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Abstract 

I​n studies of anxiety and other affective disorders, objectively measured physiological 

responses have commonly been used as a proxy for measuring subjective experiences 

associated with pathology. However, this commonly adopted ‘biosignal’ approach has recently 

been called into question on the grounds that subjective experiences and objective physiological 

responses may dissociate. We performed machine-learning based analysis on functional 

magnetic resonance imaging (fMRI) data to assess this issue in the case of fear. Participants 

were presented with pictures of commonly feared animals in an fMRI experiment. Multivoxel 

brain activity decoders were trained to predict participants’ subjective fear ratings and their skin 

conductance reactivity, respectively.  While subjective fear and objective physiological 

responses were correlated in general, the respective whole-brain multivoxel decoders for the 

two measures were not identical. Some key brain regions such as the amygdala and insula 

appear to be primarily involved in the prediction of physiological reactivity, while some regions 

previously associated with metacognition and conscious perception, including some areas in the 

prefrontal cortex, appear to be primarily predictive of the subjective experience of fear. The 

present findings are in support of the recent call for caution in assuming a one-to-one mapping 

between subjective sufferings and their putative biosignals, despite the clear advantages in the 

latter’s being objectively and continuously measurable in physiological terms.  
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Physiological markers have been used as proxies for psychological states in multiple 

mental health domains. However, evidence accumulated over the years called into question the 

relationship between some subjective mental states and their proposed physiological markers. 

For example, in the case of pain, it is well established that subjective nociceptive experiences 

can occur without any obvious peripheral physiological manifestations ​1​. As a result, the 

self-reported subjective experience remains to this day the gold-standard in pain assessment ​2​.  

Currently, a similar debate is taking place concerning fear and anxiety ​3–5​. In that 

literature, physiological reactivity to threat has been considered a reliable objective proxy for the 

subjective experience of fear ​6​. The reliance on such physiological measures proved to be quite 

successful and they are now included in numerous studies on fear and anxiety ​7​. Specifically, 

the neural network involved in physiological reactivity is currently one of the primary 

neurobiological targets for the pharmacological treatment of anxiety disorders ​8​.  

However, some authors suggest that physiological reactivity (as commonly indexed by 

skin conductance and amygdala reactivity) might represent automatic, defensive responses that 

aren’t necessarily conscious ​3,4,9 ​. On this view, studying these physiological defensive 

responses may not cover all the relevant mechanisms involved in the subjective suffering that is 

central to fear and anxiety disorders. Accordingly it is argued that, an overemphasis on objective 

physiological biosignals might slow down the development of new therapeutic options ​4​. This 

position remains controversial as others have pointed out that multiple lines of evidence actually 

indicate a high correlation between subjective fear reports and physiological responses, notably 

in the amygdala ​5​. Here, we attempt to bring in evidences to arbitrate this debate using human 

functional neuroimaging. 

Specifically, our goal is to study if the brain representation of subjective fear ratings 

dissociates from the representation of objective physiological reactivity (i.e. skin conductance 
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response to feared images). To do so, we focused on naturally occurring instead of conditioned 

fears. One advantage is that these representations are likely to reflect more closely the brain 

mechanisms involved in anxiety disorders such as naturally occuring phobia. We constructed a 

functional magnetic resonance imaging (fMRI) experiment to present as many as 3,600 images 

of the most commonly feared animals, some neutral animals, as well as some man-made 

objects as controls (see Fig. 1).  

We used a machine learning approach ​10–12​ to train multivoxel brain decoders to predict 

either objective physiological reactivity or subjective fear reports. To do so, we leveraged 

whole-brain data in order to determine the patterns of voxel activities that are the most 

predictive of each outcome (i.e., levels of fear and levels of skin conductance reactivity). The 

accuracy of these decoders was tested using leave-one-subject-out cross-validation as well as 

2 independent validation datasets (N = 12 and N = 17) (see Fig. 1 c). We also aimed at 

determining if some brain regions are preferentially involved in the prediction of either the 

subjective or physiological measures. As such, we established where in the brain it was 

possible to predict one outcome with a better accuracy than the other. This was achieved by 

comparing the predictions of both decoders within brain regions. 

