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Abstract 1 

Many studies have highlighted the difficulty inherent to the clinical application of 2 

fundamental neuroscience knowledge based on machine learning techniques. It is 3 

difficult to generalize machine learning brain markers to the data acquired from 4 

independent imaging sites, mainly due to large site differences in functional magnetic 5 

resonance imaging. We address the difficulty of finding a generalizable major 6 

depressive disorder (MDD) brain network markers which would distinguish patients 7 

from healthy controls (a classifier) or would predict symptom severity (a prediction 8 

model) based on resting state functional connectivity patterns. For the discovery dataset 9 

with 713 participants from 4 imaging sites, we removed site differences using our 10 

recently developed harmonization method and developed a machine learning MDD 11 

brain network markers. The classifier achieved 70% generalization accuracy, and the 12 

prediction model moderately well predicted symptom severity for an independent 13 

validation dataset with 449 participants from 4 different imaging sites. Finally, we 14 

found common 2 functional connections between those related to MDD diagnosis and 15 

those related to depression symptoms. The successful generalization to the perfectly 16 

independent dataset acquired from multiple imaging sites is novel and ensures scientific 17 

reproducibility and clinical applicability. 18 

 19 

Keywords: resting-state functional magnetic resonance imaging, resting-state 20 

functional connectivity, machine learning, major depressive disorder 21 
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A recent initiative, the Research Domain Criteria (RDoC), has sought to redefine and 1 

subtype psychiatric disorders in terms of biological systems, without relying on a 2 

diagnosis based solely on symptoms and signs. This initiative is expected to inform our 3 

understanding of overlapping and heterogeneous clinical presentations of psychotic 4 

disorders 1-4. In particular, resting state functional magnetic resonance imaging 5 

(rs-fMRI) is a useful modality to this end because it enables us to non-invasively 6 

investigate whole brain functional connectivity (FC) in diverse patient populations 5,6. 7 

Rs-fMRI allows for the quantification of the FC of correlated, spontaneous 8 

blood-oxygen-level dependent (BOLD) signal fluctuations 7. According to the original 9 

idea of the RDoC initiative, redefinition and subtyping of psychiatric disorders should 10 

be achieved by applying the so-called unsupervised learning technique to the FCs 11 

without relying on a diagnosis as a ground truth 8-10. However, the number of 12 

explanatory variables, FCs, is usually between 10,000 and 100,000, while the sample 13 

size, i.e. the number of participants, is usually between 100 and 1,000. Thus, overfitting 14 

to noise in the data by machine learning algorithms and the resultant inflation of 15 

prediction performance can easily occur unless special precautions are taken 11. This 16 

situation makes it difficult to directly apply unsupervised learning algorithm to FC data. 17 

To address this problem, we proposed the following hierarchical supervised / 18 

unsupervised approach, having partially succeeded in several studies 12-15. First, we 19 

identified a small number of FCs that reliably distinguish healthy controls (HCs) and 20 

psychiatric disorder patients using a supervised learning algorithm. We can use the 21 

identified FCs not only for a brain network biomarker of the psychiatric disorder but 22 

also for biologically meaningful dimensions of the disorder. Second, we applied 23 

unsupervised learning to these low biological dimensions to further understand 24 
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psychiatric disorders. For instance, we were able to achieve subtyping of major 1 

depressive disorder (MDD) by locating MDD patients in these dimensions (subtyping). 2 

It may be possible to evaluate the drug effect by locating patients before and after the 3 

pharmacological treatment in these biological dimensions 12. Furthermore, locating 4 

different psychiatric disorder patients (e.g. MDD, schizophrenia [SCZ] and autism 5 

spectrum disorder [ASD]) in these dimensions may reveal the relationships among the 6 

disorders (multi-disorder spectrum) 12-15. In this way, although our approach starts with 7 

supervised learning based on diagnosis, our final goal is to understand psychiatric 8 

disorders in the biological dimensions while avoiding overfitting to noise in the 9 

discovery dataset and ensuring generalization performance for the independent data in 10 

completely different multiple imaging sites.  11 

Furthermore, an increasing number of studies have highlighted the difficulty in 12 

finding a clear association between existing clinical diagnostic categories and 13 

neurobiological abnormalities 8,16,17. Therefore, the necessity of a symptom-based 14 

approach, which directly describes the association with neurobiological abnormalities, 15 

is increasingly recognized rather than a diagnosis-based approach 18. Here, we also 16 

construct a brain network marker which would predict symptom severity. 17 

Whether a brain network marker constructed in the first stage generalizes to the 18 

data acquired from multiple completely different imaging sites is a very important issue 19 

for the above hierarchical supervised/unsupervised approach 19-21. However, an 20 

increasing number of studies have highlighted the difficulty in generalization of the 21 

brain network marker to the data acquired from multiple completely independent 22 

imaging sites, even using the supervised learning method 22,23. For example, in a recent 23 

paper by Drysdale, which is one of the most successful brain network markers of MDD, 24 
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the classification accuracy for MDD in completely independent imaging sites was 1 

68.8% for 16 patients from 1 site, which represents only 3% of the validation cohort 2 

(Drysdale et al., 2017, Supplementary Tables 3 and 6).  3 

Here, we targeted MDD, the world’s most serious psychiatric disorder in terms 4 

of its social repercussions 24,25, and investigated whether we could construct a brain 5 

network marker which generalizes to the data acquired from multiple completely 6 

different imaging sites. We considered and satisfied 3 issues and conditions to ensure 7 

generalization of our network marker of MDD to the independent validation dataset, 8 

which does not include imaging sites of the discovery dataset. First, we used our 9 

recently developed harmonization method, which could reduce site differences in FC 26. 10 

According to our recent study, the differences in resting state FCs for different imaging 11 

sites consist of measurement bias due to differences in fMRI protocols and MR scanners, 12 

and sampling bias due to recruitment of different participant populations. The 13 

magnitude of the measurement bias was larger than the effects of disorders including 14 

MDD, and the magnitude of the sampling bias was comparable to the effects of 15 

disorders 26. Therefore, a reduction in the site difference in FC is essential for the 16 

generalization of network models in the validation dataset. Second, we validated our 17 

network marker using a perfectly independent and large cohort collected from multiple 18 

completely different imaging sites from a Japanese nation-wide database project called 19 

the Strategic Research Program for Brain Science (https://bicr.atr.jp/decnefpro/). We 20 

used a rs-fMRI discovery dataset with 713 participants (149 MDD patients) from 4 21 

imaging sites and an independent validation dataset with 449 participants (185 MDD 22 

patients) from 4 imaging sites that were not included in the discovery dataset. We 23 

further used another dataset of 75 HCs, 154 SCZ patients and 121 ASD patients to 24 
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investigate the multi-disorder spectrum. In total, we used 1,512 participants’ data in this 1 

study. Furthermore, unlike previous studies that restricted the subtype of MDD 9,12, we 2 

targeted all MDD patients without restricting according to depression subtype in order 3 

to enable future subtyping in the biological dimensions, which is beyond the purpose of 4 

the current paper. Third, we carefully avoided overfitting noise in the discovery dataset. 5 

As explained above, the number of explanatory variables is typically larger than the 6 

sample size in the rs-fMRI study, thus overfitting to noise in the discovery dataset by 7 

machine learning algorithms and resultant inflation of prediction performance can 8 

happen easily unless special precautions are taken. We used a sparse machine learning 9 

algorithm with the least absolute shrinkage and selection operator (LASSO) to avoid 10 

overfitting to noise and selected only essential FCs 27. As a result, for the first time, to 11 

our knowledge, we developed a generalizable brain network marker for MDD diagnosis 12 

without restricting to certain subtypes such as treatment-resistant or melancholy types 13 

and a generalizable brain network marker for depression symptoms. 14 

 15 

Results 16 

Datasets. We used two rs-fMRI datasets for the analyses. The “discovery dataset” 17 

contained data from 713 participants (564 HCs from 4 sites, 149 MDD patients from 3 18 

sites; Table 1), and the “independent validation dataset” contained data from 449 19 

participants (264 HCs from independent 4 sites, 185 MDD patients from independent 4 20 

sites; Table 1). Most data utilized in this study can be downloaded publicly from the 21 

DecNef Project Brain Data Repository (https://bicr-resource.atr.jp/srpbsopen/ and 22 

https://bicr.atr.jp/dcn/en/download/harmonization/). The imaging protocols and data 23 

availability statement of each site is described in Supplementary Table 1. Depression 24 
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symptoms were evaluated using the Beck Depression Inventory-II (BDI-II) score 1 

obtained from most participants in each dataset. Clinical details such as medication 2 

information and the presence of comorbidities in patients with MDD are described in 3 

Supplementary Table 2.  4 

 5 

Site difference control in FC. Classical preprocessing was performed, and FC was 6 

defined based on a functional brain atlas consisting of 379 nodes (regions) covering the 7 

whole brain 28. The Fisher’s z-transformed Pearson correlation coefficients between the 8 

preprocessed BOLD signal time courses of each possible pair of nodes were calculated 9 

and used to construct 379 x 379 symmetrical connectivity matrices in which each 10 

element represents a connection strength, or edge, between two nodes. We used 71,631 11 

connectivity values (379 x 378 / 2) of the lower triangular matrix of the connectivity 12 

matrix. To control for site differences in the FC, we applied a traveling subject 13 

harmonization method to the discovery dataset 26. In this method, the measurement bias 14 

(the influence of the difference in the properties of MRI scanners, such as the imaging 15 

parameters, field strength, MRI manufacturer, and scanner model) was estimated by 16 

fitting the regression model to the FC values of all participants from the discovery 17 

dataset and the traveling subject dataset, wherein multiple participants travel to multiple 18 

sites to assess measurement bias (see Control of site differences in Methods section). 19 

