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Abstract
Visual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear
whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in
processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL ofmotion detection
is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a
motion detection task, subjects’ neural responses to the trained motion stimuli were measured using functional magnetic
resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion
stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A
represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes
were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response
changes in these areas reflect task-based plasticity. These results collectively suggest that VPL ofmotion detection is associated
with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree.
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Introduction
Visual perceptual learning (VPL) is regarded as amanifestation of
plasticity in the brain as a result of visual experience (Dosher and
Lu 1998; Sasaki et al. 2010; Xu et al. 2010; Sagi 2011; Byers and Ser-
ences 2012, 2014; Shibata et al. 2014). Although there has been a
vast amount of research conducted to study VPL, what type(s) of
neural information processing is changed in associationwithVPL
has remained elusive (Sasaki et al. 2010; Shibata et al. 2014).

Different possibilities about changes in mechanisms asso-
ciated with VPL have been discussed. One possibility is that VPL

reflects refinement of a neural representation of a visual feature
presented during training (Karni and Sagi 1991; Poggio et al. 1992;
Shiu and Pashler 1992; Yu et al. 2004; Gilbert and Li 2012; Xu,
Jiang, et al. 2012). Tuning property changes related to the trained

feature in the low- ormidlevel visual cortex of primates (Schoups

et al. 2001; Yang and Maunsell 2004; Hua et al. 2010) and activa-

tion changes in the primary visual cortex of humans (Furmanski

et al. 2004; Yotsumoto et al. 2008, 2009) have been often regarded

as evidence for a refinement of a feature representation (Bejjanki

et al. 2011). Another possibility is that VPL is associated with
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changes in the processing related to the trained task (Dosher and
Lu 1998; Petrov et al. 2005) and/or in some cognitive processing
including the attentional system (Green and Bavelier 2003; Xiao
et al. 2008; Zhang et al. 2010; Kim et al. 2015). A number of re-
searchers have suggested that VPL is associated with connectiv-
ity changes between feature representation and decision units
(Dosher and Lu 1998; Petrov et al. 2005). The possibility of involve-
ment of more cognitive processing than feature representation
refinement has been supported by response changes in the lat-
eral intraparietal area (LIP) ofmonkeys (LawandGold 2008), elim-
ination of location specificity of some types of VPL due to double
training (Xiao et al. 2008), and activation changes in brain areas
beyond the visual cortex (Lewis et al. 2009; Kahnt et al. 2011;
Chen et al. 2015).

However, the possibility that VPL is associated with more
than 1 type of plasticity mechanism has been raised. An increas-
ing number of studies have empirically and theoretically sup-
ported this possibility (Watanabe et al. 2002; Gold and
Watanabe 2010; Harris et al. 2012; Dosher et al. 2013; Hung and
Seitz 2014; Shibata et al. 2014; Watanabe and Sasaki 2015; Chen
et al. 2015; Talluri et al. 2015). Nevertheless, direct evidence
that shows the mechanism of more than 1 types of plasticity in-
volved in VPL is scanty.