To anticipate, we found that the representations of subjective fear and skin conductance 

reactivity present some overlap but also some differences in the brain. Specifically, regions 

previously associated with defensive responses (such as the amygdala) present a preference in 

the prediction of defensive responses while some higher order frontal regions, previously 

associated with conscious perception and metacognition, appear primarily involved in the 

prediction of the subjective fear reports. 
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Figure 1. Experimental design and decoding procedure. ​A) An example sequence of events 
in the fMRI procedure. We recorded functional brain activity and electrodermal activity during 
the presentation of images depicting 30 animal categories as well as men-made objects. Akin to 
the clinical assessment of fear, subjective fear ratings of each of the 30 animal categories were 
collected outside of the fMRI scanner using a 6-point Likert scale. We estimated brain 
responses to the first picture of each chunks of a given animal category.  B) The estimated brain 
responses were averaged according to their categorical fear ratings (left) and their skin 
conductance reactivity (right). This process created binned beta images representing the levels 
of each outcome for each participant. The binned beta images of the discovery cohort were 
used to train the decoders. The unthresholded weight maps of the whole-brain decoders are 
displayed. ​C) The performance of the decoders were tested in  the discovery cohort (both on 
binned and single-trial data) as well as in independent validation cohorts not included in the 
training of the decoder. This procedure allowed to estimate the generalization of the decoders to 
new datasets. The first independent cohort included new participants (N = 12) performing the 
same task as the one performed by the discovery cohort. The second independent cohort (N = 
17) performed a different experimental task where pictures of feared animals were also 
presented (see Supplementary Methods and Results) 

 

In our study, we aimed to estimate the brain activity associated with varying levels of 

subjective fear and physiological reactivity. To do so, we presented a reasonably large number 

of images from a broad range of animal categories grouped in chunks of 2, 3, 4 or 6 images of 
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the same category. Only the first image of each chunks were modeled in the fMRI analyses 

because these images could be attributed both a subjective fear rating and a level of skin 

conductance reactivity (see Methods). The subjective fear ratings were established ​before the 

fMRI procedure. Participants were asked to use a 6-point Likert scale to determine their fear of 

each of the 30 animal categories. This assessment was achieved without presenting any fearful 

stimuli and is similar to typical approaches used in clinical settings. S​kin conductance reactivity 

was established during the fMRI session using standard analytical procedures (see Methods).  

 
Figure 2. Skin conductance reactivity is correlated with the subjective fear ratings. ​Within 
each category, ​ ​subjective fear ratings and mean skin conductance reactivity were averaged at 
the group level and standardized (see Methods). As expected, skin conductance reactivity was 
correlated with subjective fear ratings (r(28)= .43; ​P​ = .02; 95% CI: 0.08-0.69; R² = 0.19; 
two-sided).  
 

As expected based on previous literature, subjective fear ratings and skin conductance 

reactivity were correlated (r(28)= .43; ​P​ = .02; 95% CI: 0.08-0.69; R² = 0.19; two-sided) (see Fig. 

2 and Methods). Both outcomes also presented some level of variability. At the group level, 59% 
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of trials were associated with a certain level of fear (4.6% very high fear, 11.0% high fear, 12.8% 

moderate fear, 15.9% low fear, and 14.7% very low fear) while 41% were associated with no 

fear. Regarding skin conductance reactivity, 28.21% of trials were considered to present a 

certain level of reactivity (> .2 microsiemens) while 71.79% did not (see supplementary 

Methods).  

To train whole-brain decoders, we created 2 datasets by binning (i.e., averaging) 

together within-subject beta images either as a function of individual fear ratings (0 = “No Fear” 

to 5 = “Very High Fear”) or as a function of skin conductance reactivity (according to individual 

quintiles of the reactivity) (see Fig. 1 and Methods). This procedure allowed both to remove the 

effect of outliers and to capture the within-subject variability of each measure.  

In a cross-validation procedure, we trained a support vector regression decoder on the 

data of N-1 participants and tested the accuracy of the decoder to predict the left-out participant 

(i.e., leave-one-subject-out cross-validation approach). ​This procedure was achieved iteratively 

in order to obtain predicted values for all participants. We ​ established both the sensitivity (e.g., 

can we predict accurately the subjective ratings of fear?) and the specificity (e.g., can we predict 

the subjective ratings with the skin conductance reactivity decoder?) of each whole-brain 

decoders. The sensitivity was established using the area under the ROC curve (AUC) of the 

predicted values (see Methods). T ​he specificity was determined by testing each decoder using 

the dataset of the other outcome (e.g., testing the subjective fear rating decoder using the skin 

conductance dataset). This process, which we call “cross decoding”, can reveal similarities 

between brain representations if the results reveal above-chance performances. We also 

determined the performance of the decoders trained with binned beta images in the prediction 

of single-trial (i.e., unaveraged) beta images. This was achieved also using a 
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leave-one-subject-out cross-validation procedure (i.e., training with binned beta images and 

testing with single-trial data of the left-out participant). 

