
1998 Special Issue

A tennis serve and upswing learning robot based on bi-directional theory

Hiroyuki Miyamoto1,*, Mitsuo Kawato2

1Japan Science and Technology Corporation, Kawato Dynamic Brain Project, Kyoto, Japan
2ATR Human Information Processing Research Laboratory, Kyoto, Japan

Received and accepted 30 April 1998

Abstract

We experimented on task-level robot learning based on bi-directional theory. The via-point representation was used for ‘learning by
watching’. In our previous work, we had a robot learn kendama (a Japanese game) in order to demonstrate a single simple task. Our approach
can be applied to a wide variety of motor behavior. However, some difficulties still remain. In this paper, we address two problems: (1) how
to attain a final goal of complex movement when it consists of a sequence of subgoals, and (2) how to adapt to changes in behavior and the
environment. To examine how to solve these problems, we propose two methods: (1) selecting the proper via-points for a control variable for
each subgoal, and (2) re-estimating the relation between the via-points and the task during learning without conducting extra trials. We
adopted a tennis serve and a pendulum upswing for our complicated tasks.q 1998 Elsevier Science Ltd. All rights reserved.

Keywords:Bi-directional theory; Learning by watching; Task-level learning

1. Introduction

It is time-consuming to make a robot perform a job
requiring human skill by a conventional ‘teaching playback’
method. There are other difficulties, such as transforming a
knack or an intuition of skilled movement into numerical
values, or overcoming fluctuations and environmental
uncertainty. Recently, learning from demonstration, in this
case ‘learning by watching’ or ‘teaching by showing’, has
been explored in the robotics field for higher level task
learning (e.g. Aboaf et al., 1988; Kuniyoshi et al., 1991;
Kang and Ikeuchi, 1993; Atkeson and Schaal, 1997).

The approach we are pursuing is based on the bi-direc-
tional theory (Kawato, 1992; Kawato et al., 1994). This
theory provides a general computational framework for sen-
sory-motor integration, and derives generic representations
for a wide variety of motor behavior. One of the essential
factors in this theory is the representation of behavior in a
sparse via-point representation. Using a Forward Inverse
Relaxation Model (FIRM), Wada and Kawato (1993,
1995) developed an algorithm to approximately extract
the minimum number of via-points,S ¼ { P1,P2,…,PN},
from a given trajectory,Xdata, with a level of error threshold

d. Generally, (see Kawato et al., 1994 and Miyamoto et al.,
1996 for more detail), our approach for learning by watch-
ing is as follows. First, a learner estimates the via-points
Steacher¼ X1

via,X2
via, …,XN

via

� 	
, as the internal representation

of the teacher’s movement plan by watching the demon-
stration. Next, the learner incorporates the internal represen-
tation Slearner¼ X̃1

via, X̃2
via,…, X̃N

via

n o
. Then, the learner

completes the task by controlling this internal represen-
tation. The actual trajectory executed by the robot arm is
expressed as follows:Xreal ; x(Slearner), wherex includes the
optimal trajectory calculation and feedback (and/or feed-
forward) controller. If the optimization principle adopted
here does not differ much from the human’s, and if the
via-points representation is appropriate, the resulting
realized movement of the robot arm is similar to the demon-
strated movement of the human subject. The task is on the
verge of successful execution at this point. Since the
realized trajectoryXreal is smooth and parameterized by a
small number of control variablesSlearner, various learning
algorithms (in our case a Newton-like method) can be
efficiently used for task-level learning.

In a previous study, we showed how this approach can be
applied to learning the Japanese game of kendama by first
extracting via-points from a human demonstration, and then
transferring this knowledge to an anthropomorphic robot
arm which must perform the same task (Kawato et al.,
1994; Miyamoto et al., 1996). We chose the game of

* Corresponding author at Hikaridai 2-2, Seika-cho, Soraku-gun, Kyoto
619-02, Japan. Tel.: 0081 774 95 1233; Fax: 0081 774 95 3001; E-mail:
miyamo@erato.atr.co.jp

0893–6080/98/$19.00q 1998 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(98)00062-8

Neural Networks 11 (1998) 1331–1344PERGAMON

Neural
Networks

kendama as a simple task example. The game’s movement
is relatively simple but it requires quick and dynamic
motion. Movement in kendama consists of two parts, throw-
ing a ball up on an attached string and catching it in a cup. In
this case, it was possible to achieve the task by a simple
representation as follows: the horizontal location of the ball
falling at the height of the cup was chosen as the task vari-
able and the via-points were the control variable which
influenced the task variable. We adopted a Newton-like
method for a learning scheme which uses a relation of the
control and task variables, that is, a linear approximation
(Jacobian). In the kendama task, there were few changes in
the Jacobian while the learning was in progress, therefore
we only used the Jacobian for first movement trajectory.

