge at the
cornea and a negative charge at the retina (Miles, 1939).When the eye-
ball rotates, the rotation induces currents inside it. To express the cur-
rents that arise from the three-dimensional rotation, each eyeball
current source can be described as x-, y-, and z-axial dipoles.We obtain-
ed the positions of each eyeball by visual inspection from T1 structural
images and placed three dipoles at the center of each eyeball.

The main noise sources from the heartbeats were assumed to be the
heart's arterial side. The precise location from the origin at the center of
the brain is not known because it depends on the neck angle. Therefore,
approximate positional values ((x, y, z)= (1.5, 0.0, 35.0) [cm])were set
as the main noise source of the heart's location.

MEG

Weused awhole-head, 208-channel system(MEGvision-PQ1400RM;
Yokogawa Electric Co., Japan) for the MEG recordings at a 1000-Hz sam-
pling frequency. Electro-oculograms (EOGs)were simultaneously record-
ed. The slow DC drift components of the observed MEG data were
removed using reference sensors. For each subject, each trial was extract-
ed from−0.4 s before to 4.0 s after the onset of smooth targetmotion.We
used the observed MEG data during only one of the three visual target
stimuli for future analysis. From this analysis, we rejected trials whose
MEG signals from all channels exceeded 95% of the recordable range. If
a subject fell asleep during a session, we also rejected the data recorded
during the entire session. The remaining trials of subjects A, B, and C
were 88 (97.8%), 86 (95.6%), and 56 trials (62.2%), respectively. These re-
maining data were used for analysis.

fMRI

We obtained structural and functional magnetic resonance images
with a 1.5-T MR scanner (MAGNEX ECLIPSE 1.5 T Power Drive 250;
Shimadzu-Marconi, Japan) and used a block design for the fMRI exper-
iment. One session consisted of four repetitions of test and rest blocks.
In the test block, subjects covertly pursued the moving target for 4 s.
After this period, they were allowed a 1-s rest. These periods were re-
peated alternately three times (15 s). In the rest block, the target was
presented in the center of the screen for 15 s. Five sessions were con-
ducted. A target motion was generated in the same way as in the MEG
experiment. The fMRI images were preprocessed and analyzed using
SPM8 (The Wellcome Department of Cognitive Neurology, UK). The
fMRI activities during the covert pursuit eye movements (test block)
were significantly increased in the cortical regions of the lateral occipital
temporal cortex (LOTC), the intraparietal cortex (IPC), the precentral
cortex (PreCC), and themedial superior frontal cortex (MSFC) than dur-
ing fixation (rest block) (p b 0.05, FWE corrected, Supplementary infor-
mation 3). These areas, which are related to the saccadic and smooth
pursuit eye movements (Petit and Haxby, 1999), are also activated
when subjects orient their attention to visually target motion and
pursue it covertly within their visual fields (Corbetta et al., 1998;
Kawawaki et al., 2006). These results indicate that we obtained reason-
able fMRI responses. In this paper, these fMRI activity patterns were
used as prior information of the cortical current variance for hierarchical
Bayesian estimation.

Simulated MEG data

We evaluated our proposed method with simulated MEG data that
were generated by the cortical and extra-brain dipolemodel. Spatial lo-
calizations of the cortical sources were based on the experimental
subject's fMRI activity pattern. Sinusoidal currents were set to cortical
dipoles located on fMRI activation areas (p b 0.05, FWE corrected),
and zero currents were set to other dipoles. Candidates of the cortical
areas related to the covert pursuit task are LOTC, IPC, PreCC, and
MSFC. Dipoles on each cortical area were set to sinusoids with different
frequencies (
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amplitude (Aihara et al., 2012).

Main components of the eye dipole currents during covert pursuit
tasks were assumed to be tremor and microsaccade. The former was
expressed as white Gaussian noise, and the latter was expressed as a
combined sinusoidal wave of
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significant correlations with cortical currents of all areas. The current
values of the x–y–z directions located in the eye were independently
distributed. The standard deviations of the current intensities were
7.07 nAm of the x–y–z directions of the left and right eyeballs.

