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Summary 25 

Two-photon imaging is a major recording technique in neuroscience, but it suffers 26 

from several limitations, including a low sampling rate, the nonlinearity of calcium 27 

responses, the slow dynamics of calcium dyes and a low signal-to-noise ratio, all of which 28 

impose a severe limitation on the application of two-photon imaging in elucidating 29 

neuronal dynamics with high temporal resolution. Here, we developed a hyperacuity 30 

algorithm (HA_time) based on an approach combining a generative model and machine 31 

learning to improve spike detection and the precision of spike time inference. First, 32 

Bayesian inference estimates the calcium spike model by assuming the constancy of the 33 

spike shape and size. A support vector machine employs this information and detects 34 

spikes with higher temporal precision than the sampling rate. Compared with conventional 35 

thresholding, HA_time improved the precision of spike time estimation up to 20-fold for 36 

simulated calcium data. Furthermore, the benchmark analysis of experimental data from 37 

different brain regions and simulation of a broader range of experimental conditions 38 

showed that our algorithm was among the best in a class of hyperacuity algorithms. We 39 

encourage experimenters to use the proposed algorithm to precisely estimate hyperacuity 40 

spike times from two-photon imaging.  41 
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Introduction 42 

Recently, two-photon imaging has been one of the major means of recording 43 

multineuronal activities in neuroscience to obtain the precise morphology and location of 44 

the target neurons because of its high spatial resolution1–6. However, its utility is still 45 

constrained by its relatively low temporal resolution due to the mechanical scanning of 46 

two-photon rays. The other problems are the nonlinearity, the slow dynamics and the low 47 

signal-to-noise ratio (SNR) of the calcium (Ca) responses7–10. Many algorithms have been 48 

proposed to reconstruct spike trains from Ca imaging data, including conventional 49 

thresholding11, deconvolution12–15, template matching16–20, Bayes inference21–23 and 50 

machine learning24,25, to overcome these problems. Few of them, however, have 51 

addressed the two challenging goals simultaneously: reliable spike detection and spike 52 

time estimation with high temporal precision in the presence of the nonlinearity, slow 53 

dynamics and low SNR of the Ca responses26. For the former goal, the spike dynamics 54 

of the target neurons and/or kinematics of the Ca responses may vary dramatically across 55 

brain regions and different Ca dyes. For the latter goal, a trade-off between the number 56 

of recorded neurons and temporal resolution exists. The slow kinematics and the low 57 

SNR of the currently available Ca dyes may also limit the temporal precision of the 58 

information conveyed by the Ca responses. These factors impair reliable spike detection 59 

as well as precise spike time estimation for high-frequency firing that is frequently 60 

encountered in cortical cells27–29. 61 

Here, we propose an approach combining a generative model of Ca responses 62 

including nonlinearity and dye dynamics with a supervised classifier to overcome the 63 

aforementioned difficulties. Our hyperacuity algorithm, named HA_time (HyperAcuity time 64 

estimation), estimates the Ca spike model by Bayesian inference assuming size and 65 

shape constancy, compensates for the nonlinearity of the Ca responses, and detects 66 

spikes from Ca imaging data by a support vector machine (SVM) using the ground-truths, 67 

i.e., simultaneously recorded electrical spikes, as supervised information. To achieve 68 

hyperacuity precision, spike timings were calibrated to minimize the residual errors in 69 

model prediction using the hyperacuity vernier scale. This approach benefits from the 70 

advantages of both generative models and supervised learning. On the one hand, the Ca 71 
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spike model is utilized to provide supplemental information for spike detection as well as 72 

to estimate the spike times at higher temporal precision than the sampling resolution. On 73 

the other hand, the supervised learning compensates for fluctuations in the Ca responses 74 

due to noise and sampling jitters, which are not considered by the generative model. As 75 

a consequence, HA_time can improve both the spike detection and spike time estimation 76 

of two-photon recordings. 77 

A simulation study confirmed that compared with the thresholding algorithm, 78 

HA_time improved the temporal precision by 2-20-fold. The previous algorithms have 79 

aimed to improve spike detection as well as spike time estimation with higher temporal 80 

precision than that expected for the sampling rate of two-photon recordings. They 81 

assumed generative models for spike generation and maximized the likelihood of the 82 

estimates17,21,22. Accordingly, hyperacuity performance was limited to only the cases 83 

where the Ca responses satisfy the assumptions of generative models. To prove the 84 

advantages of the approach combining the generative model and supervised learning, 85 

we compared our method with four previous hyperacuity algorithms16,17,22,23. The 86 

benchmark results for the experimental data sets showed that HA_time was among the 87 

best across three brain regions: the cerebellar, hippocampal and visual cortices. 88 

Furthermore, the simulation analysis conducted across a broad range of parameters for 89 

the experimental conditions, including the mean neuronal firing frequency, the 90 

nonlinearity, the decay time of the Ca dyes, and the sampling rate, providing useful 91 

information for users to select the most suitable algorithms for the given experimental 92 

conditions and highlighting the advantages of our algorithm over the other ones under the 93 

high firing frequency and/or strong nonlinearity conditions frequently encountered in the 94 

cortical cells of behaving animals. 95 

 96 

Results 97 

Hyperacuity algorithm for spike timing estimation 98 

Our hyperacuity algorithm, HA_time, was conducted in three steps: 1) Bayesian 99 

inference of the Ca spike model from Ca imaging data, 2) spike detection by SVM assisted 100 
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by the matching information of the Ca imaging data with the Ca spike model and 3) 101 

hyperacuity spike time estimation to minimize the errors between the Ca response model 102 

prediction and the recorded Ca imaging data using the hyperacuity vernier scales. We 103 

noted here that the term “Ca spike model” indicates the constant Ca transient (i.e., the 104 

amplitude and shape) of a single spike, whereas “Ca response model” is a generative 105 

model of the Ca spike model, superposition of multiple spikes, nonlinearity of the Ca 106 