This method enabled us to subtract only the measurement bias while leaving important 20 

information due to differences in subjects among imaging sites. We applied the ComBat 21 

harmonization method 29-32 to control for site differences in the FC of the independent 22 

validation dataset because we did not have a traveling subject dataset for those sites. 23 
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Reproducible FCs related to MDD diagnosis and depression symptoms. Utilizing a 1 

simple mass univariate analysis, we investigated the reproducibility of the effect sizes 2 

by diagnosis and depression symptoms on individual FC across the discovery and 3 

validation datasets. For the effect of the diagnosis on each FC, we calculated the 4 

difference in the FC value across participants between the HCs and the MDDs (t-value). 5 

The Pearson’s correlation coefficient between FC strength and BDI scores (r-value) was 6 

calculated for the effect of the depressed symptom on each FC. Fig. 1a left scatter plot 7 

shows the diagnosis effect size for the discovery dataset in the abscissa and that for the 8 

validation dataset in the ordinate for each FC. Fig. 1 a right is a scatter plot for the 9 

symptom effect size. Effect sizes for the two datasets were positively correlated, 10 

implying reproducibility of these effects. We compared the distributions of diagnosis 11 

and symptom statistics of the discovery dataset to the distributions in the shuffled data 12 

in which diagnosis and symptom severity were permuted across subjects. We found the 13 

larger effects of the diagnosis in the original data in comparison to the shuffled data (Fig. 14 

1a left histograms). We confirmed that the results were similar for the symptom (Fig. 1a 15 

right histograms). These results indicate that resting-state FCs contain consistent 16 

information across the two datasets regarding MDD diagnosis and depression 17 

symptoms.  18 

Furthermore, to statistically evaluate the reproducibility of these effects on FCs, 19 

we calculated Pearson’s correlation between the discovery and validation datasets 20 

regarding the above two statistics (t-values for diagnosis and r-values for symptom). We 21 

found significant correlations between the two datasets for diagnosis (t-value: r(71631) = 22 

0.51, 95 % confidence interval (CI) = [0.508 0.519], R2=0.26, [permutation test, P < 23 

0.001, one-sided]), as well as for symptom (r-value: r(71631) = 0.39, 95 % CI = [0.380 24 
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0.393], R2=0.15, [permutation test, P < 0.001, one-sided], Fig. 1a). This result indicates 1 

that the effects of MDD diagnosis on FCs and the effects of symptom severity were 2 

reproducible even in the independent dataset acquired from completely different sites. 3 

 4 

Shared information on FCs between MDD diagnosis and depression symptoms. We 5 

investigated whether the FCs related to MDD diagnosis and the FCs related to 6 

depression symptoms share identical information or partially overlapping information. 7 

To this end, we calculated Pearson’s correlation between the t-values and r-values on 8 

FCs in the same dataset. We found high correlations but not completely identical 9 

(Discovery dataset: r = 0.86, Independent validation dataset: r = 0.91, Fig. 1b). This 10 

result indicates that shared information exists on FCs between MDD diagnosis and 11 

depression symptoms. 12 

 13 
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 1 

Figure 1: Results of mass univariate analysis. (a) Reproducibility across the two 2 

datasets regarding diagnosis (left) and symptom (right) effects. (left) Scatter plot and its 3 

histograms of the diagnosis effect size (the difference in mean functional connectivity 4 

strengths between depressed patients and healthy groups: t-value). Each point in the 5 

scatter plot represents the diagnosis effect in the discovery dataset in the abscissa and 6 

that for the independent validation dataset in the ordinate for each functional 7 

connectivity. (right) Same format for the depression symptoms effect size (Pearson's 8 

correlation between BDI-II and functional connectivity strength: r-value). The original 9 

data is in black, while the shuffled data in which subject information was permuted is in 10 

gray. (b) Shared information between diagnosis and symptom effects. Scatter plots and 11 

its histogram of the diagnosis effect size (t-value) in the ordinate and the depression 12 

symptoms effect size (r-value) in the abscissa for all functional connectivity within the 13 

discovery dataset (left) and the validation dataset (right). Each point represents 14 
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symptom effect size in the abscissa and that for diagnosis in the ordinate for each 1 

functional connectivity. The original data is in black, while the shuffled data in which 2 

subject information was permuted is in gray. 3 

 4 

Brain network marker of MDD diagnosis generalized to MDD data obtained from 5 

completely different multisites. We constructed a brain network marker for MDD, 6 

which distinguished between HCs and MDD patients, using the discovery dataset based 7 

on 71,631 FC values. Based on our previous studies 12-15,33, we assumed that psychiatric 8 

disorder factors were not associated with whole brain connectivity, but rather with a 9 

specific subset of connections. Therefore, we used logistic regression with LASSO, a 10 

sparse machine learning algorithm, to select the optimal subset of FCs 34. We have 11 

already succeeded in constructing generalizable brain network markers of ASD, 12 

melancholic MDD, SCZ and obsessive compulsive disorder 12-15,33 by using a similar 13 

sparse estimation method that automatically selects the most important connections. We 14 

also tried a support vector machine (SVM) for classification instead of LASSO. 15 

However, the performance was not improved compared to that with LASSO 16 

(Supplementary Note 1). 17 

To estimate the weights of logistic regression and a hyperparameter that 18 

determines how many FCs were used, we conducted a nested cross validation procedure 19 

(Fig. 2) (see Constructing MDD classifier using the discovery dataset in the Methods 20 

section). We first divided the whole discovery dataset into the training set (9 folds out 21 

of 10 folds), which was used for training a model, and the test set (1 fold out of 10 22 

folds), which was used for testing the model. To avoid bias due to the difference in the 23 

numbers of MDD patients and HCs, we used an undersampling method for equalizing 24 

the numbers between the MDD and HC groups 35. Since only a subset of training data is 25 
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used after undersampling, we repeated the random sampling procedure 10 times (i.e., 1 

subsampling). We then fitted a model to each subsample while tuning a regularization 2 

parameter in an inner loop of nested cross validation, resulting in 10 classifiers. The 3 

mean classifier-output value (diagnostic probability) was considered indicative of the 4 

classifier output. Diagnostic probability values > 0.5 were considered to be indicative of 5 

a MDD diagnosis. We calculated the area under the curve (AUC), accuracy, sensitivity, 6 

specificity, positive predictive value (PPV), and negative predictive value (NPV). 7 

Furthermore, we evaluated classifier performance for the unbalanced dataset using the 8 

Matthews correlation coefficient (MCC) 36,37, which takes into account the ratio of the 9 

confusion matrix size.  10 

  11 

12 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.22.056432doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.056432
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Schematic representation of the procedure for training brain network 1 

markers and evaluation of their predictive power. The MDD classifier was 2 

constructed using a nested cross validation procedure, undersampling, and subsampling 3 

technique in the discovery dataset. The BDI regression model was constructed using the 4 

union of FC values selected by the embedded method in the discovery dataset. 5 

Generalization performances were evaluated by applying the constructed classifiers and 6 

to the independent validation dataset. The machine learning classifiers are represented 7 

by PC cartoons.  BDI: Beck Depression Inventory-II, CV: cross validation, MDD: 8 

major depressive disorder, HC: healthy control, FC: functional connectivity. 9 

 10 

The classifier distinguished MDD and HC populations with an accuracy of 11 

67% in the discovery dataset. The corresponding AUC was 0.77, indicating acceptable 12 

discriminatory ability. Fig. 3a shows that the two diagnostic probability distributions of 13 

the MDD and HC populations were clearly separated by the 0.5 threshold (right, MDD; 14 

left, HC) for the discovery dataset. The sensitivity, specificity, PPV, and NPV were 15 

75%, 65%, 0.35, and 0.91, respectively. This classifier led to an acceptable MCC of 16 

0.33. We found that acceptable classification accuracy was achieved for the full dataset 17 

as well as for the individual datasets from 3 of the imaging sites (Fig. 3b) to similar 18 

degrees. Only HC individuals were identified in the SWA dataset; however, notably, its 19 
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probability distribution was comparable to the HC populations at other sites. 1 

We tested the generalizability of the classifier using an independent validation 2 

dataset. We created 100 classifiers of MDD (10-fold × 10 subsamples); therefore, we 3 

applied all trained classifiers to the independent validation dataset. Next, we averaged 4 

the 100 outputs (diagnostic probability) for each participant and considered the 5 

participant as a patient with MDD if the averaged diagnostic probability value was > 0.5. 6 

The classifier distinguished the MDD and HC populations with an accuracy of 69% in 7 

the independent validation dataset. If the accuracy for the validation dataset is much 8 

smaller than that of the discovery dataset, overfitting is strongly suggested and the 9 

reproducibility of the results is put into doubt. In our case, 69% accuracy for the 10 

validation dataset was actually higher than 67% accuracy for the discovery dataset, and 11 

this concern does not apply. The corresponding AUC was 0.77 (permutation test, P < 12 

0.01, one-sided), indicating an acceptable discriminatory ability. Fig. 4a shows that the 13 

two diagnostic probability distributions of the MDD and HC populations were clearly 14 

separated by the 0.5 threshold (right, MDD; left, HC). The sensitivity, specificity, PPV, 15 

and NPV were 74%, 65%, 0.60, and 0.78, respectively. This approach led to an 16 

acceptable MCC of 0.38 (permutation test, P < 0.01, one-sided). In addition, acceptable 17 

classification accuracy was achieved for the individual datasets of the 4 imaging sites 18 