 
 
Figure 3. Whole-brain decoders of subjective fear and skin conductance reactivity. ​A) 
Both whole-brain decoders presented a good sensitivity when tested on the dataset they were 
trained to predict (e.g., subjective fear decoder predicting the fear dataset). The cross-decoding 
procedure (e.g., predicting skin conductance reactivity using the subjective fear decoder) also 
revealed that both decoders can generalize to some extent to the other dataset. Dashed lines 
represent the critical value (p = .05) determined using a permutation test. B) Both 
whole-brain-decoders also generalized to new data as evidenced by their good capacity to 
predict the data of the independent validation cohort. Also, the cross-decoding procedure 
indicated that the skin conductance decoder (right panel) could also predict accurately the 
subjective fear rating dataset. This was not observed for the subjective fear decoder (left panel). 
C) The whole-brain decoders were also tested on the categorical beta images of each 
participant. The predicted values of both decoders correlated with the real values of the 
outcome. 
 

Figure 3a shows the discrimination accuracy of the subjective fear rating (Fig.3a left 

panel) and skin conductance reactivity decoders (Fig.3a, right panel). Both decoders present a 

high level of sensitivity in the prediction of binned images ​(AUCs ~ .85)​ as well as a good 
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sensitivity ​(AUCs ~.62) ​in the prediction of single-trial images (See Fig. S1 and Supplementary 

Methods and Results). Both decoders also showed some cross decoding capacity as indicated 

by above-chance classification of the binned images (dashed lines in Fig. 3 correspond to p = 

.05).  

While leave-one-subject-out cross-validation is a common practice in machine learning, 

this approach may not reflect the true generalization capability of the decoders ​13​. As such, we 

estimated the generalization of the decoders using 2 independent validation datasets.  

The first dataset included a group of participants (N=12) that went through the same 

fMRI procedure (i.e., same task) but were not included in the training of the decoder (nested 

cross-validation ​14​). Figure 3b shows the discrimination accuracy of the subjective fear (Fig.3a 

left panel) and skin conductance reactivity decoders (Fig.3a, right panel) in the prediction of this 

independent validation cohort. Both decoders still presented sensitivity ​ (AUCs ~ .70) i​n the 

prediction of the outcome they were trained to predict. There was also above-chance 

classification of the subjective fear dataset using the skin conductance decoder (dashed lines in 

Fig. 3 correspond to p = .05).  

The second independent validation dataset was composed of a subsample of 

participants from the discovery cohort (N=17) that took part in a new fMRI procedure (i.e., 

different task) (see Supplementary Methods).  In this experiment, participants were asked to 

assess online their subjective fear of images of feared and non-feared animals. ​Their skin 

conductance reactivity was being recorded during this fMRI procedure​. ​We processed 

single-trial beta images from this experiment and submitted these images to the whole-brain 

decoders (Supplemental Fig. S2 and Methods). ​This procedure revealed that both decoders 

presented weak but statistically significant prediction of the independent validation dataset (See 

Fig. S2 and Supplementary Methods and Results).  
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Since participants presented various levels of fear and skin conductance response to 

each category, the prediction of categorical beta images (e.g., averaged beta images of snakes) 

by each decoder should also follow the subjective ratings and skin conductance reactivity. To 

test this hypothesis, we computed mean beta images for each animal category (see Methods) 

and submitted these beta images to the decoders. 

The results indicated that whole-brain decoders presented significant predictions of the 

categorical beta images. More precisely, at the group level, the predictions of the subjective fear 

decoder were correlated with the subjective fear ratings (r(28) = .82; ​P​ < .0001​; ​95% CI: 

0.65-0.91; R² = 0.67; ​two-sided​) (see Fig. 3c, top panel) and the predictions of the skin 

conductance decoder were correlated with the average skin conductance reactivity of the 

categories (r(28) = .36;  ​P​ = .05​; ​95% CI: -0.006-0.63; R² = 0.13; ​ two-sided​) (see Fig. 3c, bottom 

panel). 

Another important question pertains to the generalization of the brain decoders to a 

clinical population. To provide some information regarding this generalization, we included in the 

study three patients (N = 3) diagnosed with specific phobia of one of the 30 animals (see 

Supplementary Methods). The performance of the decoders were similar to those expected 

from the rest of the discovery cohort (see Supplementary Methods and Results).  

Taken together, these results indicate that it is possible to develop sensitive whole-brain 

decoders of subjective fear and skin conductance reactivity. Importantly, our results suggest 

that both decoders can generalize to some extent to 2 independent validation cohorts as well as 

to patients diagnosed with specific phobia. Furthermore, the predictions of the decoders appear 

to correspond to the individual variability in the data as assessed by the prediction of the 

categorical beta images of each animal categories. While these decoders present some 

9 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/515973doi: bioRxiv preprint first posted online Jan. 9, 2019; 



similarities, they also appear to be independent from one another as indicated by the results of 

the cross-decoding procedure.  