responses and noise (see below). 107 

We assumed that the Ca imaging data were sampled from the Ca spike model 108 

(double exponentials) with variable sampling jitters between the onsets of the Ca spike 109 

and the sampling times. The Ca spike responses were first linearly superimposed for 110 

multiple spikes in short intervals and added with the Gaussian noise. The sub- or 111 

superlinearity of the Ca responses was determined by comparing the observed Ca 112 

imaging data with the data predicted by the Ca response model. We compensated for the 113 

nonlinearity by inversely transforming the observed Ca imaging data by nonlinearity 114 

models fitted by logarithmic functions (Fig. 1A). 115 

Next, we estimated the coincidence score as a convolution of the first-order 116 

derivative of the Ca imaging data and that of the Ca spike model. A coincidence score 117 

threshold was used to sample the data segments as spike candidates. Here, the threshold 118 

and segment size were optimized to maximize the F1-score of the training data (see 119 

Methods). The SVM was trained to classify the sampled data segments into spike or non-120 

spike segments. For this purpose, we fed the sampled Ca imaging data and the 121 

coincidence scores as the primary and attribute inputs, respectively, to the SVM and used 122 

the electrical spikes (ground truth) as the teaching signals (Fig. 1B). 123 
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 124 

Figure 1: The hyperacuity support vector machine (HA_time) algorithm. A: The generative model 125 
assumed that Ca responses were sampled from the Ca spike model (double exponentials) with variable 126 
sampling jitters (SJs) due to the low sampling rate, superimposed by multiple spikes, fluctuated by 127 
nonlinearity and supplemented with Gaussian noise. Nonlinearity observed in the data was compensated 128 
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by the nonlinearity model defined by logarithmic functions of the observed Ca imaging data and Ca 129 
response model prediction. B: The coincidence score, computed by convoluting the first derivative of Ca 130 
imaging data and that of the Ca spike model, was used to select spike candidates. Support vector machine 131 
(SVM) was trained to classify spikes and non-spikes from spike candidates with the Ca imaging data, the 132 
coincidence scores and the electrical spikes as feature, attribute, and teaching signals, respectively. C: The 133 
true spike time (TT) was estimated as the sum of SJ and pseudo-spike time (PT, the point that exceeds the 134 
threshold) minimizing the residual error of the Ca response model prediction using hyperacuity vernier 10-135 
fold finer than the sampling interval. 136 

 137 

For the test data, spike candidates were sampled in the same way as the training 138 

data, and the trained SVM detected the spikes among the candidates. We tentatively 139 

determined the time when the coincidence score exceeded the threshold as the pseudo-140 

spike time (PT in Fig. 1C inset) and estimated the sampling jitters (SJs) to minimize the 141 

errors between the Ca response model prediction and the Ca imaging data using the 142 

hyperacuity vernier scales (10-fold finer time bin than the sampling interval). The true 143 

spike time (TT) was calculated as the sum of the PT and SJ (Fig. 1C). 144 

 145 

Hyperacuity improvement of HA_time in simulation 146 

 To illustrate the hyperacuity improvement of HA_time, we compared our method 147 

with the thresholding algorithm using the simulated data with no nonlinearity and fast Ca 148 

decay time (see Methods). Here, the threshold of the thresholding algorithm was 149 

optimized to maximize the F1-score of the training data. 150 

     Figure 2 shows the hyperacuity improvement, determined as the ratio of the 151 

mean of the spike time errors for the traditional thresholding algorithm to that for HA_time 152 

(see Methods), as a function of the mean firing frequency of the simulated spike train. 153 

Compared with the thresholding algorithm, in cases with a high sampling rate of 40-60 154 

Hz, HA_time improved the temporal precision more than 5-fold under low firing rate 155 

conditions (<5 Hz) and maintained an approximately 2-fold improvement under high firing 156 

rate conditions, probably due to the decreased performance of both algorithms (thicker 157 

lines, Fig. 2). Such a tendency was also found in the cases with a lower sampling rate of 158 
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10-30 Hz, although the hyperacuity improvement was smaller (thinner lines). These 159 

results indicated that even under fairly simple data conditions, for which the conventional 160 

methods are widely used, HA_time was able to provide a 2-20-fold improvement in the 161 

temporal precision compared to that provided by the thresholding algorithm. For example, 162 

if we take an ideal case of a 60 Hz sampling frequency and 2 Hz firing frequency, the 163 

hyperacuity improvement was 12, meaning that the effective sampling rate is 164 

approximately 60 x 12 = 720 Hz, which is quite satisfactory. 165 

 166 

 167 

Figure 2: The hyperacuity improvement of HA_time. The hyperacuity improvement of HA_time 168 
compared with conventional thresholding as a function of the firing frequency at various sampling rates of 169 

10-60 Hz (encoded by line thickness). The nonlinearity parameter α was fixed at 1, and τ2 and SNR were 170 

fixed at 0.2 s and 5, respectively. 171 

 172 
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Application of HA_time to experimental data 173 

We applied HA_time to noisy Ca imaging data obtained in cerebellar, hippocampal 174 

and primary visual cortical cells by two-photon recording with relatively low sampling 175 

rates. 176 

For the two-photon recording of the Ca response from five Purkinje cells in the 177 

cerebellum (the dye, Cal-520, and sampling rate, 7.8 Hz), we sampled thirty-six data 178 

segments (segmental length, 2 s), each including a single electrical spike from the 179 

simultaneous electrical recording (sampling rate, 20 KHz), and constructed the Ca spike 180 

model by Bayesian inference. In agreement with the assumption of spike-shape 181 

constancy, the Ca spike model (τ1 = 0.05 s, τ2 = 0.4 s, red trace) was slightly faster in the 182 

rise time (red trace of Fig. 3A) than the electrical spike-triggered average of the Ca 183 

imaging data, while the amplitude of the Ca spike model roughly agreed with those for 184 

the spike-triggered averages. The longer time course of the spike-triggered response may 185 

be due to the sampling jitters. We also conducted a Bayesian estimation of the Ca spike 186 

models for the data from the entire hippocampus (n=9 cells, sensor, OGB1-AM and 187 

sampling rate, 10 Hz) and visual cortex (n=11 cells, sensor, GCAMP6f, sampling rate of 188 