The heart dipole currents were assumed to be white Gaussian noise,
and the current values of the x–y–z directions located in the heart were
independently distributed. Standard deviations of 3.15, 1.58, and
1.05 μAm were set as the heart current intensities of the x–y–z direc-
tions (these heart current intensities were calculated based on results
in Nousiainen et al., 1986; Supplementary information 4).

To investigate the level of themagnetic background noise, MEG data
were recorded without a subject. The standard deviation calculated
from the acquired data of all sensors was 70.29 fT. In this paper, we
used this value for making background sensor (observation) noise

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/


Table 1
Standard deviation and signal-to-noise ratio for MEG data.

Subj. (trial num.) S.D. [fT] S/N ratio

B̂ B

Simulated data (90) 33.38 184.90 0.033
Observed data A (88) 18.40 140.48 0.017
B (86) 24.73 151.54 0.027
C (56) 22.02 189.13 0.020
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with a Gaussian distribution for the simulated data. Considering these
conditions, the cortical and extra-brain dipole currents were generated.
We calculated the magnetic field from these currents with a lead field
matrix, addedmagnetic background noise to them, and generatedmag-
netic field data as simulatedMEGdata (Fig. 2). The total number of trials
was 90 (30 trials × 3 sessions = 90 trials), which was the same as the
measured MEG data for a single moving target. The signal-to-noise
ratio and the standard deviation of the generated MEG data were also
the same as those for the measured MEG data (Table 1 and Eq. (S3) in
Supplementary information 5).
Evaluation of currents estimated from simulated MEG data

To evaluate the cortical currents estimated from the simulated MEG
data, we calculated the root mean square error between the actual and
estimated currents using the following formula:

RMSE γpri; mpri

� �
¼
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where I denotes the number of cortical dipoles, T denotes the sampling
number, i is the index of the cortical dipole, and t denotes the sampling
index. J and Jtrue denote the average of the estimated and actual cortical
currents across trials.
Artifact removal using PCA

We applied PCA to the simulated MEG data. The first and second
components had a characteristic where their spatial weights over sen-
sor space were widely distributed. Because these components were
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probably artifacts, we removed them (Supplementary information 6
and Fig. S3A). Then,we applied the standard VBMEG for only cortical di-
poles to the subtracted MEG data.
Artifact removal using ICA

We applied ICA to the simulated MEG data using the infomax ICA
algorithm (Delorme and Makeig, 2004) and isolated 208 indepen-
dent components. Two were identified as artifacts and removed
because their spatial weights over sensor space were widely distrib-
uted (Supplementary information 6 and Fig. S3B). Then, we applied
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the standard VBMEG for only cortical dipoles to the subtracted
MEG data.
Calculation of mean magnetic fields arising from heartbeat

To calculate the mean profile of magnetic fields arising from heart-
beats, the peak of the R-wave was identified for each heartbeat cycle
in the record. In this peak detection process, artifactual ICA components
of the 83rd MEG sensor data were used because this sensor was largely
affected by heartbeats (Supplementary information 7). After detecting
every peak of the R-wave, the observed MEG data was extracted from
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Table 2
Selected hyper-parameters for simulated MEG data.

True values Selected values

Curr. var.
[nAm]2

Curr. var.
[nAm]2

Reliability
γ0

Left eye (x) 7.072 11.272 106.00

(y) 7.062 9.272 105.99

(z) 7.072 7.592 105.32

Right eye (x) 7.072 7.032 106.00

(y) 7.072 8.752 106.00

(z) 7.072 7.732 106.00

Heart (x) 3154.962 2870.782 105.97

(y) 1576.372 1399.592 105.00

(z) 1051.832 3061.962 106.00

True value Selected values

m0 m0 γ0

Cortex 12.95 13.06 106.00
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−150msbefore to 450msafter the onset of theR-wavepeak. The num-
bers of the extracted heartbeat cycles for subjects A, B, and C were 399,
298, and 260, respectively. Note that artifactual ICA components were
only used for detecting the peak time location of the R-wave, and the
observed MEG data were used for calculating the mean profile of the
magnetic fields.