In the present study, we propose a newmodel of VPL, termed
the 2-plasticity model. In this model, VPL occurs as a result of at
least 2 different types of plasticity that provide distinctive func-
tions: feature- and task-based plasticity. Feature-based plasticity
refers to refinement of a neural representation of a visual feature
that is used during training. It is hypothesized that feature-based
plasticity occurs in a specific visual areawhere the trained visual
feature is mainly processed. On the other hand, task-based plas-
ticity refers to improvement in task-related processing due to
training on a task. These 2 types of plasticity are so different
from each other that they may occur in different brain areas. To
test the validity of the 2-plasticitymodel, wemeasured neural re-
sponse changes that may reflect feature-based plasticity and
neural response changes that may reflect task-based plasticity.
Consider an experiment in which a subject is trained on a task
with a visual feature. Before and after training (pre- and post-
tests), neural responses to the trained feature are measured
while the subject performs the same trained task as in training.
We call this condition an active-test condition. However, the ac-
tive-test condition alone cannot determine whether response
changes between the pre- and post-tests in a brain area occurred
due to changes in representations of the trained feature, process-
ing involved in the trained task, or both. To determine this, it is
necessary tomeasure the neural responses to the trained feature
without the trained task processing being involved. For this pur-
pose, we need tomeasure response changes when the same sub-
ject is passively exposed to the feature. We call this condition a
passive-test condition. In the passive-test condition, if a brain
area reflects only task-based plasticity, response changes should
not be observed between the pre- and post-tests since the subject
does not perform the trained task in this condition. In contrast, if
the area reflects feature-based plasticity, significant response
changes should be observed since feature-based plasticity by def-
inition should occur without changing the processing related to
the trained task. Thus, in this study, we compared changes in
neural activities between the active- and passive-test conditions
to clarify whether different areas involved in visual information
processing are associated with feature-based plasticity, task-
based plasticity or both.

The results of the experiment using functional magnetic res-
onance imaging (fMRI) provide the first empirical evidence that

supports the 2-plasticity model in VPL of global motion. Subjects
were trained in a global motion detection task. In the pre- and
post-tests, subjects’ neural responses to the motion stimuli
were measured in both of the passive- and active-test conditions
using fMRI. In V3A, we found significant response changes in
both active- and passive-test conditions. On the other hand, in
V1 and the intraparietal sulcus (IPS) significant response changes
were observed only in the active-test condition. These results
support the 2-plasticity model and demonstrate that, at least in
VPL of global motion, VPL results at least from feature- and
task-based plasticity, which in turn reflect improvements in dif-
ferent aspects of neural information processing for visual percep-
tion subserved by different areas.

Materials and Methods
The complete experiment consisted of 3 stages: pre-test fMRI
(1 day), behavioral training (10 days), and post-test fMRI (1 day)
stages (Fig. 1). Different stages were separated by at least 24 h.

The training stage was aimed to train subjects in a detection
task on global motion in a particular motion direction (trained
direction) so that VPL of global motion would occur specifically
to the trained direction (see Training stage section for details). Be-
fore and after the training stage, the pre- and post-test fMRI
stages were conducted to test whether and if so how each of
brain areas in visual information processing is involved in fea-
ture- or task-based plasticity of the VPL of the trainedmotion dir-
ection (see Pre- and Post-test fMRI Stages section for details).

Subjects

Thirteen naïve subjects (21–28 years old; 12 males and 1 female)
with normal or corrected-to-normal vision participated in the
study, which was approved by the Institutional Review Board of
Advanced Telecommunications Research Institute International
(ATR). All subjects gave written informed consents.

Figure 1. Experimental design. The complete experiment consisted of 3 stages:

pre-test fMRI (1 day), training (10 days), and post-test fMRI (1 day) stages. In the

training stage, subjects were trained on a motion detection task on a particular

motion direction (trained direction). In the pre- and post-test fMRI stages, the

same group of subjects participated in all 4 different conditions during each of

which fMRI responses to the motion stimuli were measured.
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Motion Stimulus

Moving dots were presented within an annulus subtending
from 1.5 to 10 deg diameter on a black background (Fig. 2A). The
dot density was 0.91 dots/deg2. The color of the dots was white.
The display consisted of coherentlymoving (signal) dots and ran-
domly moving (noise) dots. In each frame (16.7 ms per frame),
each dot (0.1 deg2) was randomly classified into either a signal
or noise dot. Signal dots moved in a predetermined direction at
a speed of 14.2 deg/s,while noise dotswere plotted in randompo-
sitions (Newsome and Pare 1988).