60 Hz). We avoided segments that contain burst activity (interspike interval < 2 s) since 189 

the Ca responses in the hippocampus and visual cortex showed strong nonlinearity during 190 

the burst activity (see below). A similar tendency to that in the cerebellum data was also 191 

noticed in the Ca spike model (red traces, Figs. 3C&E), which was faster in the rise time 192 

than the spike-triggered averages (blue traces) for both the hippocampus and visual 193 

cortex data. The dynamics of the dyes estimated by our Bayesian method were in 194 

agreement with those reported in previous studies (τ1 = 0.01 and τ2 = 0.2 s for GCAMP6f30 195 

and τ1 = 0.1 and τ2 = 0.75 s for OGB1-AM11). 196 

Figure 3B illustrates the performance of HA_time in detecting spikes from the Ca 197 

imaging data of cerebellar cortex cells. The coincidence thresholding (black dots in Fig. 198 

3B) detected the true spikes (ground truth, gray bars) as well as many false-positive 199 

spikes. HA_time effectively selected the true spikes, rejecting many false alarm spikes 200 

from the spike candidates. Comparison of the spikes detected by HA_time (dark bars) 201 
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with the ground truths (gray bars) indicated that HA_time almost perfectly detected spikes 202 

and correctly estimated the spike time from the Ca imaging data for the cerebellum (Fig. 203 

3B). HA_time also performed almost completely correctly, rejecting many false alarms 204 

detected by conventional thresholding, and it estimated the spike times for the 205 

hippocampus and visual cortex data (Figs. 3D and F). 206 

 207 

 208 

Figure 3: Estimation of the Ca spike model and spike detection by HA_time. A: Ca spike model (red 209 
trace, τ1 and τ2, 0.05 and 0.4 s) and spike-trigger averaged Ca responses synchronized with the onsets of 210 

electrical spikes. The Ca spike model and the spike-triggered average were estimated for the thirty-six 211 
electrical spikes of five Purkinje cells. Ordinate, amplitude of Ca responses normalized for the peak of the 212 
maximum Ca imaging data for the individual cells. Abscissa, time after the onset of the electrical spikes. B: 213 
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Spike detection by HA_time. The top and bottom traces represent Ca imaging data and the coincidence 214 
score of the first-order differential of the Ca imaging data with that of the Ca response model. The candidate 215 
spikes detected by conventional thresholding, those estimated by HA_time and the electrical spikes (ground 216 
truth) are denoted by black dots, thick and thin bars, respectively. Red lines indicate the thresholds for 217 
conventional thresholding. C, D and E, F: similar to A and B but for the hippocampus (τ1 and τ2, 0.1 and 218 

0.75 s) and visual cortex data (0.01 and 0.2 s), respectively. 219 

 220 

Nonlinearity analysis of the experimental data sets 221 

We found strong nonlinearity in the Ca imaging data of the hippocampal and visual 222 

cortex data during burst activities. Therefore, nonlinearity analysis was conducted by 223 

plotting the amplitudes of the Ca imaging data as a function of the linear prediction of the 224 

Ca response model for the entire cerebellum, hippocampus and visual cortex data. 225 

The Ca imaging data of the cerebellum roughly agreed with the linear prediction 226 

for spike trains (dark and red traces in Fig. 4A), and correspondingly, the regression 227 

analysis revealed a fine match between the two (blue line in Fig. 4B, y = 1.1 x). 228 

Conversely, the nonlinearity analysis of the Ca imaging data revealed significant sub- and 229 

superlinearity in the hippocampus and visual cortex, respectively (dark and red traces in 230 

Figs. 4C and E). The nonlinearity models were constructed by fitting the plots with 231 

logarithmic functions (blue lines in Figs. 4D and F, y = -3.8 e(-0.16x) + 3.9 and y = 0.67 232 

e0.88x). The nonlinearity in the hippocampus and visual cortex data was compensated by 233 

multiplying the Ca imaging data by the inverse of the nonlinearity models (blue traces in 234 

Figs. 4C and E). The compensated Ca imaging data were then fed into HA_time. 235 
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 236 

Figure 4: Nonlinearity analysis of Ca imaging data. A, C and E depict the Ca imaging data of the 237 
cerebellum, hippocampus and visual cortex data, respectively. Black, red and blue traces represent the 238 
observed Ca imaging data, linear prediction of the Ca response model for spike trains and compensated 239 
Ca imaging data, respectively. B, D and F depict scatter diagrams for the Ca imaging data in the three 240 
experimental data sets as a function of the linear prediction of the Ca response model for spike trains. 241 

 242 

Performance evaluation for experimental data 243 

The performance of HA_time in detecting spikes and in estimating the spike time 244 

was studied for the cerebellum, hippocampus and visual cortex data by leave-one-out 245 

cross-validation and compared with those of four benchmark algorithms16,17,22,23 (cf. 246 

Methods). 247 
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 248 

 249 

Figure 5: Spike detection by HA_time and benchmark algorithms. A, B and C depict examples of spike 250 

detection by HA_time (black bars), MLspike23 (red), Peeling16 (orange), MCMC22 (green) and FRI17 (purple) 251 

algorithms for the cerebellum, hippocampus and visual cortex data, respectively. Dark traces represent the 252 
Ca responses. Thin vertical lines indicate the timing of the ground truth (GT) given by electrical spikes. 253 