(Fig. 4b). To investigate whether our classifier can be generalized to milder depression, 19 

we applied our classifier to MDD patients with low BDI scores (score <= 20, n = 30) in 20 

the independent validation dataset. As a result, 22 of the 30 patients were correctly 21 

classified as having MDD (accuracy of 73%), a similar performance level to when the 22 

classifier was applied to all patients with MDD. Furthermore, all patients with MDD at 23 

the KUT imaging site were treatment-resistant patients (treatment-resistant depression: 24 
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adequate use of two or more antidepressants for 4-6 weeks is not efficacious, or 1 

intolerance to two or more antidepressants exists). We calculated the classification 2 

accuracy only at KUT and obtained the same performance level (accuracy = 75%). 3 

These results suggest that the current MDD classifier can be generalized to milder 4 

depression, as well as to treatment-resistant patients with MDD. 5 

Regarding the effectiveness of the developed network marker, although 6 

discriminability was acceptable (AUC = 0.77) in the independent validation dataset, the 7 

performance of the PPV was low in the discovery dataset (0.35). This occurred because 8 

the number of patients with MDD was much smaller than that of HCs (about 4 times as 9 

many HCs as MDDs) in the discovery dataset. By contrast, in the independent 10 

validation dataset, in which the number of HCs is about 1.5 times as high as the number 11 

of MDDs, the PPV, at 0.60, was acceptable. When applying a developed network 12 

marker in clinical practice, we assume this marker to be applied to those who actually 13 

visit the hospital. Therefore, the actual PPV will be acceptable in clinical practice 14 

because the prevalence of MDD may be relatively high compared to the general 15 

prevalence of MDD. Furthermore, in the independent validation dataset, when we 16 

divided the dataset into low- and high-risk groups based on the cutoff value (probability 17 

of MDD being 0.51) determined in the discovery dataset 38, the odds (sensitivity / 18 

1-sensitivity) were 1.58 in the high-risk group. Moreover, the odds ratio was 5.8 when 19 

the odds in the low group were set to 1. That is, the output of the classifier (probability 20 

of MDD) will be useful information for psychiatrists as a physical measure 21 

supplementing the patients’ symptoms and signs in order to make a diagnosis. 22 

We further investigated whether the discrimination performances were 23 

different across imaging sites in the independent validation dataset. We calculated the 24 
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95% confidence intervals (CIs) of the discrimination performances (AUC, accuracy, 1 

sensitivity, and specificity) using a bootstrap method for every imaging site. We 2 

repeated the bootstrap procedure 1,000 times and calculated the 95% CI for each site. 3 

We then checked whether there was a site whose CI did not overlap with the CIs of 4 

other imaging sites. We were unable to find such an imaging site, suggesting no 5 

significant systematic difference. However, we noted that the sensitivity at the HUH site 6 

was inferior to that at the two other imaging sites (see Supplementary Note 2 and 7 

Supplementary Fig. 1: CI of sensitivity in the HUH does not overlap with CI in the 8 

HRC or UYA). We discuss the differences in performances among imaging sites in the 9 

Discussion section. 10 

Finally, we checked the stability of our developed network marker to see if the 11 

same subject was consistently classified in the same class when the subject was scanned 12 

multiple times at various imaging sites. We applied our marker to a traveling subject 13 

dataset (Supplementary Table 6) in which 9 healthy participants (all male participants; 14 

age range, 24–32 years; mean age, 27 ± 2.6 years) were scanned about 50 times at 12 15 

different sites, producing a total of 411 scan sessions. We achieved a high accuracy in 16 

this dataset (mean accuracy = 84.5, 1SD = 12.8, across participants). This result 17 

indicates that our developed network marker has high stability even if the same subject 18 

is scanned multiple times at various imaging sites. 19 
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 1 
Figure 3: MDD classifier and BDI regression model performances in the discovery 2 

dataset. (a) The probability distribution for the diagnosis of MDD in the discovery 3 

dataset and (b) probability distributions for each imaging site. MDD and HC 4 

distributions are depicted in red and blue, respectively. (c) Scatter plots of measured and 5 

predicted BDI. The solid line indicates the linear regression of the measured BDI from 6 

the predicted BDI. The correlation coefficient (r) and mean absolute error (MAE) are 7 

shown. Each data point represents one participant. BDI: Beck Depression Inventory-II; 8 

HC: healthy control; MDD: major depressive disorder; AUC: area under the curve; 9 

PPV: positive predictive value; NPV: negative predictive value; MCC: Matthews 10 

correlation coefficient; COI: Center of Innovation in Hiroshima University; KUT: 11 

Kyoto University; SWA: Showa University; UTO: University of Tokyo. 12 

 13 
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 1 

Figure 4: MDD classifier and BDI regression model performances in the 2 

independent validation dataset. (a) The probability distribution for MDD diagnosis in 3 

the independent validation dataset and (b) probability distributions for each imaging site. 4 

MDD and HC distributions are depicted in red and blue, respectively. (c) Scatter plots 5 

of measured and predicted BDI. The solid line indicates the linear regression of the 6 

measured BDI from the predicted BDI. The correlation coefficient (r) and mean 7 

absolute error (MAE) are shown. Each data point represents one participant. BDI: Beck 8 

Depression Inventory-II; HC: healthy control; MDD: major depressive disorder; AUC: 9 

area under the curve; PPV: positive predictive value; NPV: negative predictive value; 10 

MCC: Matthews correlation coefficient; HKH: Hiroshima Kajikawa Hospital; HRC: 11 

Hiroshima Rehabilitation Center; HUH: Hiroshima University Hospital; UYA: 12 

Yamaguchi University. 13 

 14 

Brain network prediction model of depression symptoms generalized to completely 15 

different multisite data. We constructed a brain network prediction model of the BDI 16 
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score using the discovery dataset based on 71,631 FC values. We employed linear 1 

regression using the LASSO method. At first, we tried to evaluate the prediction 2 

accuracy on the discovery dataset using a 10-fold CV procedure following our method 3 

for the MDD classifier. However, no FC was selected by the LASSO in 7 out of 10 folds 4 

during the hyperparameter determination. This result indicates that the regularization in 5 

the LASSO worked too strongly. Therefore, we constructed a regression model using 6 

the FC values selected by the embedded method in the discovery dataset (Fig. 2) 39. This 7 

approach caused information leakage because we evaluated the model using the 8 

discovery dataset, 30% of which was used for selecting the FCs; therefore, the results in 9 

the discovery dataset may be overfitted. This reservation meant that it was important to 10 

confirm generalization performance by applying this regression model to an 11 

independent validation dataset, as described below. Finally, we calculated the mean 12 

absolute error (MAE) and Pearson’s correlation coefficients between the predicted and 13 

measured BDI scores. The BDI score was well predicted with a significant correlation 14 

(r(477) = 0.54, 95 % CI = [0.473 0.601], R2=0.29, P = 1.6 × 10–37, one-sided; MAE = 6.9; 15 

Fig. 3c). Furthermore, a significant correlation was achieved for HC and MDD 16 

populations separately (HC, r(367) = 0.28, 95 % CI = [0.185 0.374], R2=0.08, P = 3.7 × 17 

10–8, one-sided; MDD, r(110) = 0.30, 95 % CI = [0.116 0.459], R2=0.09, P = 0.0016). 18 

Once again, cautiously, these results may be overfitted because the evaluation data are 19 

not independent data. The correct assessment should be based on results from the 20 

following independent validation dataset.  21 

 We tested the generalizability of the regression model using the independent 22 

validation dataset. We created one BDI regression model using all the discovery dataset 23 

samples; therefore, we applied the trained regression model to the independent 24 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 24, 2020. . https://doi.org/10.1101/2020.04.22.056432doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.056432
http://creativecommons.org/licenses/by-nc-nd/4.0/


validation dataset and considered its output as the predicted BDI score. The BDI score 1 

was moderately well predicted, with a significant correlation in the independent 2 

validation dataset (r = 0.26; MAE = 11.1; Fig. 4c; permutation test, P < 0.01, one-sided). 3 

We could not construct any regression model for the whole permutation procedure 4 

because no FC were selected at the nested CV in the LASSO procedure. This result 5 

indicated that the performance of the BDI regression model in the independent 6 

validation data without permutation was statistically significant. 7 

 8 

Important FCs for the brain network markers. We examined important resting state 9 

FCs for MDD diagnosis and depression symptoms by extracting the important FCs 10 

related to the MDD classifier and BDI regression model, respectively. Briefly, we 11 

counted the number of times an FC was selected by LASSO during the 10-fold CV. We 12 

considered this FC to be important if this number was significantly higher than the 13 

threshold for randomness, according to a permutation test. For the MDD classifier, we 14 

permuted the diagnostic labels of the discovery dataset and conducted a 10-fold CV and 15 

10-subsampling procedure, and we repeated this permutation procedure 100 times. We 16 

then used the number of counts for each connection selected by the sparse algorithm 17 

during 10 subsamplings x 10-fold CV (max 100 times) as a statistic in every 18 

permutation dataset. To control for the multiple comparison problem, we set a null 19 

distribution as the max distribution of the number of counts over all FCs and set our 20 

statistical significance to a certain threshold (permutation test, P < 0.05, one-sided). We 21 

also performed a permutation test for the BDI regression model. We permuted the BDI 22 

scores of the discovery dataset, conducted a 10-fold CV, and repeated this permutation 23 

procedure 100 times. 24 
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 Figures 5a and 5b shows the spatial distribution of the 31 FCs and 13 FCs 1 

related to the MDD diagnosis and depression symptoms, respectively, that were 2 

automatically and unbiasedly identified from the data by the machine learning 3 

algorithms. Two FCs were common between the diagnosis and symptom models. These 4 

connections were the connection ○1  between right insula and right frontal medial 5 

orbital cortex, and ② between the right insula and right cingulum anterior cortex. A 6 

detailed list of the FCs is provided in Supplementary Tables 3 and 4. We discussed 7 

details of these FCs in the Discussion section. 8 
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 1 