Goodness-of-fit evaluation for selecting the MEG data of the
good/intermediate/bad fits

To evaluate the true and reconstructed MEG data for selecting the
good/intermediate/bad fits, we calculated the goodness-of-fit using
the following formula:

GOFm ¼ 1−

XT
t¼1

Btrue
m tð Þ−Brec

m tð Þ
� �2

XT
t¼1

Btrue
m tð Þ−Btrue

m tð Þ
� �2

;
ð19Þ

where, Btrue and Brec indicate the true and reconstructedmagnetic fields,
respectively. m indicates the MEG channel index.

Results

Selecting hyper-parameters using simulated MEG data

To investigate whether our approach can properly select prior infor-
mation, we applied it to the simulated MEG data. By systematically
varying hyper-parameters for the extra-brain source dipoles, we calcu-
lated differences between prior and posterior current variances using
Eq. (11). Fig. 3A shows an overview of the map of the calculated order
differences, and Fig. 3C shows an enlarged view of it while taking an ex-
ample of the result of the y-direction dipole of the left eye. Thin gray
lines show the contours, and thick gray ones show the edges of the
near-zero difference in order of magnitude. The black line shows the ac-
tual current variances used in the simulation.

The correlation coefficients between the cortical current intensities
and the fMRI activities were also calculated using Eq. (13). Fig. 3B
shows an overview of themap of the calculated correlation coefficients,
and Fig. 3D shows an enlarged view of it. The yellow circle in Fig. 3E de-
notes the selected hyper-parameter set based on Criterion 1 and 2. The
root mean square errors (RMSEs) between the estimated and actual
cortical currents were calculated by Eq. (18). RMSEs were calculated
for all hyper-parameter sets in the search range, and then the smallest
value around the selected parameter set was taken, which indicates
that our hyper-parameter estimation was effective. The selected prior
current variancewas fairly close to the actual current variance (compare
the yellow circle and the black horizontal line in Fig. 3F; selected prior
current variance: 9.272 nAm2, true current variance: 7.062 nAm2).

Our proposed method selected proper prior current variance at the
y-direction dipole of the left eye as well as the other dipoles located
on both eyes (Table 2). We also applied it to select the hyper-
parameter set for the cortical dipoles. The selected magnification pa-
rameter was very close to the optimal value derived from Eq. (17),
and the errors between the estimated and true currents were smaller
than those calculated using other hyper-parameter sets (Table 2).

At the heart's x- and y-direction dipoles, the order of the selected
current varianceswas the same level as the true values, but the selected
current variance for the z-direction dipole tended to be larger than the
true current variance (about three times larger than the true current
intensity).

Comparison of observed and reconstructed magnetic fields

To investigate the quality of the currents estimated from simulated
MEG data, we reconstructed the MEG data from the estimated currents
and compared them with the true MEG data. If the estimated currents
were appropriate, we expect the reconstructed magnetic fields to re-
semble the true magnetic fields. Fig. 4A compares the reconstructed
and true magnetic fields calculated from the mean cortical currents.
The blue and red lines indicate the reconstructed and true magnetic
fields, respectively. Fig. 4B shows the histogram for the number of the
MEG sensor across all of goodness-of-fit scores. The most spatiotempo-
ral patterns of the reconstructed magnetic fields resembled the true
ones (Figs. 4A and B). Figs. 4C andD compare the eye and heartmagnet-
icfields between the estimated and true ones. Themagnetic fields calcu-
lated from eye currents had a spatiotemporal characteristic of large
amplitudes around both eyes (Fig. 4C). The heart magnetic fields had
a characteristic of large amplitudes throughout the MEG sensor space,
especially at peripheral sensors (Fig. 4D). These results indicate that
the reconstructed magnetic fields calculated from the estimated corti-
cal, eye, and heart currents can reproduce the true ones well about the
spatiotemporal characteristic.
Spatiotemporal characteristics of estimated currents

To investigate the accuracy of the estimated current intensities and
their distributions over cortical areas, we calculated the cortical current
distribution using Eq. (12) and plotted them on the inflated cortical sur-
face maps (Fig. 5). Figs. 5A and B shows spatial patterns of the true and
estimated current distributions. The cortical areas with large estimated
current intensities were very consistent with areas that have true corti-
cal currents (correlation coefficient: r= 0.77). The amplitudes of the es-
timated current intensities were also the same level as those of the true
current intensities (the mean true and estimated current intensities on
the fMRI activation area were 13.92 and 4.46 pAm, respectively). Our
method estimated currents of the proper cortical areas fairly well.