 254 
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The spikes detected by HA_time (dark bars) matched fairly well with the ground 255 

truths (gray bars) for all of the three experimental data sets. MLspike (red bars) performed 256 

fine on the hippocampus data but rather poor on the cerebellum and visual cortex data 257 

with many false positives. The remaining three algorithms (yellow, green and purple bars) 258 

performed rather poorly for all of the three experimental data sets with many false-positive 259 

or missing spikes (Figs. 5A-C). 260 

We estimated spike detection performance by the F1-score of receiver operating 261 

characteristic (ROC) analysis (cf. Methods). Among all of the algorithms, HA_time 262 

performed best, with statistical significance in the F1-score for the visual cortex data (0.6 263 

± 0.04 for HA_time; 0.47 ± 0.05 for MLspike, p = 0.01 for HA_time vs. MLspike; 0.49 ± 264 

0.06 for Peeling, p = 0.01 for HA_time vs. Peeling; 0.39 ± 0.06 for MCMC, p = 0.002 for 265 

HA_time vs. MCMC; 0.09 ± 0.07 for FRI, p = 0.002 for HA_time vs. FRI). For the 266 

hippocampus data, the superiority of HA_time (0.56 ± 0.11) was also clear, with 267 

statistically significant F1-scores compared to those for the benchmark algorithms (0.35 268 

± 0.08 for Peeling, p = 0.004 for HA_time vs. Peeling; 0.39 ± 0.04 for MCMC, p = 0.02 for 269 

HA_time vs. MCMC; 0.14 ± 0.04 for FRI, p = 0.006 for HA_time vs. FRI) except for 270 

MLspike (0.53 ± 0.04). However, the significant superiority of HA_time (0.77 ± 0.21) over 271 

the benchmark algorithms was limited to Peeling (0.51 ± 0.16, p = 0.02 for HA_time vs. 272 

Peeling) and MCMC (0.34 ± 0.13, p = 0.02 for HA_time vs. MCMC) for the cerebellum 273 

data. There was no statistical significance in the difference between HA_time and 274 

MLspike (0.66 ± 0.31) or FRI (0.53 ± 0.25), probably due to the smaller number of cells 275 

(n=5) in the cerebellum data (Fig. 6A). 276 

The superiority of HA_time in terms of the precision of spike time estimation was 277 

also found by the inverse of the spike distance31 (cf. Methods). Among all the algorithms, 278 

HA_time performed best with statistical significance over all the benchmark algorithms 279 

for the visual cortex data (1/spike distance, 2.2 ± 0.3 for HA_time; 0.7 ± 0.2 for MLspike, 280 

p = 0.002 for HA_time vs. MLspike; 0.8 ± 0.2 for Peeling, p = 0.002 for HA_time vs. 281 

Peeling; 1.2 ± 0.1 for MCMC, p = 0.002 for HA_time vs. MCMC; 1 ± 0.1 for FRI, p = 0.002 282 

for HA_time vs. FRI). For the hippocampus data, except for Peeling (2.3 ± 1.1), HA_time 283 

(2.3 ± 0.5) outperformed the benchmark algorithms with statistical significance (1.5 ± 0.3 284 
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for MLspike, p = 0.02 for HA_time vs. MLspike; 1.4 ± 0.2 for MCMC, p = 0.01 for HA_time 285 

vs. MCMC; 1.5 ± 0.3 for FRI, p = 0.02 for HA_time vs. FRI). However, for the cerebellum 286 

data, no statistical significance was found for HA_time compared with the benchmark 287 

algorithms (158.9 ± 309.9 for HA_time; 265.8 ± 325.1 for MLspike; 3.6 ± 1.8 for Peeling; 288 

81.4 ± 104.7 for MCMC; 233 ± 462.1 for FRI, cf. Fig. 6B). 289 

 290 

Figure 6: Performance benchmark for experimental data. A and B, F1-score and inverse of spike 291 
distance for HA_time (black columns), MLspike (red), Peeling algorithm (orange), MCMC (green) and FRI 292 
(purple). The scores of the Peeling, MCMC and FRI algorithms for the original settings and those 293 
supplemented with the information provided by the HA_time are shown by dense and faint colors, 294 
respectively. The ordinates in A and B are shown in linear and log scale, respectively. The columns 295 
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represent the mean with error bars of +2SEM. Asterisks indicate significance level by Wilcoxon signed-rank 296 
tests between HA_time and the benchmark algorithms. * and ** denote p<0.05 and p<0.01, respectively. 297 

 298 

Notably, Peeling, MCMC and FRI were outperformed by HA_time and MLspike, 299 

probably because they did not provide an effective routine to precisely estimate the 300 

algorithm parameters in the presence of the nonlinearity of Ca responses, which is clearly 301 

observed in the hippocampus and visual cortex data. In support of this view, their 302 

performance was improved when we provided the parameters of the Ca spike model 303 

estimated by HA_time and compensated for the nonlinearity of the Ca imaging data (cf. 304 

light and dark bars, Fig. 6A-B). 305 

 306 

Performance evaluation for simulation data 307 

We further investigated the performance of HA_time and the benchmark 308 

algorithms by simulating the Ca responses sampled for a broader range of conditions 309 

than the experimental ones, including the mean firing frequency of the spike train, the 310 

nonlinearity of the Ca responses, the sampling rate of the two-photon recording, the dye 311 

dynamics of the Ca responses (time decay constant for the Ca responses) and the SNR 312 

(cf. Methods). 313 

The systematic analysis of performance as a function of the experimental 314 

parameters revealed that the three parameters, the mean firing frequency, the 315 

nonlinearity and the sampling rate, strongly influenced the relative performances of the 316 

examined algorithms. In contrast, the remaining two parameters, the dye dynamics and 317 

the SNR, altered the performance only in a quantitative manner without significant change 318 

in the configuration of the performance changes (Sup Figs. 1 and 2). 319 

Figure 7 illustrates the performance changes as a 3D display by pseudocolor 320 

representation as a function of the mean firing frequency and the nonlinearity for three 321 

different sampling rates (τ2 and SNR were fixed at 0.2 s and 5, respectively). HA_time 322 

outperformed all of the benchmark algorithms in terms of the F1-score across the entire 323 
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parameter range (Fig. 7A), except for statistically nondiscriminable MLspike under the 324 

high sampling rate and low firing frequency condition (30-60 Hz and <=2 Hz). The three 325 

other algorithms, Peeling, MCMC and FRI, exhibited feasible performance only under the 326 

high sampling rate, low firing frequency and weak nonlinearity (α = 0.6-1) condition. 327 