When we apply the above-mentioned learning to a more
generalized movement, there are more problems to be con-
sidered. In this paper we will discuss two of them. First, the
final goal of the task is not always attained in a single
learning phase, even if a generalized sequential movement
has one final goal. It may have a hierarchical structure, that
is, there may be a number of subgoals (subtasks) which must
be sequentially attained to achieve the final task goal. The
learning process becomes more difficult when each subtask
influences another, as in the tennis serve task (described in
Section 2). Second, the relation of the control variable and
the task variable (Jacobian) is usually inaccurate and
changeable. We cannot avoid inaccuracy in the Jacobian
estimation of a realistic situation because of fluctuations
in robot motion and measurement error. Change and
inaccuracy in the Jacobian make the learning process
impossible or unstable. The Jacobian dramatically changes
with the learning progress if the controlled object has strong
nonlinear characteristics as in the pendulum upswing task
(described in Section 3). In order to examine how to solve
these problems, we had the robot perform a tennis serve and
the pendulum upswing. Both tasks are more difficult than
kendama.

In Section 2 we examine how to attain a final goal of
sequential movement consisting of a sequence of subgoals.
The final goal of the tennis serve is to strike a ball to put it in
a goal. The learning procedure is divided into two phases
with empirical knowledge. The robot must achieve these
two temporally continuing subtasks in order: (1) to throw
the ball so the ball hits the racket, and (2) to strike the ball so
it falls into the goal. In the first implementation of our
experiment, subtask 1 (throwing the ball up) was adversely
affected by the modification of via-points for achieving sub-
task 2 (striking the ball). To avoid this problem, we care-
fully selected via-points for the control variable among all
of the extracted via-points according to each learning phase.
We intuitively selected via-points in Section 2.1. In Section
2.2, we describe a method for rationally selecting proper
via-points by analysing the Jacobian.

In Section 3 we examine how to adapt to changes in the
behavior of a controlled object or the environment. In the
tennis serve, even if the robot arm follows exactly the same

movement trajectory, the ball has a slightly irregular orbit
after striking because of movement in the installation part of
the racket and the rough surface of the ball. The ball’s
irregular behavior negatively affects the accurate and stable
estimation of the Jacobian (Section 3.2). Learning the
pendulum upswing is difficult compared with kendama
because the pendulum has strong nonlinear characteristics.
The pendulum shows many changes in behavior even if the
change of the control input is minimal. When conducting
learning only using the Jacobian estimated for the first
movement trajectory, learning becomes unstable or
impossible because the learning changes the movement
trajectory. Thus the Jacobian changes dramatically during
the learning progress (Section 3.3). In order to adapt to
changes in the behavior and the environment, we propose
a method for re-estimation of the Jacobian during learning,
without conducting extra trials, in Section 3.1.

For simplicity, we used a simulated robot instead of a real
robot, except in Section 2.1.

2. Learning sequential movements

The task we adopted in this section is to hit the ball so it
falls into the goal. The goal was approximately 2 m from the
player. Initially, the player holds the racket with the ball on
a cup attached to the tennis racket grip. The player swings
the racket to yank the ball over the racket. After a few
hundred milliseconds, the ball is hit softly with the racket.
If everything goes well, the ball falls into the goal.

We divided the tennis serve into two subtasks: (1) prop-
erly throwing the ball up to hit the ball with the racket, and
(2) hitting the ball at a suitable angle. The two subtasks are
performed consecutively. Since there is interaction between
the first subtask and the second subtask, learning the tennis
serve is more difficult than learning kendama (Miyamoto et
al., 1996). In order to avoid interaction between subtasks,
we carefully selected via-points for the control variable
among all of the extracted via-points according to each
learning phase. We intuitively selected via-points in the
real robot experiment (Section 2.1). Following that, we
made a better selection of via-points for a proper control
variable (Section 2.2).

2.1. Tennis serve robot experiment

2.1.1. Experimental setup
Measurement of human demonstration.Fig. 1 shows a

schematic diagram of the tennis serve-learning robot.
While a subject was performing a tennis serve, we measured
the positions of the shoulder, elbow, wrist, and upper and
lower sides of the tennis racket with the OPTOTRAK, a
three-dimensional vision system which uses infrared light-
emitting diode markers and three cameras. In this
experimental setting, the precision of the position sensing
was approximately a few millimeters and the sampling

1332 H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

frequency was 250 Hz. We calculated the Cartesian racket
position and orientationsXdata which is a six-dimensional
vector from these position data. We determined the moment
of impact tHIT of the ball on the racket by detecting the
acceleration trajectory spike as shown in Fig. 2.