To investigate the quality of the temporal patterns of the estimated
cortical currents, we compared the temporal profiles of the mean corti-
cal current densities with the true ones at each activation area. First, we
calculated a trial average of the current densities for each cortical dipole.
Second, we calculated the goodness-of-fit between the estimated and
true currents. Third, we found the dipole index with the largest
goodness-of-fit for each cortical area and used it for the analysis. Fig. 6
compares the estimated and true current densities for all activation
areas, and the blue and red lines denote estimated and true values, re-
spectively. The current dipoles of cortical areas LOTC, IPC, PreCC, and
MSFC were respectively set as the sine waves of the following frequen-
cies:
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Hz. Our proposed method expressed the charac-

teristic of sine waves well with different frequencies on each activation
area. Additionally, the true cortical currents have a characteristic where
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each dipole current has a different amplitude that is proportional to the
fMRI activity information. The estimated cortical currents also ex-
pressed their differences in amplitudes.

Next, we scrutinized the correlations between the time series of
estimated and true currents. We used scatter diagrams for each cor-
tical area (MSFC, PreCC, IPC, and LOTC) to investigate the possible re-
lationship between the estimated (x-axis) and true (y-axis) mean
current densities. Each activation area had a high correlation be-
tween them (r = 0.57–0.99), meaning that estimated currents
reproduced true ones well (Supplementary information 8 and
Fig. S5). MSFC was the most poorly correlated brain area with r =
0.57 because it is close to the eyes and most significantly influenced
by eye artifacts. The dipole currents of both eyes and the heart were
also investigated using scatter diagrams. Highly positive correlations
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between the estimated and true currents were confirmed at the x–y–
z directions of both eyes and the x–y directions of the heart (Supple-
mentary information 8 and Fig. S6). The relationships between the
estimated and the true current densities show a slope from 0.61 to
0.91 for the eye currents, and from 0.77 to 0.78 for the heart currents.
Slopes smaller than 1 indicate that the estimated currents tended to
have smaller values than the true ones, i.e., estimation gains were
less than 1, which is reasonable (see Discussion).

Comparison of denoising performance among different methods

Our approach is expected to acquire less distorted cortical currents
by simultaneously estimating not only cortical currents but also extra-
brain source currents. To demonstrate this point quantitatively, we
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compared the performance of our proposed method to conventional
denoising methods. The first is the original VBMEG method (Sato
et al., 2004), which is called here the “VBMEG”method. In this method,
only the dipoles are located on the cortical surface and the dipole cur-
rents are estimated (Supplementary information 9 and Fig. S7A). The
second is the “PCA” method, where the extra-brain components were
removed from the MEG data by PCA in the preprocessing step, then
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dipole currents were estimated by using the VBMEG (Supplementary
information 9 and Fig. S7B). The third one is the “ICA” method, where
the extra-brain components were removed from the MEG data by ICA
in the preprocessing step, then dipole currents were estimated by
using the VBMEG (Supplementary information 9 and Fig. S7C). The
last one is our proposed method, “extra-dipole,” which places the di-
poles on the cortical surface as well as on the extra-brain sources and
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simultaneously estimates both types of dipole currents (Fig. 5B). The er-
rors between the estimated and true cortical currents were calculated
by Eq. (18). The errors of our proposed method were the smallest
among the fourmethods compared (Fig. 7, “Correct prior information”).
The original VBMEGmethod is not explicitly concerned about denoising
unlike PCA, ICA, or extra-dipole methods, but is expected to possess
some denoising capability because it puts spatial and directional con-
straints on cortical dipoles that should decrease the influences of
extra-brain sources. When using the original VBMEG, however, some
of the estimated cortical currents tend to represent the extra-brain com-
ponents mistakenly (shown in red circles on Fig. S7A of Supplementary
information 9). By estimating cortical currents and extra-brain dipole
currents simultaneously, we could avoid this problemwithout any pre-
processing steps unlike PCA and ICA.