Training Stage

During the 10-day training stage, subjects were trained on a mo-
tion detection task (Fig. 2A) in a particular motion direction
(trained direction). Throughout the task, subjects were asked to
fixate onabull’s eyepoint at the centerof a graydisk (1.5 degdiam-
eter) presented at the center of the display. Each trial beganwith a
750-ms interval, during which subjects fixated on the fixation
point. Then, the motion stimulus was presented and lasted for
500 ms. After the offset of the motion stimulus, the fixation
color turned fromwhite to light gray. During this light grayfixation
period, subjects were asked to report whether the stimulus con-
tained coherent motion or not by pressing 1 of the 2 buttons on
a keyboard. This particular procedure of the detection task was
taken because it is highly suitable for the measurements of fMRI
signals for a pattern-classification analysis (see fMRI analysis sec-
tion for details of thepattern-classificationanalysis). After the but-
ton press, thefixation color turnedback towhite, and thenext trial
started. In half of the trials, a stimulus contained 10% coherent
motion in the trained direction, and in the other half of the trials

the stimulus was entirely random. The trained direction was ran-
domly chosen from the off-cardinal directions such as 23, 68, 113,
158, 203, 248, 293 and 338 deg for each subject. No accurate feed-
back was given to subjects. Each subject completed 640 trials on
each day (∼60 min). A brief break period was provided after every
40 trials upon a subject’s request.

Pre- and Post-Test fMRI Stage

The pre- and post-test fMRI stageswere conducted to experimen-
tally determine whether feature-based plasticity, task-based
plasticity, or both occurs in each of regions of interest (ROIs; see
Regions of interest section for ROI definition). For this purpose, the
same group of subjects participated in 4 different conditions
(Fig. 1), as described below.

Therewere 2 different test conditions: active- and passive-test
conditions. In the active-test condition (see the following sec-
tions for details), subjects were asked to perform the same mo-
tion detection task as in the training stage. On the other hand,
in the passive-test condition (see the following sections for de-
tails) subjects were passively exposed to themotion stimuli with-
out conducting the trained motion detection task.

In addition to the 2 test conditions (active- vs. passive-test
conditions), the 2 stimulus conditions (trained vs. untrained di-
rections) were conducted to test whether both VPL of global mo-
tion and neural changes in association with the VPL are specific
to the trained feature, as found in previous studies of VPL
(Schoups et al. 2001; Furmanski et al. 2004; Law and Gold 2008;
Hua et al. 2010; Shibata et al. 2011, 2012; Jehee et al. 2012; Chen
et al. 2015). The untrained direction was 90 deg away from the
trained direction.

Figure 2. Motion detection task and behavioral results. (A) Example of the time-course of a trial in the training stage. Subjects were asked to report whether coherent

motion in a particular direction was presented or not. (B) Mean (±SEM) behavioral performance across subjects for the trained direction during the training stage. (C)

Mean (±SEM) behavioral performance improvement across subjects in the motion detection task for the trained (white bar) and untrained (black bar) directions from

the pre- to post-test fMRI stages.
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Thus, in the pre- and post-test fMRI stages all subjects under-
went the 4 different conditions (Fig. 1): active-test on trained-
direction condition, active-test on untrained-direction condition,
passive-test on trained-direction condition and passive-test on
untrained-direction condition. In each of the pre- and post-test
fMRI stages, all subjects completed 12 fMRI runs (see the follow-
ing sections for details). For each fMRI run, 1 of the 4 conditions
was selected in a random order. Each condition was repeated
3 times in each of the pre- and post-test fMRI stages.

Stimulus and Time-Course
In the pre- and post-test fMRI stages, each fMRI run consisted of
40 trials. The visual stimulus presented in the test stages was
identical to that in the training stage, except that a sequence of
10 white alphabetical letters was presented on the gray disk pre-
sented at the center of the display, concurrently with the motion
stimulus (Supplementary Fig. 1). In 20 out of the 40 trials, the
stimulus contained 10% coherent motion toward a predeter-
mined target direction (the trained or untrained direction). In
the other 20 trials of the run, the stimulus contained 0% coherent
motion (randommotion). Irrespective of themotion stimuli, in 20
out of the 40 trials the letter sequence contained a predetermined
target letter (L or T). In another 20 trials, the letter sequence did
not contain the target letter. The target direction and letter were
randomly determined and counterbalanced across the runs.