 328 

 329 

Figure 7: Performance of HA_time and benchmark algorithms for simulation data. A and B, 330 
Pseudocolor 3D maps of F1-score and inverse of spike distance as a function of mean firing frequency 331 

(abscissa) and nonlinearity (α, ordinate) for the three different sampling rates (10, 30 and 60 Hz). τ2 and 332 
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SNR were fixed at 0.2 s and 5, respectively. Blank areas indicated that the Peeling algorithm failed to 333 
perform in a sufficient time for the cases of high firing frequency and low sampling rate. 334 

 335 

The performance in the temporal precision of spike timings, estimated as the 336 

inverse of the spike distance, also showed the same tendency as that for the F1-score. 337 

MLspike performed best under the high sampling rate and low firing frequency condition, 338 

and the other three benchmark algorithms exhibited feasible performance only under the 339 

low firing frequency, weak nonlinearity and high sampling rate condition. Conversely, 340 

HA_time outperformed all benchmark algorithms over the entire parameter range except 341 

for under the high sampling rate and low firing frequency condition (Fig. 7B). 342 

Figure 8 shows profiles of the F1-scores and the inverse of the spike distance 343 

values for low (10 Hz) and high sampling rates (60 Hz) as a function of the mean firing 344 

frequency (the nonlinearity parameter α was fixed at 1). HA_time outperformed all 345 

benchmark algorithms under the low sampling rate condition across the entire range of 346 

firing frequencies (1-20 Hz, Figs. 8A and B). The superiority of our algorithm over the 347 

benchmark algorithms was also found under the high sampling rate condition across the 348 

entire range of spike frequency, except for MLspike, which performed best under the low 349 

firing frequency (<= 2 Hz) condition. However, the performance of MLspike reduced to 350 

the level of the other benchmark algorithms as the firing frequency increased (Figs. 8C 351 

and D). 352 

 353 
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 354 

Figure 8: Firing frequency profiles of performance. A and B, F1-scores and inverse of spike distance 355 
values for HA_time and the benchmark algorithms as a function of firing frequency at a sampling rate of 10 356 

Hz. C and D, those at 60 Hz. The nonlinearity parameter α was fixed at 1. The color conventions for the 357 

algorithms are the same as those in Fig. 6. 358 

 359 

Discussion 360 

HA_time aimed to resolve two challenging issues, reliable spike detection and high 361 

spike time precision in the presence of the nonlinearity, slow dynamics and low SNR of 362 

Ca imaging data. The difficulty in achieving this goal arose from the spike dynamics of 363 
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the target neurons and/or kinematics of the Ca responses that may vary dramatically 364 

across brain regions. The slow Ca kinematics and the low SNR may limit the temporal 365 

precision of the information conveyed by the Ca imaging data. HA_time overcame this 366 

difficulty by combining a generative model for the nonlinearity and Ca dye dynamics with 367 

a supervised classifier. It estimated the Ca spike model by Bayesian inference assuming 368 

the size and shape constancy of the spike, compensated for the nonlinearity of the Ca 369 

responses by nonlinearity analysis, and detected the spikes from the compensated Ca 370 

imaging data using the ground truths as supervised information. Hyperacuity precision of 371 

spike time estimation was achieved by recalibrating the spike time to minimize the 372 

residual errors in the Ca response model prediction using the hyperacuity vernier scale. 373 

The combined approach may improve the performance of HA_time in two ways. The Ca 374 

response model helped spike detection as well as spike time estimation with higher 375 

temporal precision than the sampling resolution, while the supervised learning 376 

compensated for fluctuations in the Ca imaging data due to the noise and sampling jitters 377 

that are not considered by the generative model. 378 

We also developed the generative-model algorithm, hyperacuity Bayes, (see 379 

Methods and Supplemental Information) which is a partial algorithm of HA_time.  In this 380 

algorithm, estimation of the generative model by Bayesian inference with ground-truth 381 

information was very robust. However, we ascertained the superiority of the combination 382 

approach (i.e. HA_time) in estimating spike timing over the one maximizing the likelihood 383 

estimate of the generative algorithm (i.e. hyperacuity Bayes) by the significantly higher 384 

F1-score as well as the inverse of the spike distance for the hippocampus and visual 385 

cortex data (Fig. S3). Regarding temporal precision, compared with conventional 386 

thresholding, HA_time reliably improved up to 20-fold for cases where the sampling rate 387 

of Ca imaging was as high as 40-60 Hz. Rapid progress in the development of two-photon 388 

imaging techniques with higher sampling rates and faster Ca kinematics may reinforce 389 

the superiority of HA_time over conventional methods. We also found that HA_time 390 

outperformed the other four hyperacuity algorithms in terms of the F1-score, with feasible 391 

statistical significance in the visual cortex and hippocampus data that include a relatively 392 

large number of cells. However, for the cerebellum data, in which the number of cells is 393 
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rather small, HA_time outperformed only the Peeling and MCMC algorithms. HA_time 394 

also outperformed all benchmark algorithms in terms of the precision of spike time 395 

estimation, which was estimated as the inverse of the spike distance, with statistical 396 

significance in visual cortex data. However, HA_time outperformed only MCMC and FRI 397 

in the hippocampus data, and outperformed none of the algorithms in the cerebellum 398 

data. 399 

We conducted a systematic study of algorithm performance on simulation data that 400 

covered a broader range of parameters than the experimental conditions, including the 401 