Figure 5: Important FCs for MDD diagnosis and depression symptoms. (a) The 31 2 

functional connections (FCs) which are important for MDD diagnosis viewed from left, 3 

back, right, and top. Interhemispheric connections are shown in the back and top views 4 
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only. Regions are color-coded according to the intrinsic network. (b) The 13 FCs which 1 

are important for depression symptoms viewed from left, back, right, and top. 2 

Interhemispheric connections are shown in the back and top views only. Regions are 3 

color-coded according to the intrinsic network. Two connections were common (�4 

between the right insula and the right frontal medial orbital cortex, and � between the 5 

right insula and the right cingulum anterior cortex). (c) The FC values of 31 FCs for 6 

both HCs and MDD patients in the discovery dataset and the independent validation 7 

dataset. MDD: major depressive disorder; DMN: default mode network; FPN: 8 

fronto-parietal network. 9 

 10 

Discussion 11 

In the present study, we thoroughly considered conditions and resolved difficulties in 12 

order to ensure the generalization of our brain network marker in the independent 13 

validation dataset, which does not include any imaging sites of the discovery dataset. 14 

We succeeded in generalizing our network marker to the big independent validation 15 

dataset. This generalization ensures scientific reproducibility and the clinical 16 

applicability of rs-fMRI. Without this fundamental evidence, we cannot proceed to the 17 

development of rs-fMRI-based subtyping, evaluation of drug effects, or exploration of 18 

multi-spectrum disorder in the biological dimensions, as mentioned in the Introduction 19 

section. Therefore, our study found generalizable psychiatric biomarkers which the 20 

fields of psychiatry, neuroscience and computational theory have long sought out, to no 21 

avail, since the RDoC initiative. 22 

We developed generalizable brain network markers without restriction to 23 

treatment-resistant or melancholy MDD types. Most previous studies have reported the 24 

performance of a prediction model using data from the same imaging sites using a CV 25 

technique. However, because of large imaging-site differences in rs-fMRI data 26,40, CV 26 

methods generally induce inflations in performance. To ensure reproducibility, it is 27 
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critical to demonstrate the generalizability of the models with an independent validation 1 

dataset acquired from completely different imaging sites 11,19-21. To overcome the 2 

above-mentioned site differences, we reduced site differences in a multisite large-scale 3 

rs-fMRI dataset using our novel harmonization method. Next, we constructed an MDD 4 

classifier that was acceptably generalized to the independent validation dataset. 5 

Acceptable generalized prediction performance was also achieved for the 4 individual 6 

imaging site datasets (Fig. 4b). This generalization was achieved even though the 7 

imaging protocols in the independent validation datasets were different from the 8 

discovery dataset. There are only two studies in which generalization of FC-based MDD 9 

classifiers to independent validation data was demonstrated 9,12. To the best of our 10 

knowledge, our work is the first to construct a generalized classifier of MDD without 11 

restriction to certain MDD subtypes: Drysdale concentrated MDD patients who were 12 

treatment resistant and Ichikawa restricted patients with the melancholic subtype of 13 

MDD. Constructing the whole MDD marker is important for subsequent MDD 14 

subtyping analyses. This was achieved for the first time by collecting data on a large 15 

variety of MDD patients from multiple imaging sites and objectively harmonizing them 16 

with a traveling subject dataset. 17 

With respect to site differences in prediction performance, we found that the 18 

sensitivity at the HUH site was inferior to that of the two other imaging sites (see 19 

Supplementary Fig. 1). The reason for which the sensitivity was low at the HUH site is 20 

that the threshold for separating HCs and patients with MDD was shifted to the MDD 21 

side (the probability of diagnosis = 0.5: see the vertical line in Fig. 4b). In contrast, the 22 

thresholds were shifted to the HC side at the HKH and UYA sites. These shifts may be 23 

due to the fact that the removal of site differences was insufficient. If FC includes a 24 
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measurement bias, which represents the site difference, the threshold will shift. Our 1 

previous study showed that the measurement bias, which includes the site difference, 2 

was the largest at the HUH site 26. These results indicate that it is important to remove 3 

site differences using precise harmonization methods, such as the traveling subject 4 

harmonization method if possible, when we apply a classifier to new subjects collected 5 

from a new imaging site. Because of the absence of the traveling subject dataset, 6 

traveling subject harmonization was not possible for the independent validation dataset, 7 

and we were forced to use ComBat in this case. 8 

The machine learning algorithms reliably identified the 31 FCs which are 9 

important for MDD diagnosis (Fig. 5a, and Supplementary Table 3). We hereafter 10 

summarize the characteristics of the 31 FCs. First, 25 of 31 FCs exhibited 11 

hypo-connectivity in the MDD population in the independent validation dataset (the 12 

absolute value of the FC was closer to 0 in MDD than in HC individuals; Fig. 5c). The 13 

connectivity between the left and right insula had the largest difference among 31 FCs 14 

between MDD patients and HCs (FC 17 in Fig. 5c). Abnormalities in the insula were 15 

found not only in MDD patients 41,42 but also reported as common abnormalities 16 

(reduced gray-matter volume) among psychiatric disorders 1. Therefore, the 17 

connectivity associated with the insula is a potential candidate for the neurobiological 18 

dimension to understand a multi-spectrum disorder. Second, only 3 FCs (FCs 13, 16, 19 

and 26) exhibited hyper-connectivity in the MDD population (the absolute value of the 20 

FC was greater in MDD than HC individuals) in the independent validation dataset. 21 

However, the differences in those 3 FC values between HC and MDD were not 22 

significant (Supplementary Table 3). Finally, only 3 FCs (FCs 4, 5, and 23 in Fig. 5c) 23 

had reversed FC values between MDD patients and HCs (positive values in MDD 24 
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patients and negative values in HCs). Two of 3 FCs were the FCs between the right 1 

postcentral cortex and the right thalamus, and the left postcentral cortex and the left 2 

thalamus. In the study of Drysdale et al.9, the FCs related to the thalamus showed 3 

stronger and more positive connectivity in MDD patients as a common feature across 4 

the 4 biotypes of MDD, consistent with our current results. A previous study also 5 

reported increased FC values between the thalamus and sensory motor cortex 6 

(postcentral cortex) in MDD patients 43. Participants who have an increased FC value 7 

between the thalamus and sensory motor cortex have a greater decline in cognitive 8 

function and affective experience 43. Finally, two FCs were common between the 9 

diagnosis and symptom models. These connections were the connection between right 10 

insula and right frontal medial orbital cortex, and between the right insula and right 11 

cingulum anterior cortex. We need further analyses to clarify how abnormalities in each 12 

FC are associated with cognitive and affective functions in a future study.  13 

Ultimately, it would be very important to understand the relationships across 14 

disorders (multi-disorder spectrum). For example, investigating the heterogeneous 15 

clinical presentations of psychiatric disorders, the MDD-ness, which is the output of the 16 

MDD classifier, may provide a useful biological dimension across the multiple-disorder 17 

spectrum. To explore this possibility, we applied our MDD classifier to SCZ patients 18 

and ASD patients included in the DecNef Project Brain Data Repository 19 

(https://bicr-resource.atr.jp/srpbsopen/). We found that SCZ had a high tendency 20 

(similarity) toward MDD while ASD had no such a tendency toward MDD 21 

(Supplementary Figure 2a). This result suggests that the MDD classifier generalizes to 22 

SCZ but not to ASD. We note that our discovery dataset for the construction of the 23 

MDD classifier included no patients with MDD who were comorbid with SCZ and only 24 
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1 patient with MDD who was comorbid with ASD. Therefore, our classifier was not 1 

affected by either SCZ or ASD diagnosis. Thus, the above generalization of the MDD 2 

classifier may point to a certain neurobiological relevance among diseases. Our SCZ 3 

patients were in the chronic phase and had negative symptoms. Considering that the 4 

negative symptoms of schizophrenia are similar to depression symptoms, the 5 

generalization hypothesizes the existence of neurobiological dimensions underlying the 6 

common symptoms between SCZ and MDD. For example, anhedonia exists as a 7 

transdiagnostic symptom between SCZ and MDD 44,45, and some studies have been 8 

conducted to understand the neurological basis of anhedonia across psychiatric 9 

disorders including SCZ and MDD 45,46. We need further analyses to quantitatively 10 

examine this hypothesis and investigate the neurobiological relationship between SCZ 11 

and MDD by gathering more precise information on SCZ (symptoms and medication 12 

history). To further understand the multi-disorder spectrum, we developed markers of 13 

SCZ and ASD using the same method as in this study in addition to a brain network 14 

marker of MDD (Supplementary Note 3). As a result, we found an interesting 15 

asymmetric relationship among these disorders: the classifier of SCZ did not generalize 16 

to patients with MDD (Supplementary Figures 2b). This kind of asymmetry in the 17 

classifiers had also been found between the SCZ classifier and the ASD classifier (the 18 

ASD classifier generalized to SCZ, but the SCZ classifier did not generalize to ASD) 19 

13-15. These results provide us with important information for understanding the 20 

biological relationships between diseases. For example, the above asymmetry between 21 

the SCZ and ASD or MDD classifiers suggests that the brain network related to SCZ is 22 

characterized by a larger diversity than that of ASD or MDD, and that it partially shares 23 

information with the smaller brain network related to ASD or MDD than that of SCZ 24 
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14,15.  1 

Although biomarkers have been developed with the aim of diagnosing patients, 2 

the focus has shifted to the identification of biomarkers that can determine therapeutic 3 

targets, such as theranostic biomarkers 47,48, which would allow for more personalized 4 

treatment approaches. The 31 FCs discovered in this study are promising candidates for 5 

theranostic biomarkers for MDD because they are related to the MDD diagnosis. Future 6 

work should investigate whether modulation of FC could be an effective treatment of 7 

MDD by using an intervention method with regard to FC, such as functional 8 

connectivity neurofeedback training 47-51.  9 
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Materials and Methods 1 