 
 

Figure 4. Brain regions presenting a significant difference in the prediction of the 
subjective ratings and skin conductance reactivity . ​A) A positive difference in the area 
under the curve indicates a better prediction of the subjective ratings (red-orange regions) while 
a negative difference indicates a better prediction of skin conductance reactivity (blue regions). 
The significant regions (p < .05; FDR-corrected) ​ ​are surrounded by black borders and are listed 
in Table 1. Brain images were generated using pySurfer ( ​https://pysurfer.github.io/ ​) B) 
Significant regions of the middle frontal gyrus, amygdala, insula, and ventral medial prefrontal 
cortex (vmPFC). Dashed lines represent the critical value (p = .05) determined using a 
permutation test.  
 

Next, we aimed to determine the brain regions differentially involved in the prediction of 

subjective fear ratings and skin conductance reactivity. ​Thus, we used the same 
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leave-one-subject-out cross-validation but within predefined brain regions. For this purpose, we 

used a parcellation of the cortex based on functional connectivity ​15​. ​We selected the 210 

cortical regions of this brain atlas as well as the amygdala and hippocampus, for a total of 214 

regions ​. We compared the performance of the decoder within each region. These statistical 

comparisons were corrected to account for multiple comparisons (see Methods). 

Figure 4 and Table 1 indicate in which regions the predictions of the decoders were 

statistically different. Interestingly, the significant regions of the middle frontal gyrus (Inferior 

frontal junction, A8vl, A6vl, A10l) all involved a better prediction of the subjective fear ratings 

than the skin conductance reactivity (see Fig. 4b, left panel). Other regions presenting such a 

preference for the prediction of the subjective ratings include the medial superior frontal gyrus, 

the lateral orbitofrontal gyrus, the inferior temporal gyrus, the fusiform gyrus, the 

parahippocampal gyrus, the superior parietal lobule, the inferior parietal lobule, the precuneus, 

and the occipital lobe (see Table 1). Furthermore, other regions such as the amygdala, the 

insula, and the ventral medial prefrontal cortex appear to be primarily associated with the skin 

conductance response, while being marginally involved in the prediction of the subjective fear 

ratings (see Fig. 4b, right panel). Other regions presenting such a preference are the lateral 

inferior frontal gyrus, the superior parietal lobule, the paracentral lobule and the postcentral 

gyrus. These results suggest that the subjective experience of fear might involve brain 

processes partly distinct from those involved in the production of the skin conductance 

response.  

Our results are in line with multiple previous findings indicating a positive relationship 

between the subjective fear ratings and autonomic responses ​16–19​. However, here we also 

showed that the brain regions involved in the accurate prediction of these two measures are 

possibly distinct. For instance, brain regions such as the amygdala, insula, and ventromedial 
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prefrontal cortex appeared mostly involved in the prediction of physiological reactivity (Fig. 4b, 

right panel) while regions of the middle frontal gyrus, dorsomedial prefrontal cortex, and lateral 

orbital cortex were more closely related to the subjective reports of fear (Fig. 4b, left panel). This 

suggests that some caution may be warranted in the use of physiological reactivity as the sole 

source of information to infer the subjective suffering associated with fear and anxiety disorders.  

Our results raise the question of the relation between physiological reactivity and 

subjective fear in the brain. To what extent are their representations independent? Is the 

subjective fear rating a late-stage readout of the physiological reactivity? Similar questions have 

been previously discussed in the consciousness literature ​20,21 ​. For instance, Maniscalco & Lau 

21​ tested multiple models formalizing the potential relations between sensory signal and 

subjective judgment. Their results suggest that a hierarchical model in which subjective 

experience depends on late-stage read-out best accounted for the data. This is notably in line 

with higher-order ​3,20,22 ​ and constructivist theories ​23,24 ​ of emotions suggesting that first-order 

representations (possibly reflected by the physiological reactivity) may need to be attended or 

meta-represented downstream for subjective experiences to occur. This is also in accord with a 

recent review of the literature ​25​ indicating that a meta-representation of the lower-level affective 

processes might be implemented by the middle frontal gyrus and other areas in the lateral 

prefrontal cortex.  

Further evidence for a hierarchical model comes from results indicating that low-level 

affective processes do not seem necessary to generate a conscious experience of fear. For 

instance, patients presenting bilateral lesions of the amygdala have been reported to be capable 

of experiencing fear in some specific situations ​26,27 ​. Although there is still some debate 

regarding the possible mechanisms leading to these subjective experiences, the overall 

evidence at least does not seem incompatible with higher-order models.  
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A higher-order perspective is in line with previous results ​12,26–29 ​ and ours, but models of 

emotions are still being debated ​30​. For instance, one may argue against this hierarchical or 

higher-order view based on experimental demonstrations that the electrical stimulation of the 

amygdala itself can trigger a subjective experience of fear and anxiety ​31​. While this 

demonstration was compelling, it is important to mention that in that study this phenomenon 

occured only in 1 out of 9 patients. This inconsistency may be partly attributed to inter-individual 

differences in the spread of electrical activity to other brain regions. However, it is worth noting 

that the stimulation had a clear dose-dependent effect on the objective physiological response, 

which was observed across the entire group of patients. Taken together, these results suggest 

that the amygdala might play a central role in generating physiological responses but possibly a 

marginal role in generating the conscious experience of fear. 