mean neuronal firing frequency, the nonlinearity and relaxation time of the Ca dyes and 402 

the sampling rate. The performances of the F1-score as well as the inverse of the spike 403 

distance values studied as the functions of those parameters pointed to the mean firing 404 

frequency, the nonlinearity and the sampling rate as the most important parameters that 405 

influenced the changes in performance. In contrast, the SNR and the relaxation time of 406 

the dyes are the less important parameters that only influenced the size while not 407 

significantly changing the shape of the performance functions. The F1-score and the 408 

inverse of spike distance functions highlighted the superiority of HA_time over the other 409 

algorithms, showing high scores of spike detection and high spike time precision across 410 

the entire range of parameters except for the high sampling rate and low firing rate 411 

condition, where MLspike slightly outperformed HA_time. The performance of the other 412 

benchmark algorithms remained feasible only under the weak nonlinearity, high sampling 413 

rate and low firing frequency condition. Conversely, HA_time maintained high 414 

performance under the strong nonlinearity and/or high firing frequency conditions 415 

frequently encountered in the cortical cells of behaving animals. 416 

The simulation analysis of the performance for HA_time and the benchmark 417 

algorithms across a wide range of experimental conditions for two-photon recordings may 418 

provide useful information for selection of the best algorithm for given experimental 419 

conditions. Although the application of HA_time is limited to cases where ground-truth 420 

signals are available, it may also be applicable to cases where simultaneous electrical 421 

recordings are unavailable as follows. One may estimate the parameters presently 422 

studied for the experimental data of a two-photon recording using a maximum likelihood 423 
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method, then train HA_time with a newly generated simulation data including spikes for 424 

the estimated parameters, and finally use the trained HA_time for spike estimation in the 425 

experimental data of the two-photon recording. This approach may benefit from the 426 

combination of the generative and supervised approaches, as shown by the present 427 

study. In summary, HA_time is useful to improve spike detection and temporal precision 428 

in spike time estimation across a wide range of the experimental conditions for two-photon 429 

recording in cases where examples of simultaneous ground-truth signals (electrical spike 430 

recording) are available. 431 

 432 

Methods 433 

Hyperacuity support vector machine (HA_time) 434 

HA_time detects spikes contained in the Ca responses of two-photon recordings in three 435 

steps: 1) estimation of the Ca response model by the expectation-maximization (EM) 436 

algorithm assuming the shape and size constancy of the spike model, 2) spike detection 437 

in the Ca responses by a support vector machine (SVM) assisted by the information of 438 

the Ca response matching with the Ca spike model, and 3) spike time estimation for the 439 

detected spikes to minimize the errors between the Ca response model prediction and 440 

the Ca imaging data using the vernier scale ten-fold finer than the sampling interval of 441 

two-photon recordings. 442 

 443 

Ca spike model estimation by Bayes inference 444 

We estimated the parameters of the Ca response model assuming that all of the Ca 445 

responses in the two-photon recording originate from a unique Ca spike model g(t, T, τ) 446 

and vary due to the noise and sampling jitters (SJs)19. 447 

 448 
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where t, T, τ = (τ1, τ2) are the time, the spike onset, and the rise and decay time constants, 449 

respectively. 450 

We estimated a Ca response model whose parameters are the model amplitude (a), 451 

baseline (b0) and noise (σ) using the EM algorithm, while the time constants of spike 452 

response (τ) were estimated by iterative alternate coordinate 1D grid search (see 453 

Supplemental Information). 454 

 455 

Spike detection by SVM 456 

We conducted spike detection and spike time estimation by an SVM supplemented with 457 

the information from the Ca response model to improve the performance of the SVM. We 458 

estimated the coincidence scores, determined as the convolution (dy/dt * dg/dt) of the 459 

first-order derivative (dy/dt) of the Ca signals of a 2-photon recording with that (dg/dt) of 460 

the Ca response model (g) estimated by Bayesian inference for the training data, and 461 

sampled data segments that exceeded the threshold as the spike candidates. The 462 

threshold and the length of data segments (the number of data points before and after 463 

the point exceeding the threshold) were optimized according to the F1-score for the 464 

training data (cf. cross-validation in Methods). The SVM was trained to classify the spike 465 

candidates into spikes or non-spikes by feeding the spike candidates and the coincidence 466 

scores as the primary and attribute inputs, respectively, and the electrical spikes (ground 467 

truth) as the teaching signals. 468 

 469 

Hyperacuity spike time estimation 470 

The trained SVM was used for spike detection in the test data. The pseudo-spike times 471 

(PTs) were tentatively determined for the detected spikes as those for which the 472 

coincidence score exceeded the threshold. We assumed that the PTs may vary due to 473 

the SJ (difference between pseudo- and true spike time) and estimated the SJ to minimize 474 

the prediction errors between the Ca response and the Ca response model by 475 

systematically changing the SJ according to a vernier scale 10-fold finer than the 476 
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sampling interval. The true spike time (TT) was calculated as the sum of PT and SJ (cf. 477 

the inset of Fig. 1C). We subtracted the trace of the preceding spike from the succeeding 478 

one for spike time estimation in cases where the preceding spikes overlap with the 479 

succeeding ones.  480 

 481 

Other benchmark algorithms 482 

We evaluated the performance of four hyperacuity algorithms: the MLspike algorithm23, 483 

the Peeling algorithm16, the finite-rate innovation method17 (FRI), and the Monte Carlo 484 