Participants. We used 2 rs-fMRI datasets for the analyses: (1) The “discovery dataset” 2 

contained data from 713 participants (564 HCs from 4 sites, 149 MDD patients from 3 3 

sites; Table 1). Each participant underwent a single rs-fMRI session which lasted 10 4 

min. Within the Japanese SRPBS DecNef project, we planned to acquire the rs-fMRI 5 

data using a unified imaging protocol (Supplementary Table 1; 6 

http://bicr.atr.jp/rs-fmri-protocol-2/). However, there were 2 erroneous phase-encoding 7 

directions (P→A and A→P). In addition, different sites had different MRI hardware 8 

(Supplementary Table 1). During the rs-fMRI scans, participants were instructed to 9 

“Relax. Stay Awake. Fixate on the central crosshair mark, and do not concentrate on 10 

specific things”. (2) The “independent validation dataset” contained data from 449 11 

participants (264 HCs from independent 4 sites, 185 MDD patients from independent 4 12 

sites; Table 1). Data were acquired following protocols reported in Supplementary 13 

Table 1. The sites used were different from the discovery dataset. Each participant 14 

underwent a single rs-fMRI session lasting 5 or 8 min. In both datasets, depression 15 

symptoms were evaluated using the BDI-II score obtained from most participants in 16 

each dataset. This study was carried out in accordance with the recommendations of the 17 

institutional review boards of the principal investigators’ respective institutions 18 

(Hiroshima University, Kyoto University, Showa University, University of Tokyo, and 19 

Yamaguchi University) with written informed consent from all subjects in accordance 20 

with the Declaration of Helsinki. The protocol was approved by the institutional review 21 

boards of the principal investigators’ respective institutions (Hiroshima University, 22 

Kyoto University, Showa University, University of Tokyo, and Yamaguchi University). 23 

Most data utilized in this study can be downloaded publicly from the DecNef Project 24 

Brain Data Repository at https://bicr-resource.atr.jp/srpbsopen/ and 25 

https://bicr.atr.jp/dcn/en/download/harmonization/. The data availability statements of 26 

each site are described in Supplementary Table 1. 27 

 28 

Preprocessing and calculation of the resting state FC matrix. We preprocessed the 29 

rs-fMRI data using FMRIPREP version 1.0.8 52. The first 10 s of the data were 30 

discarded to allow for T1 equilibration. Preprocessing steps included slice-timing 31 

correction, realignment, coregistration, distortion correction using a field map, 32 

segmentation of T1-weighted structural images, normalization to Montreal Neurological 33 

Institute (MNI) space, and spatial smoothing with an isotropic Gaussian kernel of 6 mm 34 

full-width at half-maximum. "Fieldmap-less" distortion correction was performed for 35 

the independent validation dataset due to the lack of field map data. For more details on 36 
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the pipeline, see http://fmriprep.readthedocs.io/en/latest/workflows.html. For 6 1 

participants’ data in the independent validation dataset, the coregistration was 2 

unsuccessful, and we therefore excluded these data from further analysis.  3 

Parcellation of brain regions: To analyze the data using Human Connectome Project 4 

(HCP) style surface-based methods, we used ciftify toolbox version 2.0.2 53. This 5 

allowed us to analyze our data, which lacked the T2-weighted image required for HCP 6 

pipelines, using an HCP-like surface-based pipeline. Next, we used Glasser’s 379 7 

surface-based parcellations (cortical 360 parcellations + subcortical 19 parcellations) as 8 

regions of interest (ROIs), considered reliable brain parcellations 28. The BOLD signal 9 

time courses were extracted from these 379 ROIs. To facilitate the comparison of our 10 

results with previous studies, we identified the anatomical names of important ROIs and 11 

the names of intrinsic brain networks that included the ROIs using anatomical 12 

automatic labeling (AAL) 54 and Neurosynth (http://neurosynth.org/locations/). 13 

Physiological noise regression: Physiological noise regressors were extracted by 14 

applying CompCor 55. Principal components were estimated for the anatomical 15 

CompCor (aCompCor). A mask to exclude signals with a cortical origin was obtained 16 

by eroding the brain mask and ensuring that it contained subcortical structures only. 17 

Five aCompCor components were calculated within the intersection of the subcortical 18 

mask and union of the CSF and WM masks calculated in the T1-weighted image space 19 

after their projection to the native space of functional images in each session. To 20 

remove several sources of spurious variance, we used a linear regression with 12 21 

regression parameters, such as 6 motion parameters, average signals over the whole 22 

brain, and 5 aCompCor components. 23 

Temporal filtering: A temporal bandpass filter was applied to the time series using a 24 

first-order Butterworth filter with a pass band between 0.01 Hz and 0.08 Hz to restrict 25 

the analysis to low-frequency fluctuations, which are characteristic of rs-fMRI BOLD 26 

activity 56.  27 

Head motion: Framewise displacement (FD) 57 was calculated for each functional 28 

session using Nipype (https://nipype.readthedocs.io/en/latest/). FD was used in the 29 

subsequent scrubbing procedure. To reduce spurious changes in FC from head motion, 30 

we removed volumes with FD > 0.5 mm, as proposed in a previous study 57. The FD 31 

represents head motion between 2 consecutive volumes as a scalar quantity (i.e., the 32 

summation of absolute displacements in translation and rotation). Using the 33 

aforementioned threshold, 6.3% ± 13.5 volumes (mean ± SD) were removed per 34 

rs-fMRI session in all datasets. If the ratio of the excluded volumes after scrubbing 35 

exceeded the mean + 3 SD, participants were excluded from the analysis. As a result, 32 36 
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participants were removed from all datasets. Thus, we included 683 participants (545 1 

HCs, 138 MDD patients) in the discovery dataset and 440 participants (259 HCs, 181 2 

MDD patients) in the independent validation dataset for further analysis.  3 

Calculation of FC matrix: FC was calculated as the temporal correlation of rs-fMRI 4 

BOLD signals across 379 ROIs for each participant. There are a number of different 5 

candidates to measure FC, such as the tangent method and partial correlation; however, 6 

we used a Pearson’s correlation coefficient because they are the most commonly used 7 

values in previous studies. Fisher’s z-transformed Pearson’s correlation coefficients 8 

were calculated between the preprocessed BOLD signal time courses of each possible 9 

pair of ROIs and used to construct 379 × 379 symmetrical connectivity matrices in 10 

which each element represents a connection strength between 2 ROIs. We used 71,631 11 

FC values [(379 × 378)/2] of the lower triangular matrix of the connectivity matrix for 12 

further analysis.  13 

Control of site differences: Next, we used a traveling subject harmonization method to 14 

control for site differences in FC in the discovery dataset. This method enabled us to 15 

subtract pure site differences (measurement bias) which are estimated from the traveling 16 

subject dataset wherein multiple participants travel to multiple sites to assess 17 

measurement bias. The participant factor (p), measurement bias (m), sampling biases 18 

(shc, smdd), and psychiatric disorder factor (d) were estimated by fitting the regression 19 

model to the FC values of all participants from the discovery dataset and the traveling 20 

subject dataset. For each connectivity, the regression model can be written as follows:  21 

�����������	 
 ��
�� 
 ����

���� 
 �����
����� 
 ��

�� 
 ��
�� 
 ����� 
 �,  

such that � ��
	

�

 0, � �


�




 0, � ��



�




 0, � ����


�




 0,  ���HC" 
 0, 

in which � represents the measurement bias (4 sites × 1), ��� represents the sampling 22 

bias of HCs (4 sites × 1), ���� represents the sampling bias of patients with MDD (3 23 

sites × 1), � represents the disorder factor (2 × 1), � represents the participant factor 24 

(9 traveling subjects × 1), ����� represents the average functional connectivity value 25 

across all participants from all sites, and �~$�0, %��" represents noise. Measurement 26 

biases were removed by subtracting the estimated measurement biases. Thus, the 27 

harmonized functional connectivity values were set as follows: 28 

�����������	���������� 
 �����������	 & ��
��' , 

 29 

in which �'  represents the estimated measurement bias. More detailed information has 30 

been previously described 26. 31 

We used the ComBat harmonization method 29-32 to control for site differences in FC in 32 
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the independent validation dataset because we did not have a traveling subject dataset 1 

for those sites. We performed harmonization to correct only for the site difference using 2 

information on MDD diagnosis, BDI score, age, sex, and dominant hand as auxiliary 3 

variables in ComBat. Notably, compared with the conventional regression method, the 4 

ComBat method is a more advanced method to control for site effects 29-32. 5 

 6 

Constructing the MDD classifier using the discovery dataset. We constructed a brain 7 

network marker for MDD that distinguished between HCs and MDD patients using the 8 

discovery dataset based on 71,631 FC values. To construct the network marker, we 9 

applied a machine learning technique. Although SVM is often used as a classifier, SVM 10 

is not suitable for investigating the contribution of explanatory variables because it is 11 

difficult to calculate the contribution of each explanatory variable. Based on our 12 

previous study 13, we assumed that psychiatric disorder factors were not associated with 13 

whole brain connectivity, but rather with a specific subset of connections. Therefore, we 14 

conducted logistic regression analyses using the LASSO method to select the optimal 15 

subset of FCs 34. A logistic function was used to define the probability of a participant 16 

belonging to the MDD class as follows:  17 

(����	��� 
 1|+���; -" 
 �

��� !"�#�����$
, 18 

in which .�%& represents the class label (MDD, y = 1; HC, y = 0) of a participant, +�%& 19 

represents an FC vector for a given participant, and w represents the weight vector. The 20 

weight vector w was determined to minimize 21 

/�0" 
 & 1
����

� log (�4	� 
 1|+'; -5
����

�(�


λ6-6� , 

in which 6-6� 
 ∑ |8�|)
�  and λ represent hyperparameters that control the amount of 22 

shrinkage applied to the estimates. To estimate weights of the logistic regression and a 23 

hyperparameter λ, we conducted a nested cross validation procedure (Fig. 2). In this 24 

procedure, we first divided the whole discovery dataset into a training set (9 folds of 10 25 

folds) which used for training a model and a test set (a fold of 10 folds) for testing the 26 

model. To minimize bias due to the differences in the numbers of MDD patients and 27 