One reason for the skepticism about higher-order models might be that anxiety disorders 

have been reliably associated with a dysregulation of physiological reactivity ​32​. As such, 

higher-order structures are typically conceptualized as playing more of a complementary role in 

these pathologies. However, it is worth noting that the therapeutic success of psychotherapies 

for anxiety and depression appears to be mediated by brain regions such as the dorsomedial 

prefrontal cortex, posterior cingulate gyrus, precuneus and some regions of the temporal lobes 

33​. Also, recent findings indicated that the inhibition of the amygdala by the dorsolateral 

prefrontal cortex was positively associated with the outcome of exposure therapy ​34​. As such, 

some higher-order processes may also have an important incidence for therapeutic success. 

One challenge in the implementation of a higher-order approach to anxiety disorders is 

the reliance on self-reported measures. Fear is indeed multifaceted and, as a result, ratings can 

be influenced by multiple factors such as arousal, proximity of threat, and other negative 

emotions. Furthermore, the means of fear assessment can greatly influence the outcome. We 
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opted for offline categorical ratings as this is the typical approach for clinical diagnosis, but one 

may worry that this may not directly reflect the online subjective experience of fear. Our results 

suggest that both assessment methods may at least partly reflect similar processes as our 

decoders trained to predict offline ratings could predict weakly but significantly online ratings in 

an independent validation fMRI task ​(Supplementary Methods and Fig. S2).​  However, ​further 

work may be needed to determine precisely which aspects of fear are more salient with different 

means of assessment and how to cover accurately the multiple dimensions relevant to the 

self-report of fear. 

Another concern is that emotional states have been proposed to involve (and sometime 

interfere with) cognitive functions ​35​. As such, we can expect part of our results to represent this 

interaction rather than a strict representation of fear ​per se​. For instance, the middle frontal 

gyrus has also been involved in the cognitive regulation of emotion ​36,37 ​ and in the regulation of 

the physiological reactivity network ​34​. Furthermore, activity in this region has also been 

associated with working memory and the retrieval of semantic information ​38​. The same logic 

applies to attentional processes with reported influences in the occipital, frontal, parietal, and 

ventral temporal regions ​39,40 ​. Because our experiment involved cognitive functions such as 

working memory and attention, our results may be partly associated with the interference of fear 

with these cognitive functions ​41​. This observation does not undermine our claim as complex 

interactions between cognitive and affective processes might also represent an important 

mechanism of change in psychotherapy ​42​ that requires further empirical investigation.  

Given that multivoxel decoding involves many parameter choices, one may wonder if our 

results robustly generalize or if they are due to idiosyncratic details. Overall, our impression is 

the main results do hold up under different analyses (see Fig. 3b, S1 and S2 as well as 

Supplementary Results). ​One specific concern is with respect to the choice of a between- or 
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within-subject decoding strategy. Here, both approaches presented some similarities, at least 

regarding subjective ratings of fear (see Supplementary Methods, Results and Fig. S4). 

However, the generally weaker performance of within-subject decoders rendered a direct 

comparison impractical, especially for skin conductance reactivity which contains too few trials 

within each participant. Therefore, throughout we primarily focused on the between-subject 

decoding approach.  

Another concern pertains to the use of either binned data or single-trial data. Binned (or 

averaged) data can be useful to train the decoders as the process of averaging can remove 

some of the within-subject noise and can make the data manageable for the training procedure. 

However, it also appears important to test the accuracy of the decoder in the prediction of raw 

single-trial data. This is why we chose to combine both approaches and to also test our 

decoders on raw single-trial data (Supplementary Fig. S1).  

Another important concern pertains to the generalizability of decoders to other datasets. 

Our decoders presented good generalization to an independent validation dataset (see Fig. 3b) 

but also weaker performances on a dataset coming from a different fMRI task (Supplementary 

Fig. S2). Training the decoders using data from multiple tasks would potentially allow to build 

decoders that could generalize better across different tasks and datasets. 