Via-points extraction. We extracted the Cartesian via-
points Xvia from Xdata using the FIRM algorithm (Wada
and Kawato, 1993, 1995). Fig. 3 illustrates how the algo-
rithm for extracting the via-points works using an example
of a tennis serve. Based on the FIRM model, the via-points
are sequentially extracted as: (1) FIRM generates an optimal
trajectory between the start point and the end point using the
minimum principle for the approximated linear dynamics
(point mass model) (left column). In this case, the generated
trajectory is equivalent to the minimum-jerk trajectory, i.e.
the fifth order polynomial (Flash and Hogan, 1985). (2)
FIRM selects the first via-point at the point of maximal
squared error between the given trajectory and the generated

trajectory. Then, FIRM generates a new trajectory passing
through this via-point (middle column). (3) This procedure
continues (right column) until the error between the given
trajectory and the generated trajectory becomes sufficiently
small.

Fig. 4 shows the via-points extracted from the human
demonstration and the optimal trajectories generated from
these via-points in Cartesian space.

Transforming the human movement to that for the robot.
The Cartesian position and orientation were transformed
into the robot’s configuration space, i.e. joint angle. The
robot is the SARCOS dexterous slave arm which has almost
the same kinematic structure (seven degrees of freedom) as
the human arm. When we transform the desired trajectory in
Cartesian space to that in joint space, we can precisely cal-
culate the joint trajectory by calculating inverse kinematics
at the all sampling point. However the smoothness of the
joint trajectory is not guaranteed, and the inverse kinematics
calculation takes a long time. For smoothness of desired
joint trajectory, and for rapid and precise calculation, we
used the following method, schematically illustrated in
Fig. 5. The broken lines in (i) of the figure indicate the

Fig. 1. Schematic diagram of tennis serve learning robot.

Fig. 2. Time course of the position, velocity, and acceleration at the racket
center. Velocity and acceleration trajectories were calculated using numer-
ical differentiation.

1333H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

desired trajectory generated from via-points in Cartesian
space. First, we obtain via-points in joint space by inverse
kinematics (IK) from the Cartesian via-points. Then we
generate an optimal trajectory, solid line in (ii), from
these via-points in joint space. The expected Cartesian
trajectory, solid line in (iii), is calculated by forward
kinematics (FK) from this optimal trajectory in joint space
at the all sampling points. Second, we add the supplemental
via-points, A and B in (iv), in joint space at the points
(displayed by vertical arrows) of maximal squared error
between the desired (broken line) and the expected (solid
line) trajectory in Cartesian space. The supplemental via-
points (A and B) locations are calculated by inverse kine-
matics from Cartesian desired trajectory at these points.
Finally, the optimal trajectory in joint space is generated
from these via-points (1, A, 2, B, and 3). The resulting
expected Cartesian trajectory, the solid line in (v), agrees
well with the Cartesian desired trajectory.

Measurement of robot execution. The ball, racket, and
goal positions were measured by a three-dimensional
visual sensing system during the robot’s task execution
(QUICKMAG: tracking color blobs with two cameras).
This system can sample the center of a specific color blob
at a sampling rate of 60 Hz, and the precision of the position
sensing was approximately 5–10 mm in this experimental
setting.

The left column in Fig. 6 shows the first trial executed by
the SARCOS arm. The ball was not thrown properly so the
robot missed the ball.

2.1.2. Learning subtask 1 (throwing the ball up)
For the SARCOS arm to hit the ball in the center of the

racket, we modified the via-pointsSH around the ball throw-
ing. To adjust the ball throwing so that the ball fell exactly
in the center of the racket, we selected the two via-points
that are located before and after the release of the ball from
the cup.

SH ¼ (x3,y3, z3,x4, y4,z4)T

The desired taskTHd and the realized taskTH are the
position at the center of the racket and the position of the
ball at the moment of impacttHIT on the racket, respectively.

THd ¼ (xHd,yHd, zHd)T

TH ¼ (xH,yH, zH)T

To improve the robot’s performance, the via-point locations
are modified by the following Newton-like method.

Snþ 1
H ¼ Sn

H þ JH BH(THd ¹ Tn
H) (1)

Here,Sn
H denotes the Cartesian via-points of the SARCOS

arm in thenth iteration of the Newton-like method.THd

Fig. 3. Schematic illustration of algorithm for extracting via-points. This algorithm approximately minimizes squared error of given trajectory (solid line) and
generated trajectory (dotted line) while extracting via-points.Left: generation of optimal trajectory which connects start (1) and end (2) points.Middle:
extracting first via-point (3).Right: extracting next via-point (4).

1334 H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

and Tn
H are the desired and realized task representations,

respectively. The superscript # denotes the simply regular-
ized generalized inverse matrix. Since it is difficult to
analytically compute the Jacobian matrixJH ¼ (]TH=]SH),
we use the estimated Jacobian matrixJH ¼ (dTH=dSH). To
stabilize the convergence of learning, we set the gain matrix
BH ¼ diag(0:5,0:5, 0:5).

To estimate the matrixJH, we observed the changes in the
behavior of the subtask 1dTH when the perturbation

6 dx3,…, 6 dz4 (0.01 m magnitude) is added to the
via-points (shown in lower part of Fig. 7 by ‘p’).