HCs, we used an undersampling method 35. Almost 125 MDD patients and 125 HCs 28 

were randomly sampled from the training set, and classifier performance was tested 29 

using the test set. Since only a subset of training data is used after undersampling, we 30 

repeated the random sampling procedure 10 times (i.e., subsampling). We then fitted a 31 

model to each subsample while tuning a regularization parameter in the inner loop of 32 
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the nested cross validation, resulting in 10 classifiers. For the inner loop, we used the 1 

“lassoglm” function in MATLAB (R2016b, Mathworks, USA) and set “NumLambda” 2 

to 25 and “CV” to 10. In this inner loop, we first calculated a value of λ just large 3 

enough such that the only optimal solution is the all-zeroes vector. A total of 25 values 4 

of λ were prepared at equal intervals from 0 to λ*+  and the  λ was determined 5 

according to the one-standard-error-rule in which we selected the largest λ within the 6 

standard deviation of the minimum prediction error (among all λ) 27. The mean classifier 7 

output value (diagnostic probability) was considered indicative of the classifier output. 8 

Diagnostic probability values > 0.5 were considered indicative of MDD patients. We 9 

calculated the AUC using the “perfcurve” function in MATLAB. In addition, we 10 

calculated the accuracy, sensitivity, specificity, PPV, and NPV. Furthermore, we 11 

evaluated classifier performance for the unbalanced dataset using the MCC 36,37, which 12 

takes into account the ratio of the confusion matrix size. 13 

 14 

BDI score regression model in the discovery dataset. We constructed a linear 15 

regression model to predict the BDI score using the discovery dataset based on 71,631 16 

FC values. To construct the linear regression model, we applied a machine-learning 17 

technique to participants with BDI scores in the discovery dataset. Although SVR is 18 

often used as a regression model, SVR is not suitable for investigating the contribution 19 

of explanatory variables because it is difficult to calculate the contribution of each 20 

explanatory variable. Therefore, we employed linear regression using the LASSO 21 

method as follows: 22 

(:������� ;<=��� 
 -�+��� , 
in which (:������� ;<=��� represents the BDI score of a participant; +��� represents 23 

an FC vector for a given participant, and w represents the weight vector of the linear 24 

regression. The prediction model was constructed while feature selection using the 25 

embedded method with LASSO was performed (Fig. 2) 39. We conducted a 10-fold CV 26 

procedure for this regression model. We constructed a regression model using the 27 

combination of FC values selected in all 10 folds in the training dataset (Fig. 2). This 28 

caused information leakage across the folds; therefore, the training dataset may be 29 

overfitting. This issue meant that it was important to confirm generalization 30 

performance by applying this regression model to an independent validation dataset, as 31 

described below. Finally, we calculated the mean absolute error (MAE) and Pearson’s 32 

correlation coefficients between the predicted and measured BDI scores. 33 

 34 

 35 
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Generalization performance of the classifier and regression model. We tested the 1 

generalizability of the classifier and regression model using an independent validation 2 

dataset. We created 100 classifiers of MDD (10-fold × 10 subsamples); therefore, we 3 

applied all trained classifiers to the independent validation dataset. Next, we averaged 4 

the 100 outputs (diagnostic probability) for each participant and considered the 5 

participant as a patient with MDD if the averaged diagnostic probability value was >0.5. 6 

In contrast, we created the BDI regression model using all the discovery dataset 7 

samples; therefore, we applied the trained regression model to the independent 8 

validation dataset and considered its output as the predicted BDI score. 9 

 To test the statistical significance of the MDD classifier performance, we 10 

performed a permutation test. We permuted the diagnostic labels of the discovery 11 

dataset and conducted a 10-fold CV and 10-subsampling procedure. Next, we took an 12 

average of the 100 outputs (diagnostic probability); a mean diagnostic probability value 13 

> 0.5 was considered indicative of a diagnosis of MDD. We repeated this permutation 14 

procedure 100 times and calculated the AUC and MCC as the performance of each 15 

permutation. We also performed a permutation test for the BDI regression model. We 16 

permuted the BDI scores of the discovery dataset, conducted a 10-fold CV, and repeated 17 

this permutation procedure 100 times. 18 

 19 

Identification of the FCs linked to diagnosis and symptoms. We examined 20 

resting-state functional connectivity for MDD diagnosis and depression symptoms by 21 

extracting the important FCs related to the MDD classifier and BDI regression model, 22 

respectively. Briefly, we counted the number of times an FC was selected by LASSO 23 

during the 10-fold CV. We considered that this FC was important if this number was 24 

significantly higher than chance, according to a permutation test. We permuted the 25 

diagnostic labels of the discovery dataset and conducted a 10-fold CV and 26 

10-subsampling procedure. We then used the number of counts for each connection 27 

selected by the sparse algorithm during 10 subsampling x 10 CV(max 100 times) as a 28 

statistic in every permutation dataset. To control the multiple comparison problem, we 29 

set a null distribution as the max distribution of the number of counts over all functional 30 

connections and set our statistical significance to a threshold (p < 0.05, one-sided). FCs 31 

selected ≥ 17 times of 100 times were regarded as diagnostically important. We also 32 

performed a permutation test for the BDI regression model. We permuted the BDI 33 

scores of the discovery dataset, conducted a 10-fold CV, and repeated this permutation 34 

procedure 100 times. FCs selected ≥ 1 times of 10 times were regarded as relevant to 35 

depression symptoms.  36 
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All demographic distributions are matched between the MDD and HC populations in the discovery dataset (P > 0.05) except for BDI. 1 
The demographic distribution of age is matched between MDD and HC populations in the independent validation dataset (P > 0.05). 2 
The demographic distribution of the sex ratio and BDI were not matched between the MDD and HC populations in the independent 3 
validation dataset (P < 0.05). BDI: Beck Depression Inventory-II; HC: Healthy Control; MDD: Major Depressive Disorder. 4 

Table 1. Demographic characteristics of participants in both datasets 

Site 
HC MDD ALL 

Number 
Male/ 

Female 
Age (y) BDI Number 

Male/ 
Female 

Age (y) BDI Number 
Male/ 

Female 
Age (y) BDI 

Discover dataset 
Center of Innovation in 
Hiroshima University 

(COI) 
124 46/78 51.9 ± 13.4 8.2 ± 6.3 70 31/39 45.0 ± 12.5 26.2 ± 9.9 194 77/117 49.4 ± 13.5 14.7 ± 11.7 

Kyoto University 
(KUT) 169 100/69 35.9 ± 13.6 6.0 ± 5.4 17 11/6 43.9 ± 13.3 27.7 ± 10.1 186 111/75 36.7 ± 13.7 8.3 ± 9.1 

Showa University 
(SWA) 101 86/15 28.4 ± 7.9 4.4 ± 3.8 0 - - - 101 86/15 28.4 ± 7.9 4.4 ± 3.8 

University of Tokyo 
(UTO) 170 78/92 35.6 ± 17.5 6.7 ± 6.5 62 36/26 38.7± 11.6 20.4 ± 11.4 232 114/118 36.4 ± 16.2 14.5 ± 11.8 

Summary 564 310/254 38.0 ± 16.1 6.3 ± 5.6 149 78/71 42.3 ± 12.5 24.9 ± 10.7 713 388/325 38.9 ±15.5 10.7 ± 10.6 

Independent validation dataset 

Hiroshima Kajikawa 
Hospital 
(HKH) 

29 12/17 45.4 ± 9.5 5.1 ± 4.6 33 20/13 44.8 ± 11.5 28.5 ± 8.7 62 32/30 45.1 ± 10.5 17.6 ± 13.7 

Hiroshima 
Rehabilitation Center  

(HRC) 
49 13/36 41.7 ± 11.7 9.1 ± 8.5 16 6/10 40.5 ± 11.5 35.3 ± 9.5 65 19/46 41.4 ± 11.5 15.6 ± 14.3 

Hiroshima University 
Hospital 
(HUH) 

66 29/37 34.6 ± 13.0 6.9 ± 5.9 57 32/25 43.3 ± 12.2 30.9 ± 9.0 123 61/62 38.6 ± 13.3 18.0 ± 14.1 

Yamaguchi University 
(UYA) 120 50/70 45.9 ± 19.5 7.1 ± 5.6 79 36/43 50.3 ± 13.6 29.7 ± 10.7 199 86/113 47.6 ± 17.5 16.0 ± 13.6 

Summary 264 104/160 42.2 ± 16.5 7.2 ± 6.3 185 94/91 46.3 ± 13.0 30.3 ± 9.9 449 198/251 43.9 ± 15.3 16.7 ± 13.9 
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Supplementary Materials 1 
 2 
Supplementary Note 1 3 

Prediction performance using SVM 4 

Since the performance levels of the prediction models were acceptable, we further tried 5 

a support vector machine (SVM) for classification. However, the performance was not 6 

improved compared to that in LASSO. In the discovery dataset, the classifier of SVM 7 

separated major depressive disorder (MDD) and healthy control (HC) populations with 8 

an accuracy of 71%. The corresponding AUC sensitivity and specificity were 0.78, 72% 9 

and 70%, respectively. This approach led to a Matthews correlation coefficient (MCC) 10 

of 0.35. In the independent validation dataset, the classifier of SVM separated the MDD 11 

and HC populations with an accuracy of 70%. The corresponding AUC, sensitivity, and 12 

specificity were 0.75, 62%, and 76%, respectively. This approach led to an MCC of 13 