For further confirmation of the advantage of our proposed method,
we introduced false-positive fMRI prior information about positive acti-
vations on the cortical areas, even though such areas actually do not
have them (Supplementary information 10). One characteristic of VB
estimation is robustness against false-positive prior information (Sato
et al., 2004). If the components of the cortical activities remained
completely in the MEG data after the preprocessing steps of PCA and
ICA, the error levels of the cortical currents were expected to be the
same as the extra-dipole methods. However, when false prior informa-
tion was used, the PCA and ICA errors exceeded those of the extra-
dipole method (Fig. 7, “False positive prior information”). The errors of
the four methods under the two different prior information conditions
were quite similar with each other (compare Fig. 7 “Correct” and
“False positive prior information”).

Applications to measured MEG data

To examine practical utility and estimation accuracy of our approach,
we applied it to measured MEG data. We selected the hyper-parameter
set based on Criterion 1 and 2 (Fig. 8 and Table 3). We used the selected
parameters to estimate the cortical and extra-brain source currents. Katila
et al. (1981) recorded ocular magnetic fields around a head when a sub-
ject was watching a light stimulus and estimated the eye dipole current
moments from the observed magnetic fields. The estimated values were
about 10 nAm. In our experiments, the mean current variances of both
eyes estimated from the observed MEG data were 6.252–11.302 nAm2,
and these estimated values were similar to those of previous research
with respect to order of magnitude (Fig. 9A, Table 3).

Fig. 9B (upper panel) shows the mean magnetic fields of a heart
component (red line). The measured MEG data were extracted using
the onset of the R-wave, and the mean profile of the magnetic fields
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Fig. 7. Comparison of rootmean square errors of estimated currents among four denoising
methods. (A) shows the results under a condition of correct prior information. (B) shows
the results under a condition of false-positive prior information.
was calculated (see the Materials and method section for details).
Fig. 9B (lower panel) shows the mean dipole currents located on the
heart (orange, green, and cyan lines), which were also extracted using
the same onset as the observed MEG. The orange, green, and cyan
lines denote the components of the x-, y-, and z-directions, respectively.
The heart components of the measured magnetic fields had a bipolar
impulse profile in the range of R- to S-waves (Fig. 9B, upper panel).
The estimated currents, especially the y and z components, also had
the same characteristic in the same time window (Fig. 9B, lower
panel). The measured magnetic fields changed slowly in the time win-
dow of Q- and T-waves, and the estimated heart currents also changed
slowly there. Consequently, the estimated y and z components of heart
currents expressed the characteristics of the measured magnetic fields.

We calculated the current intensities from themean cortical currents
during the covert pursuit task using Eq. (12) and plotted the values on
the inflated cortical surface map (Fig. 10). LOTC, PreCC, IPC, and MSFC
shared large current intensities among this experiment's participants.
These cortical areas were the same as the expected activation areas for
the covert pursuit tasks from previous studies (Corbetta et al., 1998;
Kawawaki et al., 2006). If the cortical currents were accurately estimated
by our proposed method, their temporal patterns may include the time
series correlated with kinematic target information such as positions
and velocities. We investigated whether each cortical area possesses es-
timated currents representing such kinematic information of the target
for attention. First, we calculated a trial average of each dipole current.
Second,we calculated the correlation coefficients between themean cor-
tical currents and the target position and velocity. Third, the dipole index
with the largest correlation coefficient for each cortical area was deter-
mined, and its time series of the mean cortical current was plotted in
Fig. 11A (subject A). The target of attention began to move at the onset
and moved smoothly and slowly for 4 s within the subject's visual
field. The visual evoked response was observed around 0.1 s from the
onset as a negative deflection in several traces including the LOTC posi-
tion trace of Fig. 11A. After that time point, the time series of the estimat-
ed currents was correlated with the target positions and/or velocities.
We investigated allmean dipole currents towhich two types of target in-
formation (positions and velocities) were the most similar, then we cal-
culated the rate for each cortical area from all dipole currents of all
participants and plotted a pie chart (Fig. 11B). In this analysis, we calcu-
lated these correlation coefficients using the data in a time range of
0.6–4.0 s to avoid the effects of visual evoked responses. If the correlation
coefficient was below 0.2, we assumed that the dipole current had no
resemblance to the target information and categorized it as “no correla-
tion.” As a result, each activation area had two types of target informa-
tion, and their rate depended on the activation areas. In the future, we
need to investigate in more detail which dipoles on each activation
area code the target information and whether they have predictive rep-
resentation about the moving targets using decoding techniques.