In sum, we have exploited an opportunity to directly compare how machine learning decoders 

can predict the subjective fear rating and its correlated physiological activity. Our results 

suggest that the study of fear and anxiety disorders may benefit from a greater inclusion of 

subjective measures as they might index higher-order processes not readily accessible when 

studying physiological reactivity alone. This may prove to be an important means to optimize 

treatments and further tailor interventions to specifically alleviate the subjective suffering 

associated with fear and anxiety disorders. 
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Methods 

Participants 

The discovery cohort included thirty-one participants (15 females; mean age = 23.29; SD 

= 4.21). Participants were included if they reported, on a 6-point Likert scale, “high” or “very 

high” fear of at least one animal included in the experiment (see Stimuli and Task for a detailed 

list). Skin conductance reactivity was not acquired for four participants and technical issues 

prevented from recording the skin conductance of two participants. As a result, the data of 

twenty-five participants were available to train the skin conductance reactivity decoder. The first 

independent validation cohort (same task) included twelve participants (2 females; mean age = 

25.75; SD = 3.98) and skin conductance reactivity was acquired for 8 of them. The second 

independent validation cohort (different task) comprised 17 participants from the discovery 

cohort (5 females; mean age = 21.92; SD = 1.54) that performed a different experimental task 

(see Supplementary Methods). Skin conductance reactivity was recorder for all participants. All 

participants provided written informed consent and the study was approved by the Institutional 

Review Board of Advanced Telecommunications Research Institute International (ATR), Japan. 

 

Stimuli and Task 

The experimental procedure has been described in full detail elsewhere ​43​. Briefly, 

participants underwent a 1-hour fMRI session where they were presented with images of the 

most commonly feared animals (e.g., snake, spider, cockroach, bee, bat, mouse, dog, cat, 

shark, etc.) as well as pictures of other animals and objects. We chose to present 90 different 

images per category and to include 30 animal categories and 10 object categories (for a total of 

3,600 different images) ​.​ ​The 30 different animal categories included reptiles (snake,turtle, and 

gecko), amphibians  (frog), insects (cockroach, beetle, ant, spider, grasshopper, caterpillar, bee, 
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butterfly, and fly), birds (robin, peacock, and chicken), annelids (earthworm), mammals (mouse, 

guinea pig, bat, dog, sheep, cat, rabbit, horse, and giraffe) and aquatic animals (shark, whale, 

common fish, and dolphin). The database also included 10 categories of human-made objects 

(airplane, car, bicycle, scissor, hammer, key, guitar, cellphone, umbrella, and chair). The images 

presented a full frontal view of the object or animal and no other recognizable object was clearly 

identifiable in the background. Images were cropped so that they would frame the object. The 

final images were 533 X 533 pixels and covered 13.33 degrees of visual angles during the 

procedure. The average contrast and luminance of images were not different between 

categories ​43​. The data of the human-made objects were not analyzed. ​Trials were organized in 

six runs of 600 trials interleaved with short breaks. ​The sequence of presentation was 

pseudo-randomized and fixed across participants.  

 

MRI parameters 

Participants were scanned in two 3T MRI scanners (Prisma Siemens and Verio 

Siemens) with a head coil at the ATR Brain Activation Imaging Center. During the experiments, 

we obtained 33 contiguous slices (TR = 2000 ms, TE =30 ms, voxel size = 3 × 3 × 3.5 mm ​, 3  

field-of-view = 192 x 192 mm, matrix size = 64 x 64, slice thickness = 3.5 mm, 0 mm slice gap, 

flip angle = 80 deg) oriented parallel to the AC-PC plane, which covered the entire brain. We 

also obtained T1-weighted MR images (MP-RAGE; 256 slices, TR = 2250 ms, TE = 3.06 ms, 

voxel size = 1 × 1 × 1 mm ​, field-of-view= 256 x 256 mm, matrix size = 256 x 256, slice 3  

thickness = 1 mm, 0 mm slice gap, TI = 900 ms, flip angle = 9 deg.). 
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Recording of electrodermal activity 
Skin conductance reactivity was determined during the fMRI sessions using BrainAmp 

Ag/AgCl sintered MR electrodes (Brain Products). The electrodes were disposed on the distal 

phalanges of the index and middle fingers of the left hand. Skin conductance reactivity was 

determined in response to the first image of each chunks of images of a given category. 

Following previous methodologies ​43​, we determined the maximum amplitude in a time window 

of 1 to 5 seconds following the image onset and removed from this value the baseline activity in 

a 2-second window before the image onset. Responses smaller than 0.2 ​​microsiemens (μS) 

were recoded as 0 (see Supplementary Methods). Responses were square-root transformed to 

correct for the skewness of the distribution ​44​.  ​This standard analytical procedure allowed for 

our results to be readily put in correspondence with previous findings. However, this approach 

presents the disadvantage of allowing for the peak of skin conductance reactivity of one trial to 

occur within the time window of the following trial. We quantified that this scenario happened on 

2.62% of all trials. This did not prevent us from developing a sensitive and accurate decoder of 

the skin conductance reactivity (see Fig. 3, 4, S1, and S2). However, this represents a source of 

noise that could be avoided in future experiments by using longer presentation chunks. 