0.38.  14 

  15 
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Supplementary Note 2 1 

Differences in prediction performance among imaging sites 2 

To investigate whether the prediction performances were different among imaging sites 3 

in the independent validation dataset, we calculated the 95% confidence interval (CI) of 4 

discrimination performances (area under the curve [AUC], accuracy, sensitivity, and 5 

specificity) in every imaging site using a bootstrap method. We repeated the bootstrap 6 

procedure 1,000 times and calculated the 95% CI for every site. We then checked 7 

whether there is a site whose CI does not overlap with the CIs of other imaging sites. 8 

We could not find such an imaging site, suggesting no significant systematic difference. 9 

However, we noted that the sensitivity at the HUH site was inferior to that at the two 10 

other imaging sites (Supplementary Fig. 1: CI of sensitivity in the HUH does not 11 

overlap with CI in the HRC or UYA). We discussed the differences in performance 12 

among imaging sites in the Discussion section in the main texts.  13 

 14 
Supplementary Figure 1: Bootstrap prediction performances in the independent 15 
validation dataset. Prediction performances of the major depressive disorder (MDD) 16 
classifier in the independent validation dataset in each site. Each color bar indicates 17 
each site. Error bar shows the 95 % confidence interval from the bootstrap. AUC: Area 18 
under the curve, HKH: Hiroshima Kajikawa Hospital; HRC: Hiroshima Rehabilitation 19 
Center; HUH: Hiroshima University Hospital; UYA: Yamaguchi University.  20 
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Supplementary Note 3 1 

Generalization of the classifiers to other disorders. In addition to a brain network 2 

marker of MDD, we developed brain network markers of schizophrenia (SCZ) and 3 

autism spectrum disorder (ASD) using the same method as in the main text. We sought 4 

to investigate and confirm the spectral structure among the disorders as revealed by 5 

previous studies (12-16 in the main script). For example, if the MDD classifier predicts 6 

patients with a different disorder as MDD patients, then the probability of diagnosis for 7 

patients with that disorder should be over 0.5. In this case, we may say that the patients 8 

possess some degree of MDD-ness and that this disorder is related to MDD according to 9 

the imaging biological dimension.  10 

 Specifically, we first developed SCZ and ASD markers that distinguished 11 

between HCs and patients. We used 564 HCs from the discovery dataset in the main 12 

text, 102 SCZ patients from 3 sites, and 121 ASD patients from 2 sites (Supplementary 13 

Table 5). Data were acquired using the same protocols as for the discovery dataset. We 14 

tested the generalizability of the SCZ marker using an independent validation dataset for 15 

SCZ patients (52 SCZ patients and 75 HCs from one site, Supplementary Table 5). 16 

Since we did not have an independent validation dataset for ASD patients, we tested the 17 

performance of the ASD marker using the 10-fold CV. We achieved acceptable 18 

performance for both the SCZ marker (Discovery dataset: AUC = 0.85, accuracy = 78%, 19 

sensitivity = 75%, specificity = 79%, Independent validation dataset: AUC = 0.89, 20 

accuracy = 80%, sensitivity = 81%, specificity = 80%) and ASD marker (Discovery 21 

dataset: AUC = 0.76, accuracy = 65%, sensitivity = 70%, specificity = 64%). We then 22 

applied these brain network markers to other disorder patients. We computed the 23 

probability of diagnosis in the MDD classifier, that is, the MDD-ness of individual 24 

patient within the SCZ and ASD data, and vice versa (Supplementary Figure 2).  25 

As a result, we found that SCZ patients have high MDD-ness (accuracy = 76%, 26 

p = 2.0*10-12, two-way binomial test) and ASD-ness (accuracy = 68%, p = 2.1*10-4, 27 

two-way binomial test). On the other hand, MDD patients did not have high SCZ-ness 28 

(accuracy = 46%, p = 0.35, two-way binomial test) or ASD-ness (accuracy = 57%, p = 29 

0.11, two-way binomial test), and ASD patients did not have high SCZ-ness (accuracy = 30 

42%, p = 0.10, two-way binomial test) or MDD-ness (accuracy = 55%, p = 0.20, 31 

two-way binomial test).  32 
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1 
Supplementary Figure 2: Generalization of the classifiers to other psychiatric 2 
disorders. Density distributions of the probability of diagnosis obtained by applying (a) 3 
the MDD marker, (b) SCZ marker, and (c) ASD marker to the HC, MDD, SCZ, and 4 
ASD patients. In each panel, the patient distribution and the healthy control distribution 5 
are plotted separately, with the colored areas representing one or the other. The numbers 6 
in parentheses next to HC, MDD, ASD, and SCZ in each panel indicate the number of 7 
subjects in the distributions. The independent validation dataset was used in (a) and (b). 8 
Healthy controls in (a), (b), and (c) were scanned at the same sites as their 9 
corresponding patient data. HC: healthy control; MDD: major depressive disorder; 10 
ASD: autism spectrum disorder; SCZ: schizophrenia.11 
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*Type of data availability, 1) freely available without restriction, allowing commercial reuse, 2) freely available, but not allowing commercial reuse, 3) available 
after registration to our record, but not allowing commercial reuse, 4) available only to our research group

Supplementary Table 1 | Imaging protocols for resting-state fMRI in both datasets 

Site 
Center of Innovation 

in Hiroshima 
University 

Kyoto 
University 
TimTrio 

Showa 
University 

University 
of Tokyo 

Hiroshima 
Kajikawa 
Hospital 

Hiroshima 
Rehabilitation 

Center 

Hiroshima 
University 
Hospital 

Yamaguchi 
University 

Kyoto University 
Trio 

Abbreviation COI KUT SWA UTO HKH HRC HUH UYA KTT 

MRI scanner 
Siemens 

Verio 
Siemens 
TimTrio 

Siemens 
Verio 

GE 
MR750w 

Siemens 
Spectra 

GE 
Signa HDxt 

GE 
Signa HDxt 

Siemens 
Skyra 

Siemens 
Trio 

Magnetic field strength  3.0 T 

Channels per coil 12 32 12 24 12 8 8 20 8 

Field-of-view (mm) 212 × 212 192 × 192 256 × 256 256 × 256 220 × 220 256 × 192 

Matrix 64 × 64 64 × 48 

Number of slices 40 38 32 32 34 30 

Number of volumes 240 107 143 143 200 180 

In-plane resolution (mm) 3.3125 × 3.3125 3.0 × 3.0 4.0 × 4.0 4.0 × 4.0 3.4 × 3.4 4.0 × 4.0 

Slice thickness (mm) 3.2 3.0 4 4.0 4.0 4.0 

Slice gap (mm) 0.8 0 0 0 1.0 0 

TR (ms) 2500 2,700 2,000 2,000 2,500 2,000 

TE (ms) 30 31 27 27 30 30 

Total scan time (min:s) 10:00 5:00 4:46 5:00 8:28 6:00 

Flip angle (degree) 80 90 90 90 80 90 

Slice acquisition order Ascending Ascending 
Ascending 

(Interleaved) 
Ascending 

(Interleaved) 
Ascending 

Ascending 
(Interleaved) 

Phase encoding AP PA PA PA AP AP PA PA AP 

Eyes closed/ open/ fixate Fixate Fixate Fixate Fixate Closed Fixate 

*Type of data availability 1 2 2 2 1 1 1 4 2 
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*Not applicable because of early treatment data. MINI: Mini International Neuropsyciatric Interview, SCID: Structured Clinical Interview for DSM-IV, NA: Not 1 
applicable, HAMD: Hamilton Depression Rating Scale. 2 

Supplementary Table 2 | Clinical characteristics of major depressive disorder patients in the discovery dataset 

Site Center of Innovation in Hiroshima University 
(COI) 

Kyoto University 
(KUT) 

University of Tokyo 
(UTO) 

HAMD17 total 
(mean����) 

15.7 � 5.1 13.1 � 5.1 10.8 � 6.3 

Diagnostic criteria MINI SCID SCID 

Duration of disease 
(since the first onset) 

NA 11.0 � 5.4 (yr) 9.0 � 7.7 (yr) 

Presence of suicide attempt 55 % 6 % 18 % 

Psychiatric comorbidities 

GAD 3 % 6 % 0 % 

OCD 7 % 6 % 0 % 

ASD 0 % 6 % 0 % 

Panic 0 % 13 % 0 % 

Psychiatric medications 

Anxiolytic 51 % 63 % 77 % 

Antipsychotic 24 % 31 % 32 % 

Mood stabilizer 6 % 6 % 45 % 

Antidepressant 90 % 94 % 69 % 

Subtype of major depressive disorder 

Melancholic 64 % NA 39 % 

Treatment resistance NA* 100% NA 
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Supplementary Table 3 | Description of important FCs 