Markov chain method22 (MCMC). HA_time and MLspike used the ground-truth signals, 485 

given as the electrical spikes for algorithm optimization, whereas the remaining three 486 

algorithms did not. We studied how the performance of the three algorithms may be 487 

improved in cases where they are supplemented with our parameter settings for the Ca 488 

response model and nonlinearity (cf. 16,17,22). To compute the temporal improvement in 489 

the hyperacuity algorithms, we also conducted a conventional thresholding algorithm, 490 

whose threshold was optimized in the range of 0-4 SD by maximizing the F1-score of the 491 

training data. 492 

 493 

Experimental data sets 494 

We collected simultaneous recordings of electrical and two-photon recording of the Ca 495 

signals in three cortical areas (cerebellar, hippocampal and visual cortices) using three 496 

different calcium dyes as described below. 497 

 498 

Recording of cerebellar Purkinje cell complex spikes 499 

We collected experimental data for the complex spikes of five cerebellar Purkinje cells 500 

from the work of 32, where simultaneous two-photon Ca imaging (sampling rate, 7.8 Hz) 501 

using multicell bolus loading of Cal-520 dye and extracellular recording (sampling rate, 502 

20 KHz) was performed on adult mice. 503 
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 504 

Recording of hippocampal CA3 neurons 505 

We collected the simultaneous cell-attached recording (sampling rate, 20 KHz) and one-506 

photon images (10 Hz) of Ca responses from nine CA3 pyramidal neurons in organotypic 507 

cultured slices of rats stained with OGB-1AM dye33. The Ca signals were normalized by 508 

the peak of the Ca spike model estimated for individual cells. 509 

 510 

Recording of the primary visual cortex 511 

We collected the data from the paper of 30. The data set contained simultaneous loose-512 

seal cell-attached patch recordings (sampling rate, 20 KHz) and 2-photon recordings of 513 

Ca responses from eleven GCaMP6f-expressing neurons in a behaving mouse visual 514 

cortex (sampling rate, 60 Hz). 515 

 516 

Simulation data 517 

We conducted a simulation of the Ca responses for the three experimental data sets: 518 

those of the cerebellar, hippocampal and primary visual cortices. Spike events were 519 

generated according to a Poisson distribution whose mean firing rate varied across 1-20 520 

Hz. The Ca responses were simulated by convolving the double exponentials with time 521 

constants for rise and decay with the spike events. The rise time constant τ1 was fixed at 522 

0.01 s, while the decay time constant τ2 was varied across 0.2-1 s, corresponding to those 523 

for the OGB-1, Cal-520 and GCAMP6f dyes. We introduced the parameter α to reproduce 524 

the nonlinearity found in the Ca responses f(t) in the three cortices as 525 

 526 

f(t) = x(t)α, for x(t)>1 and 527 

f(t) = x(t); otherwise, 528 

 529 
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where x(t)=g(t)*s(t) is the linear response of the Ca spike model given the spike train s(t) 530 

and the parameter α for saturation (α<1) and superlinearity (α>1) was varied in the range 531 

of 0.2-3, corresponding to the values found in the three experimental data sets. Finally, 532 

Gaussian noise was added to reproduce the SNR (3, 5, 10) of the experimental data. For 533 

each set of simulation parameters, 500 spike signals in a total of ten cells were generated, 534 

and those of five cells were used as the training and test data sets. 535 

 536 

Performance analysis 537 

For evaluation spike detection performance, the correct hit case was defined as that 538 

where the time difference of the estimated spike from the true one was smaller than a 539 

window of half the sampling interval, and vice versa for the missing case, and the false-540 

positive case was defined as that where the time difference of the true spike from the 541 

estimated one was greater than the time window. For data sets with a high sampling rate 542 

(30-60 Hz), the window was relaxed to 50 ms. 543 

 544 

Receiver operating characteristic (ROC) analysis was conducted for these cases as: 545 

• Sensitivity = Hit / (Hit + misses) 546 

• Precision = Hit / (Hit + False positive) 547 

• F1-score = 2 x (Sensitivity x Precision) / (Sensitivity + Precision) 548 

 549 

We estimated the temporal precision of spike time estimation as the inverse of the spike 550 

distance, defined as the minimal cost for reconstructing the true spike train from the 551 

estimated one, allowing 1 each for deletion or insertion of the spike event and the 552 

weighted cost for the shift in the spike time31. The spike distance was further normalized 553 

by the number of ground-truth spikes. For evaluation of temporal precision improvement, 554 

spike time errors were estimated as the absolute time difference between the closest true 555 

and reconstructed spikes for all spikes in both spike trains. The hyperacuity improvement 556 
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was determined as the ratio of the mean spike time errors of conventional thresholding to 557 

that of the hyperacuity algorithms. 558 

 559 

Statistical analysis 560 

Performance analysis of all algorithms on the experimental data was conducted by the 561 

one-leave-out cross-validation, where the data of one cell and that of the remaining cells 562 

were used for testing and training, respectively. 563 

 564 

All of the performance scores were estimated as the mean ± 2SEM. To assess statistical 565 

significance, we compared the performance of HA_time to that of the benchmark 566 

algorithms by a one-sided Wilcoxon signed-rank test and reported the significance level 567 

p. 568 

 569 

Hyperacuity Bayesian Algorithm 570 

We also developed a hyperacuity Bayesian (HB) algorithm by reproducing a basically 571 

similar algorithm to that for HA_time. HB is applicable for cases where no ground-truth 572 

signals are available, maximizing the likelihood for the Ca signals recorded by two-photon 573 

recordings. For cases where the training data with ground-truth signals is provided, HB 574 

optimized the model parameters to improve the overall performance of spike time 575 

inference (see Supplemental Information). 576 

 577 

Data availability 578 

The MATLAB® implementation of our algorithm can be found online 579 

(https://github.com/hoang-atr/HA_time). The hippocampal and cerebellar cortex data sets 580 

used in this work are available from the authors upon reasonable requests. 581 

 582 
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Supplemental Information 681 