The time-course of each trial was identical to that of the train-
ing stage except for the light gray fixation period. The length of
the light gray fixation period for each trial ranged from 4.75 to
10.75 s, as determined using OptSeq software (http://surfer.nmr.
mgh.harvard.edu/optseq). Thus, the length of each trial ranged
from 6 to 12 s. Each run (330 s) consisted of the 40 trials preceded
by a 4-s light gray fixation period and followed by a 6-s light gray
fixation period. A brief break period was provided after each run
upon a subject’s request.

Active-Test Condition
Before the onset of an fMRI run with the active-test condition,
subjects were informed that, during the run, they would conduct
the same motion detection task on the target direction (the
trained or untrained direction) by pressing 1 of the 2 buttons
with their right hand.

Passive-Test Condition
Before the onset of an fMRI run with the passive-test condition,
subjects were informed that they would conduct a letter detec-
tion task. In the letter detection task, subjects were asked to
report whether the letter sequence contained the target letter
(L or T) by pressing 1 of the 2 buttons during fMRI measurement.

Button Correspondence
The button correspondence (1 button for target present, the other
button for target absent) was randomly reversed and informed to
subjects prior to each run. This manipulation was made so that
fMRI data would not reflect motor components that were related
to subjects’ button presses but reflect their perceptual contents.

Retinotopic Mapping
At the end of the pre-test fMRI stage, a standard retinotopic map-
ping procedure (Sereno et al. 1995; Engel et al. 1997; Tootell et al.
1997; Tootell and Hadjikhani 2001; Fize et al. 2003) was con-
ducted. No retinotopic mapping procedure was conducted in
the post-test fMRI stage.

Regions of Interest

We selected V1, V3A, MT+, and IPS as ROIs for the following rea-
sons. As described in Introduction section, we hypothesized that
feature-based plasticity occurs in a specific visual area where a
trained visual feature is mainly processed. A number of studies
in humans have indicated that global motion strongly activates
V3A (Braddick et al. 2000, 2001; Koyama et al. 2005; Koldewyn
et al. 2011; Maus et al. 2013) and that VPL of global motion is spe-
cifically associated with response changes in V3A, but not other
visual areas (Shibata et al. 2012; Chen et al. 2015). MT+ is homolo-
gous of monkey’s middle temporal area and has been implicated
in processing of motion stimuli (Maunsell and Van Essen 1983;
Huk and Heeger 2002), although recent studies reported no or lit-
tle changes in this area in association with VPL of motion in hu-
mans or monkeys (Law and Gold 2008; Chen et al. 2015). We also
hypothesized that task-based plasticity occurs in an area asso-
ciatedwith processing of a trained visual task. V1 has been impli-
cated in various types of VPL (Crist et al. 2001; Schoups et al. 2001;
Schwartz et al. 2002; Furmanski et al. 2004; Li et al. 2004, 2008;
Yotsumoto et al. 2008; Hua et al. 2010; Shibata et al. 2011; Jehee
et al. 2012) and known to be differentially involved in different
visual tasks including a detection task (Dupont et al. 1993;
Orban et al. 1996; Huk and Heeger 2000; Jehee et al. 2011; Gilbert
and Li 2013; Saproo and Serences 2014). IPS was selected because
previous studies have reportedmonkey LIP, which is known as an
important area for a perceptual decision-making task on global
motion (Shadlen and Newsome 2001; Law and Gold 2008), is in-
volved in VPL of global motion (Law and Gold 2008, 2009), and
monkey LIP is a homologous to part of human IPS (Culham and
Kanwisher 2001; Shikata et al. 2008). In addition, a recent
human study showed that IPS is implicated in VPL of global mo-
tion (Chen et al. 2015).