ID 
ROI1 ROI2 

rHC rMDD t-value p-value 
Glasser AAL label Network Glasser AAL label Network 

1 L.MST Occipital_Mid Visual R.FST Temporal_Mid Visual 0.492 0.429 -2.01 0.04 

2 L.3b Postcentral Motor L.IFSa Frontal_Inf_Tri FPN -0.079 -0.07 0.48 0.63 

3 L.3b Postcentral Motor R.44 Frontal_Inf_Oper Salience -0.115 -0.036 3.47 0.0006 

4 L.3b Postcentral Motor L.Thalamus Thalamus Subcortical -0.017 0.107 4.52 >0.0001 

5 L.7Pm Precuneus MR R.p32 Frontal_Sup_Medial DMN -0.049 0.009 2.53 0.01 

6 L.2 Postcentral Motor R.5m Paracentral_Lobule Auditory 0.393 0.328 -2.28 0.02 

7 L.8BM Frontal_Sup_Medial FPN L.Thalamus Thalamus Subcortical 0.162 0.094 -3.43 0.0007 

8 L.47m Frontal_Inf_Orb DMN R.52 Insula Salience 0.095 0.05 -2.31 0.02 

9 L.47s Frontal_Inf_Orb Uncertain R.PoI1 Insula Subcortical 0.1 0.089 -0.47 0.64 

10 L.OP1 Rolandic_Oper Auditory R.OP1 Rolandic_Oper Auditory 0.672 0.531 -4.69 >0.0001 

11 L.OP1 Rolandic_Oper Auditory R.OP2-3 Rolandic_Oper Motor 0.528 0.399 -4.57 >0.0001 

12 L.Pir Insula Subcortical R.p24 Cingulum_Ant DMN 0.153 0.123 -1.29 0.20 

13 L.PFt Parietal_Inf Motor R.Amy Hippocampus Uncertain 0.006 0.006 0.03 0.98 

14 L.PBelt Temporal_Sup Auditory L.A4 Temporal_Sup Auditory 0.977 0.923 -1.94 0.05 

15 L.TE2p Temporal_Inf Uncertain R.TE2p Temporal_Inf Uncertain 0.361 0.311 -1.81 0.07 

16 L.IP0 Occipital_Mid Visual L.s32 Frontal_Med_Orb DMN -0.051 -0.058 -0.32 0.75 

17 L.Ig Insula Salience R.Ig Insula Salience 0.768 0.581 -5.98 >0.0001 

18 L.TGv Temporal_Inf Uncertain R.10pp Frontal_Sup_Orb DMN 0.144 0.139 -0.18 0.86 

19 L.TGv Temporal_Inf Uncertain R.STSvp Temporal_Mid DMN 0.097 0.083 -0.67 0.50 
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ROI labels were determined by referring to AAL and Neurosynth (http://neurosynth.org/locations/) 1 
DMN: Default mode network; FPN: Fronto-parietal task control; MR: Memory retrieval. t-value and p-value are the results of t-test of 2 
functional connectivity values between MDD patients and HCs in the independent validation dataset.  3 

20 L.A4 Temporal_Sup Auditory R.POS2 Cuneus Visual -0.134 -0.063 3.37 0.0008 

21 R.POS2 Cuneus Visual R.A4 Temporal_Sup Auditory -0.143 -0.08 2.83 0.0049 

22 R.5m Paracentral_Lobule Salience R.1 Postcentral Motor 0.504 0.392 -3.55 0.0004 

23 R.1 Postcentral Motor R.Thalamus Thalamus Subcortical -0.086 0.058 5.01 >0.0001 

24 R.a24 Cingulum_Ant DMN R.52 Insula Auditory 0.122 0.081 -1.78 0.076 

25 R.OP1 Rolandic_Oper Auditory R.OP2-3 Rolandic_Oper Motor 0.712 0.566 -5.29 >0.0001 

26 R.OP2-3 Rolandic_Oper Motor L.Thalamus Thalamus Subcortical 0.155 0.19 1.39 0.17 

27 R.52 Insula Auditory R.s32 Frontal_Med_Orb DMN 0.072 0.047 -1.17 0.24 

28 R.FOP4 Insula Attention R.Thalamus Thalamus Subcortical 0.165 0.092 -3.78 0.0002 

29 R.FST Temporal_Mid Visual B.Stem <out of bound> Uncertain -0.053 -0.039 0.67 0.50 

30 L.Caudate Caudate Subcortical B.Stem <out of bound> Uncertain -0.019 -0.004 0.74 0.46 

31 L.Caudate Caudate Subcortical R.Thalamus Thalamus Subcortical 0.368 0.282 -3.72 0.0002 
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ROI labels were determined by referring to AAL and Neurosynth (http://neurosynth.org/locations/) 1 
DMN: Default mode network; FPN: Fronto-parietal task control; MR: Memory retrieval. 2 
  3 

Supplementary Table 4 | All functional connections related to only BDI score regression model  

ID 
ROI1 ROI2 r-value 

with BDI 
(Discovery) 

r-value 
with BDI 

(Validation) Glasser AAL label Network Glasser AAL label Network 

1 L.3b Postcentral_L Motor R.Thalamus Thalamus_R Subcortical 0.28 0.04 

2 L.POS1 Precuneus_L DMN R.HC Hippocampus_R Uncertain 0.22 -0.04 

3 L.9m Frontal_Sup_Medial_L DMN R.9m Frontal_Sup_Medial_R DMN -0.21 -0.06 

4 L.AAIC Insula_L Uncertain R.p24 Cingulum_Ant_R DMN -0.21 -0.02 

5 L.TGd Temporal_Pole_Mid_L DMN R.STSvp Temporal_Mid_R DMN -0.21 -0.08 

6 L.FST Temporal_Mid_L Attention R.RSC Cingulum_Post_R DMN 0.21 0.04 

7 L.VMV2 Lingual_L DMN R.VMV2 Lingual_R Visual -0.23 0.02 

8 L.FOP5 Insula_L Salience R.FFC Fusiform_R Uncertain 0.18 -0.01 

9 L.PI Temporal_Sup_L Attention R.TE1m Temporal_Mid_R Uncertain -0.20 -0.01 

10 R.a24 Cingulum_Ant DMN R.52 Insula Auditory -0.24 0.06 

11 R.52 Insula Auditory R.s32 Frontal_Med_Orb DMN -0.24 0.03 

12 R.AIP Parietal_Inf_R FPN R.LBelt Temporal_Sup_R Auditory 0.18 -0.05 

13 L.Putamen Putamen_L Subcortical R.Putamen Putamen_R Subcortical -0.25 0.03 
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SCZ: Schizophrenia, ASD: Autism spectrum disorder, HC: Healthy control. 1 
  2 

Supplementary Table 5 | Demographic characteristics of participants in both datasets 

Site 
SCZ ASD HC 

Number 
Male/ 

Female Age (y) Number 
Male/ 

Female Age (y) Number 
Male/ 

Female Age (y) 

Kyoto University 
(KUT) 

48 24/24 41.5± 10.4 0 - - see Table 1 in the main text 

Showa University 
(SWA) 

18 14/4 42.8± 8.6 111 96/15 32.0 ± 7.5 see Table 1 in the main text 

University of 
Tokyo 
(UTO) 

36 24/12 31.4± 10.3 10 9/1 37.0± 9.6 see Table 1 in the main text 

Kyoto University 
Trio 

(KTT) 
52 27/25 37.2± 9.4 0 - - 75 48/27 28.9± 9.1 
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Supplementary Table 6 | Imaging protocols for resting state fMRI in the traveling subject dataset. 

Site 
ATR 

TimTrio 
ATR 
Verio 

Center of 
Innovation in 

Hiroshima 
University 

Hiroshima 
University 
Hospital 

Hiroshima 
Kajikawa 
Hospital 

Kyoto 
Prefectural 

University of 
Medicine 

Showa 
University 

Kyoto 
University 
TimTrio 

Kyoto 
University 

Skyra 

University 
of Tokyo 

Yaesu-clinic 
scanner 1 

Yaesu-clinic 
scanner 2 

Abbreviation ATT ATV COI HUH HKH KPM SWA KUT KUS UTO YC1 YC2 

MRI scanner Siemens 
TimTrio 

Siemens 
Verio 

Siemens 
Verio 

GE 
Signa HDxt 

Siemens 
Spectra 

Philips 
Achieva 

Siemens 
Verio 

Siemens 
TimTrio 

Siemens 
Skyra 

GE 
MR750W 

Philips 
Achieva 

Philips 
Achieva 

The number of scans 132 27 27 18 18 27 27 27 27 27 27 27 
Magnetic field strength 3T 

Number of channels per coil 12 12 12 8 12 8 12 32 32 24 8 8 
Field-of-view (mm) 212 x 212 

Matrix 64 × 64 
Number of slices 40 39 40 35 35 40 40 40 40 40 40 40 

Number of volumes 240 
In-plane resolution (mm) 3.3125 × 3.3125 

Slice thickness (mm) 3.2 
Slice gap (mm) 0.8 

TR (ms) 2,500 
TE (ms) 30 

Total scan time (min:s) 10:00 
Flip angle (deg) 80 

Slice acquisition order Ascending 
Phase encoding PA PA AP PA PA AP PA PA AP PA AP AP 

Eye closed / fixate Fixate 
Field map ✔ ✔ ✔ - - ✔ ✔ ✔ ✔ ✔ ✔ - 
Nine healthy participants (all male participants; age range, 24–32 years; mean age, 27 ± 2.6 years) were scanned at each of 12 sites, producing a total of 411 scan 1 
sessions. Each participant underwent three rs-fMRI sessions of 10 min each at nine sites, two sessions of 10 min each at two sites (HKH & HUH), and five cycles 2 
(morning, afternoon, next day, next week, next month) consisting of three 10-minute sessions each at a single site (ATT). In the latter situation, one participant 3 
underwent four rather than five sessions at the ATT site due to poor physical condition. Thus, a total of 411 sessions were conducted. UTO: University of Tokyo; 4 
HUH: Hiroshima University Hospital; KUT: Siemens TimTrio scanner at Kyoto University; ATT: Siemens TimTrio scanner at Advanced Telecommunications 5 
Research Institute International; ATV: Siemens Verio scanner at Advanced Telecommunications Research Institute International; SWA: Showa University; HKH: 6 
Hiroshima Kajikawa Hospital; COI: Center of Innovation in Hiroshima University; KUS: Siemens Skyra scanner at Kyoto University; KPM: Kyoto Prefectural 7 
University of Medicine; YC1: Yaesu Clinic 1; YC2: Yaesu Clinic 2; TR: repetition time; TE: echo time. 8 
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