Discussion

This paper proposes a practical MEG denoisingmethod that requires
no additional sensor data other than MEG, unlike the hyVBED method.
We applied our method to simulated and measured MEG data that
were contaminated by both eye movements and heartbeats. By intro-
ducingproper prior information, our approachmore accurately estimat-
ed cortical and extra-brain source currents from the obfuscated MEG
signals than the original VBMEG method. Additionally, we compared
the performance of this method with such conventional statistical
methods as PCA and ICA. It surpassed those that only used statistical
properties of time-series signals (Fig. 7).

Fujiwara et al. (2009) recorded MEG and EOG signals while sub-
jects performed horizontal, smooth pursuit eye movements (hori-
zontal amplitude, 4°; frequency, 0.7 Hz). They calculated a forward
model for both eyes from the EOG data and estimated the current
moments of the eyes from the EOG and MEG data by the variational



1.6

1.8

2

2.2

1.6

1.8

2

2.2

1.6

1.8

2

2.2

0

1

2

3

4

1

0
1 2 3 4 5 6 1 2 3 4 5 6

2

3

4

5 5.5 6

log
10

γ
0

pr
io

r c
ur

r. 
va

r. 
[lo

g 10
(n

A
m

)2 ]

log
10

γ
0

00

BA

DC

log
10

γ
0

pr
io

r c
ur

r. 
va

r. 
[lo

g 10
(n

A
m

)2 ]

E

O O-post pri Correlation coefficients

Selected hyperparameters

65 655.5 5.5
lo

66 5

0.280

0.281

−5

0

5

Criterion 2Criterion 1

Fig. 8. (A) Overview of the two-dimensional (2D) map of the calculated order differences between prior and posterior current variances for measured MEG data (e.g., y-direction of left
eye). Thin gray lines show contours, and thick gray ones show edges of near-zero order of magnitude. (B) Overview of the 2D map of correlation coefficients between cortical current
intensities and fMRI activities. (C) and (D) are enlarged views of (A) and (B), respectively. (E) The selected hyper-parameter set based on two criteria. Yellow circle shows the selected
hyper-parameter set.

331K. Morishige et al. / NeuroImage 101 (2014) 320–336
Bayesian method. The trial average of the estimated current ampli-
tudes was in the range of 21.7–36.3 nAm. Unlike Fujiwara's experi-
ment, this paper's task did not require subjects to move eyes
overtly but only covertly. Thus, here involuntary eye movements
such as tremors and microsaccades caused electrical currents at
both eyes. The tremor and microsaccade amplitudes were about
0.0042° and 0.25°, respectively. Their vibrational frequencies were
as high as 90 and 0.5 Hz, respectively (Martinez-Conde et al.,
2004). The ratios of the charge movement currents between
Fujiwara and our experiments were 4 ° × 0.7 Hz : 0.0042 ° × 90 Hz
= 1 : 0.135 and 4 ° × 0.7 Hz : 0.25 ° × 0.5 Hz = 1 : 0.04. When
converting the estimated current intensities in their work with those
of our experiments, the eye current intensities arising from tremors
are expected in the range of 2.93–4.90 nAm, and the eye current
intensities arising from microsaccades are expected in the range of
0.97–1.62 nAm. The total intensity is about 3.90–6.52 nAm. The order
in estimated magnitude was also the same as our results obtained
with VBMEG augmented by extra-cortical dipoles.