JH ¼
dTH

dSH
¼

dxH

dx3

dxH

dy3

dxH

dz3

dxH

dx4

dxH

dy4

dxH

dz4

dyH

dx3

dyH

dy3

dyH

dz3

dyH

dx4

dyH

dy4

dyH

dz4

dzH

dx3

dzH

dy3

dzH

dz3

dzH

dx4

dzH

dy4

dzH

dz4

0BBBBBBBB@

1CCCCCCCCA
(2)

The middle panel of Fig. 6 shows the 25th trial. These trials
include the trials for estimatingJH. The robot was able to hit
the ball in the center of the racket, but the ball did not fall
into the goal.

2.1.3. Learning subtask 2 (hitting the ball)
When the robot began to hit the ball in the center of the

racket, we started learning subtask 2. At this time, we mod-
ified the via-pointSG which was near the time of ball impact
as shown in Fig. 4, and subsequently affected the direction
of the ball.

SG ¼ (f6, v6,w6)T

Here f6, v6,w6 are the orientation: Z–Y–Z Euler angle,
measured in radian. Each rotation is performed about an
axis attached to the racket. Rotate aboutzracket by anglef,
then rotate aboutyracket by anglev, and then rotate about
zracket by anglew (see Craig, 1989).

Fig. 4. Via-points extracted from human demonstration and optimal trajec-
tories generated from these via-points in Cartesian space.x, y, z are Carte-
sian position (x positive rightward,y positive anterior, andz positive
upward).f, v, w are orientation (Z–Y–Z Euler angle) measured in radian.
Each rotation is performed about an axis attached to the racket. Rotate
aboutzracket by anglef, then rotate aboutyracket by anglev, and then rotate
aboutzracket by anglew (see Craig (1989)).

Fig. 5. Schematic illustration of algorithm for transforming human move-
ment to that of a robot. 1, 2, and 3 show via-points. Broken lines show
desired trajectory in Cartesian space generated from Cartesian via-points.
Solid lines (left culums) show optimal trajectory generated from via-points
in joint space. Solid lines (right culums) show expected trajectory calcu-
lated by forward kinematics (FK) from joint trajectory at all sampling
points. Arrows in (iii) indicate points at maximal squared error between
desired trajectory in Cartesian space and expected trajectory. A and B show
supplemental via-points.

1335H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

The desired taskTGd is the goal position. The realized
taskTG is the ball position when the ball falls to the same
height as the upper ring of the goal.

TGd ¼ (xGd,yGd)
T

TG ¼ (xG,yG)T

To estimate the matrixJG, we observed the changes in the
behavior of subtask 2,dTG, when the perturbation

6 df6, 6 dv6, 6 dw6 (18 magnitude) is added to the
via-points (shown in lower part of Fig. 7 by ‘!’).

JG ¼
dTG

dSG
¼

dxG

df6

dxG

dv6

dxG

dw6

dyG

df6

dyG

dv6

dyG

dw6

0BBB@
1CCCA (3)

The via-point locations are modified by the following
Newton-like method.

Fig. 6. Three-dimensional views of first (left), 25th (middle), and 60th to 65th (right) trial(s) of a tennis serve executed by the SARCOS arm. Six trials are
superimposed in the right panel. The stick figure displays the SARCOS arm posture at hit time. Stick figure was made from realized joint angles of the
SARCOS arm by a forward-kinematics equation. Top, middle, and bottom rows are projections intox–y, x–z, andy–z planes, respectively.

Fig. 7. Learning curves of tennis serve robot experiment. ‘3 ’ indicates distance from ball to racket center when ball should be hit by racket. ‘W’ indicates
distance from ball to goal when ball falls at the same height as goal. Abscissa indicates learning cycles.

1336 H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

Snþ 1
G ¼ Sn

G þ JGBG(TGd ¹ Tn
G) (4)

BG ¼ diag(a,a)

a ¼

0:4 if d , 0:05

0:88–d if d . 0:05 andd , 0:1

0 otherwise

8>><>>:
Here,d¼ lTHd ¹ THl is the distance from the center of the
racket to the ball at the moment of impacttHIT. If d , 0.1 m,
then the orientation of the racket is modified, otherwise it is
not modified (instead, the learning for subtask 1, Eq. (5) is
performed).

Fig. 7 shows the learning curve. To estimateJH andJG,
we observed changes in behavior in subtask 1 and sub-
task 2 (shown in lower part of graph by ‘p’ and ‘!’,
respectively) when perturbation was added on via-points.
Trials 26 to 43 were performed for estimate ofJG. Because
we wanted to estimateJG as correctly as possible, ifd ,
0.1 m then we adopted this trial for estimation ofJG, other-
wise learning for subtask 1 was performed. Since the ball
position varies at the time of impact, we had to skip some
trials to estimateJG. Eleven trials out of 17 (trials 26 to 43)
were wasted.