 682 

Hyperacuity Bayesian algorithm 683 

We also developed a hyperacuity Bayesian (HB) algorithm for spike detection and 684 

spike time estimation, maximizing the estimate likelihood for the cases where ground-685 

truth signals are not available. The HB algorithm included supervised and unsupervised 686 

versions. The supervised version reproduces essentially similar procedures, such as 687 

estimation of the Ca response model, spike detection and spike time estimation using the 688 

model information, to those for HA_time by the Bayesian algorithm. Probabilistic models 689 

and the EM algorithm are described in the first two sections, and detailed procedures of 690 

the two versions of the HB algorithm are described in the next two sections. 691 

 692 

Data structure and probabilistic model 693 

Let us suppose that K data segments were sampled from data by thresholding while 694 

leaving the rest of the data (yrest). 695 

 696 

 697 

where yk(n) is the sampled data at the sampling time tk,n= (n-1)dt0+tk,1 of the k-th window 698 

and dt0 is the sampling step of the observed data with the sampling frequency f0 = 1/dt0. 699 

 700 

A probabilistic model for spike states is given by 701 
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 702 

, where Ak is a spike indicator variable, which represents the presence or absence of 703 

spikes in the k-th window, and takes a binary value (0 or 1). Sk represents a spike state 704 

in the k-th window and takes a binary vector value (Potts spin variable) 705 

 706 

 707 

Sk(Nk) = 1 means that there are Nk spikes in the k-th window. The maximum number of 708 

spikes in a window is assumed to be Nmax. Tk is a set of spike times in the k-th window, 709 

and Tk(s) is the onset time of the s-th spike. a represents the amplitude of the spike 710 

response function. b and b0 represent the bias in spike and no spike regions, respectively. 711 

σ is the variance of the Gaussian noise. A set of global parameters that is assumed to be 712 

common for all spikes and the rest of the data is denoted by . 713 

 714 

We assume the hierarchical noninformative priors as 715 

 716 

, where Nconf(Nk) represents the number of configurations of Tk for the Nk spike case. 717 

 718 
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Expectation maximization (EM) algorithm 719 

In the E-step, the posterior probability of the spike state for the current estimate of the 720 

model parameters for combination of the log-likelihood, the noninformative 721 

prior and the joint probability for a spike state in the k-th window is given by: 722 

 723 

and marginal probability is given by: 724 

 725 

The posterior probability for a spike state is then calculated as 726 

 727 

 728 

In the M-step, the model parameters were updated to a new value  by maximizing 729 

the Q-function, defined as 730 

 731 

by solving the maximum condition 732 

 733 

 734 

Spike estimation for the supervised version of HB 735 

We first extracted continuous regions in which the signals exceed the threshold. 736 

Here, the threshold was optimized to maximize the true-positive cases and minimize the 737 

false-positive cases referring to the ground truth given by the electrical spikes. Each 738 

region is then segmented into fixed-length data segments of 8 points. We divided two 739 

overlapping data segments, whose onset intervals were less than the length of the data 740 

segment (8 points), into three divided nonoverlapping segments. For example, two 741 

segments of points #1-10 and #5-14 were divided into three nonoverlapping segments of 742 

points #1-4, #5-10 and #11-14. 743 
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Next, we utilized the training data to estimate the model parameters and the 744 

classifier for posterior probability. The spike model parameters including the spike 745 

amplitude (a), biases (b, b0) and noise variance σ were estimated by the EM algorithm 746 

(see above), while time constants of the spike response (τ) were estimated by iterative 747 

alternate coordinate 1D grid search because the log-likelihood with respect to τ is highly 748 

nonlinear. The maximum number of spikes contained in single data segments was 749 

estimated for the 95-percentile value of the spike number histogram of the training data 750 

segments. The posterior probability of the spike state for training data was estimated for 751 

each data segment assuming that they are independent of each other. For overlapping 752 

segments, posterior probabilities were integrated among the overlapping segments by 753 

Bayes inference. We used a multinomial classifier to predict the number of spikes from 754 

the posterior probability. 755 

Finally, we estimated the spike number and spike onset time for test data. The 756 

data segments were sampled for the test data by thresholding whose threshold was 757 

optimized for the training data, and the posterior probability of the spike state for each 758 

segment was calculated in the same way as for the training data. The number of spikes 759 

was estimated from the posterior probability for the number of spikes using the 760 

multinomial classifier trained for the training data, and spike onset times were estimated 761 

with the hyperacuity time step by maximizing the log-likelihood for the estimated number 762 

of spikes. The contributions of preceding spikes were subtracted from the data signal, as 763 

was done for HA_time. 764 

 765 

Spike estimation by the unsupervised version of HB 766 

The unsupervised version of HB conducted the spike estimation in essentially the 767 

same way as that for the supervised version, except for the algorithm used to estimate 768 

the spike state. We conducted Bayesian inference assuming that the initial spike state for 769 

each data segment contains only one spike whose waveform represents the spike 770 

response. We optimized the threshold and τ = (τ1, τ2) that maximize the log-likelihood and 771 
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estimated the number of spikes for each data segment that gave the maximum posterior 772 

probability for the given number of spikes. 773 

 774 

Supplemental Figures 775 

 776 

 777 

Supplementary Figure 1: Performance of HA_time and benchmark algorithms on simulation data 778 
for variation in the decay time constant of the Ca response model. A and B, performance of F1-score 779 
and inverse of spike distance for three different decay time constants compared to that in Fig. 5 for the Ca 780 
response model (0.2, 0.5 and 1 s) and three different sampling rates (10, 30 and 60 Hz). The ordinate, 781 
abscissa and calibration scale of the pseudocolor maps are the same as those in Fig. 5. 782 

  783 
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 784 

Supplementary Figure 2: Performance of HA_time and benchmark algorithms on simulation data 785 
for variation in the SNR of Ca response signals. A and B, performance of F1-score and inverse of spike 786 
distance similar to Fig. S1 but for three different SNRs of the Ca response signals. 787 

 788 
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 789 

Supplementary Figure 3: Performance benchmark of HA_time and HB for experimental data. A and 790 
B, F1-score and inverse of the spike distance for HA_time (black columns) and HB (blue). Conventions are 791 
the same as those in Fig. 6. 792 
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