We calculated the mean values of the estimated current variance of
the heart from simulated MEG data. The values were (x, y, z) =
(2.872, 1.402, 3.062) μAm2. The true current variances assumed in the
simulation were (x, y, z) = (3.152, 1.582, 1.052) μAm2. The estimated
values of the x- and y-directions were the same level as the true ones,
but the z-elements were larger than the true ones. The z-direction



Table 3
Selected hyper-parameters for measured MEG data.

Subj. A Subj. B Subj. C Mean

Curr. var. [nAm]2 Reliability γ0 Curr. var. [nAm]2 Reliability γ0 Curr. var. [nAm]2 Reliability γ0 Curr. var. [nAm]2 Reliability γ0

Left eye (x) 9.202 106.00 6.932 106.00 9.642 106.00 8.672 106.00

(y) 9.292 106.00 11.302 106.00 10.762 106.00 10.492 106.00

(z) 7.552 106.00 6.252 106.00 6.412 105.98 6.762 105.99

Right eye (x) 9.202 106.00 7.062 106.00 11.692 106.00 9.512 106.00

(y) 8.792 106.00 8.042 106.00 13.032 105.99 10.192 106.00

(z) 7.762 106.00 5.312 106.00 7.352 106.00 6.892 106.00

Heart (x) 368.132 105.99 446.692 105.98 384.592 106.00 401.232 105.99

(y) 445.662 106.00 449.782 106.00 444.632 105.99 446.692 106.00

(z) 3243.402 106.00 3235.942 106.00 2805.432 105.99 3101.692 106.00

Subj. A Subj. B Subj. C Mean

m0 γ0 m0 γ0 m0 γ0 m0 γ0

Cortex 27.04 106.00 33.73 106.00 36.98 106.00 32.58 106.00
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element of the lead field matrix was smaller than the others (values not
shown in the paper). This result means that the MEG sensors have poor
sensitivity to the z-direction magnetic fields. To express the observed
magnetic field using only one dipole current, we selected the larger
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dipole currents. If a MEG system has not only axial- but also planar-
gradiometer sensors, we can acquire rich sensitivity for the z-direction
of the heart's magnetic fields (e.g., a whole-head 400-channel MEG sys-
tem, Yokogawa Co., Japan). If the acquired MEG data contain the z-
direction components, it is more meaningful to locate the z-direction di-
pole in the heart. It might be possible to obtain more precise dipole cur-
rents if axial- and planar-gradiometer sensor data were used for future
data analysis. The current variance for each extra-brain source dipole
was assumed to obey a single Gaussian distribution. If extra-brain
sources have constant current intensities over entire trials, this assump-
tion is appropriate (e.g., involuntary eye movements). However, heart-
beats tend to have electrical impulse patterns in cycles, and the
amplitude was larger than those of the others during R-wave duration.
Thus, it is not always a proper assumption to express the properties of
heart currents as a single Gaussian process. Under this inappropriate as-
sumption, heart dipole currents were underestimated when larger
values were expected, and the currents were overestimated when
small valueswere expected. Therefore, the reconstructedmagnetic fields
from the estimated heart currents failed to express the amplitudes of the
realistic magnetic fields adequately. To avoid this problem, we must im-
prove the statisticalmodel for extra-brain sources (e.g., using not a single
Gaussian model but a Gaussian mixture model) to further improve the
precision of the denoising method (Yoshioka et al., 2010).
Conventional denoising methods such as PCA and ICA are heavily
dependent on the subjective views of users who are required to select
which principal and independent components are “artifacts.” If too
many components are considered artifacts, they might mistakenly re-
move themagnetic fields caused by brain activities. If too few are select-
ed, theymistakenly attributemagnetic fields caused by artifacts to brain
activities. In contrast, our proposedmethod is free of subjective views or
decision criteria for artifacts because our extra-dipole method clearly
represents the extra-brain sources using current dipoles, thus allowing
it to reasonably isolate cortical and extra-brain activities without sub-
jective decision criteria.