 

Comparing subjective fear ratings and skin conductance reactivity 

To determine the correlation between subjective fear reports and skin conductance 

reactivity, we first established, for each participant, an average level of skin conductance 

reactivity for each animal category. Since the first trial of each run (i.e., trials were organized in 

six runs of 600 trials) was typically associated with greater skin conductance reactivity, we 

removed these six trials as they didn’t represent typical reactivity to the image category ​per se​. 

This removed six out of the 720 trials. The remaining trials were winsorized (5th and 95th 
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percentile), averaged within category and standardised. We then established group-level mean 

value for each category by averaging across participants. This was achieved both for the 

subjective fear ratings and for the skin conductance reactivity. The mean categorical values 

were then standardised at the group level. These standardised values were correlated to 

determine the association between subjective fear ratings and skin conductance reactivity at the 

group level. The results are presented in Figure 2. 

 

Preprocessing of fMRI data 

The fMRI images captured during the experiment were realigned to the first fMRI image, 

coregistered, and motion-corrected (using 6 motion parameters) in SPM 12 (Statistical 

Parametric Mapping; ​www.fil.ion.ucl.ac.uk/spm ​) ​45​. Functions of pyMVPA (​www.pymvpa.org ​) ​46,47 

implemented in the Neurodebian environment ​48​ were used to remove the linear trend and to 

deconvolve the signals using the least-square separate approach ​49,50 ​. This method allowed to 

iteratively fit a general linear model to estimate the brain response to the first presentation of 

each chunk of images. Each general linear model includes one parameter modeling the current 

trial, and two parameters modeling all other trials in the design. Via this method, we were able to 

obtain one parameter estimate (i.e., a beta image) for each individual trial of our rapid-event 

related design (720 beta images for each participant). Data were also normalized to the MNI 

space and smoothed (FWHM = [8,8,8]) using SPM 12. 

 

Developing whole-brain decoders 

In order to build between-subject decoders, we aimed at creating binned beta images for 

each participants that would represent the levels of our outcomes (i.e., subjective fear ratings 

and skin conductance reactivity). This approach was also used in order to average out some of 
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the between-trial noise. As such, to train the subjective fear decoders, the binned beta images 

were created by binning together (i.e. averaging), within-participant, the trials corresponding to 

the same level of fear (0= ‘No fear” to 5 = “Very high fear”). A similar procedure was used to 

create the binned beta images to train the skin conductance reactivity decoder. We aimed at 

creating six binned images per participants to reflect the different skin conductance reactivity 

levels. However, because of the skewness of the distribution, splitting the data according to 

even quintiles would result in an over representation of the trials with very small reactivity (i.e., 

most of the trials are below 0.2 microsiemens). As such, trials below 0.2 microsiemens were 

considered to be part of the binned beta image of level 0. The remaining trials were grouped 

into quintiles (computed individually) and the binned beta images 1 to 5 were obtained by 

averaging the corresponding images together. The number of trials in each bin was used to set 

the number of trials randomly selected to constitute the binned image of level 0. Binned beta 

images were mean centered within-subject.  

We first trained whole-brain decoders using support vector regression in a 

leave-one-subject-out cross-validation procedure (implemented in Matlab 

[​https://www.mathworks.com/products/matlab.html ​] using the CanlabCore toolbox 

[​https://github.com/canlab/CanlabCore ​ ] and the Spider machine learning library 

[​http://people.kyb.tuebingen.mpg.de/spider/main.html ​]). The predicted values of each beta 

image were used to establish the area under the ROC curve (AUC) of the decoders. To 

determine the statistical significance of the AUC, we conducted a permutation test by randomly 

permuting (1,000 times) the labels of the beta images in the datasets. Applying the decoders to 

this permuted data allowed to obtain a distribution of AUCs under the null hypothesis. This was 

achieved to obtain a critical value for significance at p = .05 (dashed lines in Fig. 3a and Fig. 

4b). 
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Testing whole-brain decoders on categorical beta images 

If the whole-brain decoders can truly predict subjective fear ratings and skin 

conductance reactivity, their predictions of the different categorical images should correlate with 

the real observed values. In order to compare the decoding results with the behavioral data, we 

generated binned categorical images by removing the first trial of each block from the binned 

beta images (see above ​Comparing subjective ratings and skin conductance reactivity ​). This 

resulted in removing 6 trials out of the 720 beta images. We submitted the average categorical 

images to the whole-brain decoders. The predicted values were winsorized ​(5th and 95th 

percentile)​ and standardized within participant. At the group level, these values were averaged, 

standardized and then correlated with the mean subjective fear ratings and skin conductance 

reactivity (see Fig. 3c). 