The 4 ROIs such as V1, V3A, MT, and IPS were identified for
each subject. We used a standard retinotopy analysis (Tootell
et al. 1995, 1997; Fize et al. 2003; Yotsumoto et al. 2009; Thompson
et al. 2013) to delineate the retinotopic region of V1, V3A, andMT+
on flattened cortical representations. IPS was anatomically de-
fined using the BrainVoyager QX software (Brain Innovation,
the Netherlands). Voxels from the left and right hemispheres
were merged for each ROI.

FMRI Analysis

To quantify changes in fMRI responses to motion stimuli in each
ROI between the pre- and post-test fMRI stages, a pattern-classi-
fication analysis (see below for details) was conducted. The pat-
tern-classification analysis quantifies how precisely patterns of
the fMRI responses in each ROI reflect the specificmotion stimuli
presented with subjects.

Measured fMRI signals were preprocessed using the Brain-
Voyager QX software. All functional images underwent 3D mo-
tion correction. No spatial or temporal smoothing was applied.
Rigid-body transformations were performed to align the func-
tional images to the structural image for each subject. A graymat-
ter mask was used to extract fMRI data only from gray matter
voxels for further analyses.

We used spatiotemporal patterns of fMRI signals for the pat-
tern-classification analysis for each ROI. First, a time-course of
fMRI signal intensities was extracted from each voxel of an ROI
using the Matlab software (Mathworks, USA). Second, a linear
trend was removed from the time-course. Third, the time-course
was z-score normalized for each run tominimize baseline differ-
ences across the runs. Finally, the data sample for each trial was
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created by calculating changes in the fMRI signal intensities for 3
volumes after the trial onset for each voxel. Thus, the number of
features used for the pattern-classification analysis for each ROI
was 3 multiplied by the number of voxels in the ROI.

As a classifier for the pattern-classification analysis, we used
a sparse logistic regression (Miyawaki et al. 2008; Yamashita et al.
2008; Kuncheva and Rodriguez 2010; Ryali et al. 2010; Shibata
et al. 2011; Tong and Pratte 2012), which automatically selected
the relevant features (see above for the definition of the features)
for pattern classification. The mean (±SEM) numbers of features
selected by the classifier across the conditions and subjects
were 16.3 ± 0.1 for V1, 16.9 ± 0.2 for V3A, 16.5 ± 0.1 for MT+, and
15.3 ± 0.2 for IPS.

Performance of the classifier was evaluated using a leave-
one-run-out cross-validation procedure for each subject. For
each combination of the ROIs and 4 conditions (shown in
Fig. 1), we trained the classifier to associate a pattern of the
fMRI responses to the motion stimuli (random or coherent mo-
tion) using 80 data samples (40 samples for random motion, 40
samples for coherent motion) from 2 runs. We then calculated
classification performance (percent correct) by testing how ac-
curately the classifier predicted the motion stimuli (random or
coherent motion) using independent data samples (20 samples
for random motion, 20 samples for coherent motion) from a re-
maining run.

Apparatus

Visual stimuli were presented on a LCD display (CV722X, Tohoku;
1024 × 768 resolution, 60 Hz refresh rate) during the training stage
and via a LCD projector (DLA-HD10KHK, Victor; 1024 × 768 reso-
lution, 60 Hz refresh rate) during fMRI measurements in a dim
room. All visual stimuli were made using the Matlab software
and Psychtoolbox (Brainard 1997) on Mac OS X.

MRI Parameters

Subjects were scanned in a 3 TMR scanner (Siemens, Trio) with a
head coil in the ATR Brain Activation Imaging Center. Subjects’
fMRI responses were acquired using a gradient EPI sequence. In
all fMRI experiments, 33 contiguous slices (TR = 2 s, voxel size = 3
× 3 × 3.5 mm3, 0 mm slice gap) oriented parallel to the AC-PC
planewere acquired, covering the entire brain. For an inflated for-
mat of the cortex used for retinotopic mapping, T1-weighted MR
images (MP-RAGE; 256 slices, voxel size = 1 × 1 × 1 mm3, 0 mm
slice gap) were acquired during the pre-test fMRI stage.