When false-positive fMRI prior information was introduced, the es-
timated currents with PCA and ICA have larger errors than those with
the extra-dipole method. Cortical current estimation using VBMEG
tends to have less sensitivity to false-positive prior information (Sato
et al., 2004). Despite this property, the errors of PCA and ICA combined
with VBMEGwere larger. Thismeans that PCA and ICAmistakenly or in-
appropriately removed some components with brain activities as “arti-
facts.” Mistakenly selecting unnecessary principal and independent
components causes improper denoising and current estimation. Our
proposed method avoids these problems. It is difficult to remove arti-
facts correlated with brain signals because the PCA and ICA methods
rely on orthogonality or statistical independence of time-series signals.
In contrast, our method precisely isolates the cortical and extra-brain
source components even if they have some correlation because this
method calculates and uses the inverse filter from MEG signals on the
cortical and extra-brain source currents. For example, it might be possi-
ble to apply this method to analyze MEG data during smooth pursuit
tasks that require subjects to move both eyes overtly, not covertly. In
such tasks, cortical activities have some correlation with eye move-
ments, but our method is expected to acquire brain activities precisely.
In the future, we will apply this method to various research issues that
we could not investigate previously.

Whydoesn't the conventional framework,whichmaximizes free en-
ergy, select proper hyper-parameters? Free energy reflects the good-
ness of the fit between the MEG sensor data and the Bayesian model.
On the other hand, the index of Criterion 2mainly reflects the similarity
between prior information and themodel. Each extra-brain source has a
specific large physical property value, and therefore both free energy
and Criterion 2 tend to rely on the informative prior, thus selecting
large gamma values (Figs. 12A and C). The cortical current sources,
which have about 20,000 dipoles located on the cortical surface, are
controlled by only one fMRImagnification parameter:m0. By greatly re-
lying onm0, the model resembles the fMRI activation pattern. Without
relying on m0, it fits the MEG sensor data. If hyper-parameters are se-
lected by maximizing the free energy, the magnification parameter for
the cortical currents tends to fit the MEG sensor data, and thus a small
gamma is selected to satisfy the fMRI constraint with a lesser extent
(Figs. 12B and D). However, it is empirically unstable for the Bayesian
model to explain only the MEG data, and our simulation and experi-
mental results support our theory and analysis. Our proposed method
is robust because it selects the optimal hyper-parameters concerning
both theMEG and fMRI data. Although our approach is not theoretically
elegant but ad-hoc, it provides a robust and practical framework for the
MEG inverse problem.

After applications of brain machine interfaces have been integrated
into our daily future lives, EEG will be one dominant recording system
for brain activities. However, weak EEG signals are susceptible to strong
electrical noises in our everyday environments such as TVs, refrigera-
tors, and muscle activities of body movements. However, a limit exists
concerning the isolation of the effects of extra-brain sources using con-
ventionalmethodswith only statistical properties of time-series signals,
such as PCA and ICA. In addition, hyVBED is not a realistic solution be-
cause additional sensor information, such as power-supply noises and
EMG signals all over a user's body, is necessary for simultaneous record-
ing. In contrast, our proposed method is a realistic approach because it
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can find proper prior information about extra-brain sources, even if
there is less knowledge about them a priori. In this paper, we evaluated
our proposed method using MEG data, but this method can also be ap-
plied to EEG data because their spatiotemporal properties resemble
MEG data (Morishige et al., 2011). In addition, this paper only treated
such biological artifact sources as eye movements and heartbeats, but
this method can isolate the effects of external noise sources, such as
power-supply and electronic device noises. By using the advantages of
our proposed method, we can apply it to solve the EEG denoising prob-
lem and contribute to developing a practical, high-performance brain–
machine interface with an EEG recording system free from eye move-
ment constraints.

Conclusions

We evaluated our proposed method by estimating cortical and
extra-brain dipole currents from simulated and measured MEG data.
By introducing proper prior information, our approach obtained a
more accurate estimate of cortical and extra-brain currents from obfus-
cated MEG signals. Additionally, we compared the performance of this
method with conventional statistical methods, such as PCA and ICA.
The performance of our proposedmethod surpassed these conventional
statistical methods.

By using the advantages of our proposedmethod,we believe thatwe
can reveal high-precision spatiotemporal brain activities during smooth
pursuit tasks not only covertly but also overtly. It can also be applied to
solve the EEG denoising problem and contribute to the development of
a practical, high-performance brain–machine interface with an EEG re-
cording system free from eye movement constraints.
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