After JG was estimated, we started to perform learning for
subtask 2 (trials 45 to 60). After trial 60 was finished, the
next five trials were performed by using the same desired
trajectory as trial 60 but without the learning procedure. The
right panel in Fig. 6 shows trials 60 to 65 (superimposed in
the figure). The ball direction was dispersed within the goal
diameter (about 250 mm).

2.2. Selecting via-points for the effective control variable

In Section 2.1 we intuitively selected the via-points for
a control variable, and the selection is unfounded. It is
difficult to find the optimal choice of via-points which
gives the most rapid convergence of learning.
However, we can find a better selection of via-points

using the following method. In this section, all experiments
were conducted using computer simulation. Fig. 8 shows a
schematic diagram of a simulated tennis serve leaning a
robot. The demonstrated trajectory of human subject is the
same as that in Section 2.1.

2.2.1. Selecting via-points for subtask 1 (throwing the ball
up)

To estimate the Jacobian, we observed the changes in the
behavior of the subtasksdT when the small perturbationdS
(0.05 m magnitude for thex,y,z component and 58 magnitude
for thef, v,w component) is added to the via-points.

We first estimate the full Jacobian matrix from the first to
the eighth via-points components as follows.

dTH

dS
¼

dxH

dx1

dxH

dy1

… dxH

w8

dyH

dx1

dyH

dy1

… dyH

dw8

dzH

dx1

dzH

dy1

… dzH

dw8

0BBBBBBBB@

1CCCCCCCCA
¼ (h1,…, h48) (5)

Let us consider the norm of the column vector for modifi-
cation of the via-points in the subtasks. For example, the
norm of the eighth column vector is the modification of they
component of the second via-point in subtask 1.

kh8k¼

���
dxH

dy2

� �2

þ
dyH

dy2

� �2

þ
dzH

dy2

� �2
s

(6)

We can select a number of components of via-points that
have large values ofh j for the control variable.

In the upper panel of Fig. 9, the upper abscissa is a
number of via-points. The lower abscissa is the number of
columnsj. The ordinate is a value ofkhj k. The dark area in
the figure corresponds to thex, y, zcomponent, and the white
area corresponds to thef, v,w component.

From the upper panel of Fig. 9 we can see that columns
13, 14, 15, 19, 20 and 21 are the most effective components
in subtask 1. Therefore, we can select the following via-
points for the control variable.

SH ¼ (x3,y3, z3,x4, y4,z4)T

The third and fourth via-points are near the time of the ball
release from the cup. This result completely agrees with the ad
hoc choice of via-points made in the real robot experiment.

2.2.2. Selecting via-points for subtask 2 (hitting the ball)
We performed the computer simulation by using the via-

points selected in the previous section. When the ball hits
the center of the racket face, we estimate the Jacobian for
subtask 2 as:

dTG

dS
¼

dxG

dx1

dxG

dy1

… dxG

dw8

dyG

dx1

dyG

dy1

… dyG

dw8

0BBB@
1CCCA¼ (g1,…, g48) (8)

Fig. 8. Schematic diagram of a simulated tennis serve learning robot.

1337H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

In the same way as described in Section 2.2.1, the middle
panel in Fig. 9 showskgjk. We performed the computer
simulation with the via-points that had a large value of
kgjk. The learning did not converge. The reason is that the
modification of these via-points affects subtask 2 as well as

subtask 1. Since we do not want to disturb subtask 1, we
must select via-points that only affect subtask 2. In order to
do so, the ratio ofgj to hj is plotted. The lower panel in Fig. 9
shows kgjk=khjk. From this, we see that columns 34, 40
and 42, i.e.f6,f7,w7, are the most effective components

Fig. 9. Modification effect of via-points on subtask 1 (upper panel) and subtask 2 (middle and lower panels).

1338 H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

for subtask 2. Thus, we selected the via-points for subtask 2
as:

SG ¼ (f6,f7,w7)T (9)

By using these components of via-points for the control
variable, learning converges in a stable manner.

In the real robot experiment, we chose the components of
via-points

SG ¼ (f6, v6,w6)T

which are near the time of ball impact. We do not need to
select v6 for the control variable. It scarcely affects the
direction of the bounced ball becausev6 is the rotation
about an axis perpendicular to the racket face.

This suggests that although the components of the
seventh via-points are not used for the real robot learning,
they are important for learning. More rapid learning is pos-
sible if we select the via-points for this section in the real
robot experiment.

3. Adapting to change in the behavior and the
environment

Uncertainty in the environment such as motion fluctua-
tion or noise of measurement imposes negative effects on
estimation of the Jacobian. When we attempt to make a
robot learn with a nonlinear controlled object such as a
pendulum, the learning is difficult because the Jacobian
changes dramatically with the learning progress.

We can stabilize the learning if we re-estimate the
Jacobian during learning. However, automatically deter-
mining the re-estimation timing is difficult. Moreover,
executing trials for perturbed data which are not used in
the learning itself, but only for re-estimation of the Jacobian,
is wasteful.