 

Within-region decoding 

The brain regions were defined using a parcellation of the cortex based on functional 

connectivity ​15​. ​We selected the 210 cortical regions of the atlas as well as the amygdala and 

hippocampus, for a total of 214 regions. We iteratively trained decoders within each of the 

selected regions to predict either one of the outcomes. This procedure provided us with a 

correlation coefficient between the predicted and real values for each decoder, within each 

region. This allowed for a direct comparison of the correlation coefficients between decoders 

using Fisher’s method ​51​. As such, this procedure was used to determine where in the brain one 

decoder presented a better performance than the other (e.g., a better prediction of the 

subjective ratings than the skin conductance reactivity). The false discovery rate of this series of 

dependent tests was controlled using the method described by Benjamini & Yekutieli ​52​ and 

implemented using the Matlab toolbox fdr_bh 
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(​http://kutaslab.ucsd.edu/matlabmk_fn_docs/matlabmk/fdr_bh.html ​). To facilitate the 

interpretation, we plot in Figure 4a the difference in the AUCs of both decoders within each 

region. 

 

Data availability 

The data supporting the main findings of this study will be made available on the ATR 

website and from the corresponding authors upon reasonable request. 
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Table 
 

 Z P Gyrus Region Laterality MNI 
coordinates  

[X,Y,Z] 

Fear > 
SCR 

      

 4.063 .000048 Superior Frontal  medial area A10m L -8, 56, 15 

 3.960 .000075 Middle Frontal inferior frontal junction (IFJ) L -42, 13, 36 

 3.832 .000127 A8vl, ventrolateral area 8 R 42, 27, 39 

 3.457 .000546 A6vl, ventrolateral area 6 L -32, 4, 55 

 3.636 .000125 A10l, lateral area 10 L -26, 60, -6 

 4.505 .000007 Orbital A12/47o, orbital area 12/47 R 40, 39, -14 

 3.718 .000201 Inferior Temporal A20cl, caudolateral of area 
20 

L -59, -42, -16 

 3.942 .000081 Fusiform A20rv, rostroventral area 20 L -33, -16, -32 

 3.427 .000610 A37mv, medioventral area 37 L -31, -64, -14 

 3.558 .000373 Parahippocampal  A35/36c, caudal area 35/36 R 26, -23, -27 

 3.582 .000341 Superior Parietal 
Lobule 

A5l, lateral area 5 R 35, -42, 54 

 3.688 .000226 Inferior Parietal 
Lobule  

A39c, caudal area 39(PGp) L -34, -80, 29 

 3.845 .000120 A39c, caudal area 39(PGp) R 45, -71, 20 

 3.991 .000065 Precuneus  A7m, medial area 7(PEp) L -5, -63, 51 

 4.701  .000002 Occipital Lobe mOccG, middle occipital 
gyrus 

L -31, -89, 11 

 4.48 .000007 mOccG, middle occipital 
gyrus 

R 34, -86, 11 

 3.940 .000081 OPC, occipital polar cortex R 22, -97, 4 

 4.795 .000002 msOccG, medial superior 
occipital gyrus 

L -11, -88, 31 
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 3.488 .000487 msOccG, medial superior 
occipital gyrus 

R 16, -85, 34 

 3.615 .000301 lsOccG, lateral superior 
occipital gyrus 

L -22, -77, 36 

 3.36 .000755 lsOccG, lateral superior 
occipital gyrus 

R 29, -75, 36 

SCR > 
Fear 

      

 -3.355 .000794 Amygdala Medial and lateral amygdala R -23, -3, -20 

 -3.844 .000121 Inferior frontal A44v, ventral area 44 R 54, 14, 11 

 -4.068 .000047 Orbital A11m, medial area 11 L -6, 52, -19 

 -3.864 .000112 Paracentral Lobule A4ll, area 4, (lower limb 
region) 

L -4, -23, 61 

 -3.860 .000113 Superior Parietal 
Lobule 

A7r, rostral area 7 R 19, -57, 65 

 -3.551 .000384 A7c, caudal area 7 R 19, -69, 54 

 -3.446 .000569 Postcentral A1/2/3ulhf, area 1/2/3(upper 
limb, head and face region) 

R 50, -14, 44 

 -3.441 .000579 Insular G, hypergranular insula L -36, -20, 10 

 -4.317 .000016 R 37, -18, 8 

 -4.598 .000004 dIg, dorsal granular insula R 39, -7, 8 

 
Table 1. Regions presenting a significant difference in the prediction of subjective ratings 
and skin conductance responses. ​Following Fisher’s method ​51​, the Z value can be used to 
compare directly the correlations between the predicted values of each decoders and the real 
values.  
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