In Section 3.1 we describe the method for re-estimating
the Jacobian without extra trials. In Section 3.2 we examine
how to adapt to changes in the environment in the computer
simulation of the tennis serve task. In Section 3.3 we
examine how to adapt to changes in the behavior of the
controlled object in the computer simulation of the
pendulum upswing task.

3.1. Automatically re-estimating the Jacobian

Before we started the learning trials, we executed the
perturbed trials for the initial estimation of the Jacobian.
Once we completed the first estimation, we had good data
for re-estimating the Jacobian (data from past learning
records). We describe a method for re-estimating the
Jacobian using past learning records instead of perturbed
data.

Let us express theK þ 1 sets of the via-points
S¼ (x1,…, xL) and the realized taskT ¼ (t1, …, tM) from

the past (n ¹ K)th to nth trials as:

{ Sn¹ K ,Tn¹ K} ,…, { Sn,Tn}

From the aboveK þ 1 sets of the via-points and the realized
task, we obtain two matrices

X ¼

dx1
1

… dx1
L

:

dxj
1

… dxj
L

:

dxK
1

… dxK
L

0BBBBBBBB@

1CCCCCCCCA
(10)

T ¼

tx1
1

… tx1
L

:

txj
1

… txj
L

:

txK
1

… txK
L

0BBBBBBBB@

1CCCCCCCCA
(11)

The jth row vectors of the above matrices are the difference
between two trials as:

(dxj
1,…, dxj

L) ¼ Si ¹ Si ¹ 1

(dtj
1,…, dtj

M) ¼ Ti ¹ Ti ¹ 1

wherei ¼ n ¹ K þ j ¹ 1. There is relationshipTT ¼ JXT

betweenX, T and the JacobianJ. By transforming the above
equation, we obtain the equation:

J ¼ (X T)T (12)

Here, the superscript # denotes the simply regularized gen-
eralized inverse matrix. We can re-estimate the Jacobian
automatically with Eq. (12) using data from past learning
records.

3.2. Tennis serve simulation

When the real robot hits the ball, there is some dispersion
of the ball bouncing direction (the last six trials in Fig. 6 on
the right). The dispersion of the operation or the noise of the
measurement imposes negative effects on the Jacobian esti-
mation. We can cancel the dispersion by calculating the
average using the repeated trials. Although these trials are
merely for learning preparation, it takes a long time to
repeat the perturbed trials. Eq. (12) will have the same effect
as averaging ifK is greater thanM. In this section, we show
the efficiency of the method described in Section 3.1 also for
the improvement of the Jacobian accuracy.

The experimental setting is the same as described in Sec-
tion 2.2 except for the dispersion of the ball. We dispersed
the ball by adding random disturbance to the velocity of the
ball when the ball was released from the cup and bounced
from the racket. The disturbance range was randomly
selected from¹3% toþ3%.

1339H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

The learning experiment was performed under the
following three conditions.

Condition 1: The ball motion is not disturbed. The
Jacobian matrix is estimated for the first part of the
trials.

Condition 2: The ball motion is disturbed. The Jaco-
bian matrix is estimated for the first part of the trials.
Condition 3: The ball motion is disturbed. The Jaco-
bian matrix is estimated for the first part of the trials,
and then it is automatically re-estimated using the
record of the learning.

Fig. 10. Learning curves of tennis serve simulation. ‘3 ’ indicates distance from ball to racket center when the ball should be hit by racket. ‘W’ indicates
distance from ball to goal when ball falls at the same height as goal. Abscissa indicates learning cycles.

1340 H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

Under condition 3, we corrected the Jacobian in every
trial by using Eq. (12) (K ¼ 15 whenn # 15 thenK ¼ n).
We set thejth row vectors of Eqs. (10) and (11) as:

(dxj
3,…, dzj

4) ¼ Si
H ¹ Si ¹ 1

H

(dxj
H, dyj

H, dzj
H) ¼ Ti

H ¹ Ti ¹ 1
H

for subtask 1 and

(dfj
6, dfj

7, dwj
7) ¼ Si

G ¹ Si ¹ 1
G

(dxj
G, dyj

G) ¼ Ti
G ¹ Ti ¹ 1

G

for subtask 2, wherei ¼ n ¹ K þ j ¹ 1.

We observed the changes in the behavior of subtask 1 and
subtask 2 (shown in the lower part of the graph by ‘p’ and
‘!’ in Fig. 10, respectively) when the perturbation
dx3, dy3, dz3, dx4, dy4, dz4 and df6, df7, dw7 was added in
the via-points in order.

We corrected the Jacobian of subtask 1 and subtask 2
(shown in the lower part of the graph by ‘3 ’ and ‘W’,
respectively) using Eq. (12).

The upper panel in Fig. 10 shows learning convergence
under condition 1. Learning is stable and rapidly converges.

The middle panel in Fig. 10 shows learning convergence
under condition 2. Learning is unstable and converges
slowly. As in the real robot (Fig. 7), we had to skip some
trials to estimateJG because the ball position varied on
impact. A great number of trials (from 9 to 43) were wasted.

The lower panel in Fig. 10 shows learning convergence
under condition 3. Learning is stable and converges rapidly.
We were able to use all trials to re-estimate the Jacobian.

From Fig. 10 we confirm that the auto-correction of the
Jacobian is effective for the looseness of the controlled
object’s behavior.

3.3. Upswing simulation

In this section, we demonstrate learning of an upswing
task for learning about the nonlinear system. Fig. 11 shows a
schematic diagram of the upswing learning robot. The goal
of the upswing task is to move the hand so that the
pendulum, which initially hangs down, swings up to the
inverted position. The hand holds the axis of the pendulum,
and the pendulum rotates about this hinge with an angular
movement.

Fig. 11. Schematic diagram of a simulated pendulum upswing learning
robot.

Fig. 12. First trial of upswing task. Left panel indicates pendulum movement. Upper panel on right side indicates time course of hand position. Brokenline
indicates time course of hand position. Dotted line indicates time course of position of pendulum tip. Circles indicates via-points. Middle and lower panels of
right side indicate time course of pendulum angle and angular velocity of pendulum, respectively. Human demonstration (dotted lines) and robot execution
(solid lines) are shown.

1341H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

3.3.1. Experimental setup
The human demonstration data of the upswing and the

mathematical models of the pendulum are the same as those
described in Atkeson and Schaal (1997). A general version
of the upswing task allows both horizontal and vertical hand
motion perpendicular to the pendulum axis. However, to
simplify the task, we restricted the hand motion to a hori-
zontal line with the pendulum axis perpendicular to this line.
Humans naturally use both horizontal and vertical hand
motions to do the task, but they can restrict their motion
to mostly horizontal hand motions if asked to do so.

We extracted the via-points in the same way as in Section
2.1, although we only used thexcomponent in this experiment.

For simplicity, we used the mathematical models of the
SARCOS arm with only the kinematics equation (the
dynamics equation was not included). The pendulum starts
atv ¼ ¹ p and a successful upswing moves the pendulum to
v ¼ 0. A dynamic model of an idealized pendulum (all mass
concentrated at the tip) attached on a horizontally moving
hand is:

v̇kþ 1 ¼ (1¹a1)v̇k þ a2[sin(vk) þ ẍkcos(vk)=g]

Fig. 13. Learning curves of upswing simulation and error at the end time.3 andW indicate realized pole anglev and realized pole velocityq at the end of
movement trajectory, respectively.

1342 H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

wherev is the pendulum angle,̇v is the pendulum angular
velocity, ẍ is the horizontal hand acceleration,a1 is
the viscous damping,a2 is Dg/l, D is the time step
0.0167 s,g is the gravitational acceleration 9.81 m s¹2,
andl is the length of the pendulum 0.35 m. Idealized values
for the a based on these parameters area1 ¼ 0 and
a2 ¼ 0:47.

3.3.2. Learning upswing
Fig. 12 shows the first trial of the upswing task. The via-

points were not modified in this trial. As the figure shows,
if we make the robot execute the task using the extracted
via-points from the demonstration, the robot fails.

We can list various candidates as the task goal for the
upswing. However, in this experiment, we chose the follow-
ing task goal as the most intuitive one.

Let us denote the desired task and the realized task

Td ¼ (v̂, q̂)T, T ¼ (v,q)T (14)

respectively.v̂, q̂ are the angular position and the angular
velocity of the pendulum of the demonstrated movement at
the end time, respectively.v,q are the angular position and
the angular velocity of the pendulum of the realized move-
ment by the simulated robot at the end time, respectively.

Let the modified via-points be:

S¼ (x1,…, x6)T

To improve the robot’s performance, the via-point locations
were modified by the following Newton-like method.

Snþ 1 ¼ Sn þ J B(Td ¹ Tn) (15)

To stabilize the convergence of learning, we set the gain
matrix B¼ diag(0:2,0:02). To estimate the JacobianJ, we

observed the changes in the behavior of the taskdT when the
perturbationdx1,…, dx6 (0.01 m magnitude) was added to
the via-points.

J ¼
dT
dS

¼

dv

dx1

… dv

dx6

dq

dx1

… dq

dx6

0BBB@
1CCCA (16)

Fig. 13 shows learning convergences. We obtained the
initial estimation of the Jacobian using Eq. (16) without
learning in the first seven trials (shown in the lower part
of the graph by ‘*’ in Fig. 13). When conducting learning
only by the Jacobian estimated for the first movement tra-
jectory, the learning becomes very late or becomes unstable
as shown in the upper panel in Fig. 13 because the learning
changes the movement trajectory.

To stabilize the learning, as shown in the middle panel
in Fig. 13 we re-estimate the Jacobian manually (shown
in the lower part of the graph by ‘*’ in Fig. 13) by
adding the perturbation to the via-point during the
learning. The timing of re-estimation is determined by
trial and error.

Finally, we examined the automatic Jacobian re-estimation
method proposed in Section 3.1. After the first seven trials,
we re-estimated the Jacobian using the latest trials (K ¼ 12,
K ¼ n whenn # 12). We set thejth row vectors of Eqs. (10)
and (11)

(dxj
1,…, dxj

6) ¼ Si ¹ Si ¹ 1

(dvj , dqj) ¼ Ti ¹ Ti ¹ 1

wherei ¼ n ¹ K þ j ¹ 1. Using Eq. (12) at each learning
cycle (shown in the lower part of the graph by ‘þ’ in Fig. 13)

Fig. 14. 30th trial of upswing task executed by simulated SARCOS arm. See Fig. 12 for legend description.

1343H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

the upswing learning successfully converges, as shown in
the lower panel in Fig. 13. Fig. 14 shows trial 30. The
pendulum is in the inverted position.

4. Conclusion

We demonstrated that the via-points representation is
useful for learning by watching. Our learning framework
is applicable to simple tasks with a single goal as well as
complicated tasks with a sequence of subgoals. Further-
more, this framework is adaptable to change in the behavior
and in the environment.

We correct our movement trajectory using real time
visual feedback when we perform a task. For example,
when serving in tennis, we usually observe the ball to
estimate the place where it will fall, and we correct
the striking trajectory. In this paper, we use a purely feed-
forward control, that is, we generated the whole movement
trajectory before the robot executed the movement.
Therefore, it is not possible to generate trajectory
during the movement execution, and real time control
with visual feedback is also impossible. In the future, in
order to make real time trajectory correction possible, the
local trajectory generation for the time must be integrated
into our system.

We used empirical knowledge of how to divide a tennis
serve task into subtasks. To make a robot divide a task
automatically, a hierarchical learning scheme (dividing a
task into subtasks at higher level, and achieving each
subtask at the lower level) must be incorporated into our
system. It is perhaps erroneous to think that all control
objects and operation can only be handled with
the Newton-like method used in this paper. It will be
necessary to use a learning scheme such as reinforcement
learning, feedback error learning, or to combine them and
ascertain their generality and their learning potential.

Acknowledgements

We would like to thank Professor Atkeson and the
members of Department 3 of ATR Human Information
Processing Research Laboratories and the members of the
Kawato Dynamic Brain Project for useful discussions.

References

Aboaf, E.W., Atkeson, C.G., & Reinkensmeyer, D.J. (1988). Task-level
robot learning.Proc. IEEE Int. Conf. Robot Auto.April 24–29,
Philadelphia, PA.

Atkeson, C.G., & Schaal, S. (1997). Robot learning from demonstration.
International Conference on Machine Learning..

Craig, J.J. (1989).Introduction to robotics: Mechanics and control(2nd
ed). Reading, MA: Addison-Wesley.

Flash T., & Hogan N. (1985). The coordination of arm movements: An
experimentally confirmed mathematical model.Journal of Neu-
roscience, 5, 1688–1703.

Kang S.B., & Ikeuchi K. (1993). Toward automatic robot instruction from
perception—Recognizing a grasp from observation.IEEE Trans. on
Robotics and Automation, 9, 432–443.

Kawato, M. (1992). Optimization and learning in neural networks for forma-
tion and control of coordinated movement. In D. Meyer & S. Kornblum
(Eds.),Attention and performance, vol. 14: Synergies in experimental
psychology, artificial intelligence, and cognitive neuroscience—a silver
jubilee (pp. 821–849). Cambridge, MA: MIT Press.

Kawato, M., Gandolfo, F., Gomi, H., & Wada, Y. (1994). Teaching by
showing in Kendama based on optimization principle. In M. Marinaro
& P. G. Morasso (Eds.),Proceedings of the International Conference on
Artificial Neural Networks(pp. 601–606). Sorrento, Italy, May 26–29.

Kuniyoshi Y., Inoue H., & Inaba M. (1991). Teaching by showing:
generating robot command sequences based on real time visual recog-
nition of human pick and place actions.JSRJ, 9, 295–303.

Miyamoto S., Schaal H., Gandolfo F., Gomi H., Koike Y., Osu R., Nakano
E., Wada Y., & Kawato M. (1996). A kendama learning robot based on
bi-directional theory.Neural Networks, 9 (8), 1281–1302.

Wada Y., & Kawato M. (1993). A neural network model for arm trajectory
formation using forward and inverse dynamics models.Neural
Networks, 6, 919–932.

Wada Y., & Kawato M. (1995). A theory for cursive handwriting based on
the minimization principle.Biological Cybernetics, 73 (1), 3–13.

1344 H. Miyamoto, M. Kawato / Neural Networks 11 (1998) 1331–1344