Results
Behavioral Results

During the training stage, subjects’ detection performance on the
trained direction significantly improved (Day 1 vs. Day 10, paired
t-test, t12 = 6.052, P < 10−4, Fig. 2B; see Supplementary Fig. 2A for
the additional analysis based on the signal detection theory;
Wickens 2001).

We compared subjects’ detection performance in the pre- and
post-test fMRI stages and found that direction-specific motion
VPL occurred (Fig. 2C and Supplementary Fig. 2C). We performed
2-way ANOVA with repeated measures with factors being stage
(pre- vs. post-test fMRI stages) and stimulus condition (trained
vs. untrained directions) on performance in the active-test condi-
tion in which subjects conducted the motion detection task. A
significant main effect was found for test (F1,12 = 45.029, P < 10−4),
but not for stimulus condition (F1,12 = 2.166, P = 0.167). We also

found a significant interaction between the 2 factors (F1,12 =
18.195, P = 0.001). These results indicate that the 10-day training
resulted in VPL specifically of the trained direction (see Supple-
mentary Fig. 2B for the additional analysis based on the signal de-
tection theory; see Supplementary Fig. 2D for behavioral
performance in each of the pre- and post-test fMRI stages in
the passive-test condition).

FMRI Results

A purpose of this studywas to test whether and if so howeach ROI
reflects feature- and task-based plasticity. According to our hy-
pothesis as shown in Introduction section, feature-basedplasticity
occurs in a specific visual area that processes the trained visual
feature, whereas task-based plasticity occurs in an area that is as-
sociated with processing of the trained visual task. To test the hy-
pothesis, we selected V1, V3A, MT+, and IPS as ROIs (see Regions of
interest section in Materials and Methods section for details).

To test whether each of ROIs reflected feature-based plasti-
city, task-based plasticity, or both, we compared fMRI responses
with the motion stimuli between the pre- and post-test fMRI
stages (Fig. 1). To quantify changes in the fMRI responses, the pat-
tern-classification analysis was used (see fMRI analysis section in
Materials and Methods section for details). The pattern-classifi-
cation analysis quantifies how precisely patterns of the fMRI re-
sponses in each area reflect the specificmotion stimuli presented
in each condition.

In particular, we focused on fMRI responses to the trainedmo-
tion direction. As described in Introduction, task-based plasticity
and feature-based plasticity can be revealed based on the com-
parison of changes in fMRI responses to the trainedmotion direc-
tion between the active- and passive-test conditions. Since the
behavioral results showed the motion VPL specific to the trained
motion direction, we assumed that neither feature- nor task-
based plasticity occurred for the untrained direction, which was
90 deg away from the trained direction. This assumption is based
on previous studies showing that VPL of global motion leads to
neural changes largely specific to the trained motion direction
(Shibata et al. 2012; Chen et al. 2015).

The following results of 4 statistical analyses suggest that V3A
reflects feature-based plasticity, while V1 and IPS (and possibly
MT+) reflect task-based plasticity in association with the VPL of
global motion.

First, we tested whether the 4 ROIs showed different patterns
of changes in fMRI responses to the trained motion direction
(Fig. 3A and Supplementary Fig. 3; see Supplementary Fig. 4A
for an additional analysis based on the signal detection theory).
A 3-way ANOVA with repeated measures with factors being ROI
(V1, V3A, MT vs. IPS), test (pre- vs. post-test fMRI stages), and
task condition (active- vs. passive-test conditions) was applied
to the classification performance. A significant main effect was
found for test (F1,12 = 7.532, P = 0.019), but not for ROI (F3,36 = 0.660,
P = 0.582), or task condition (F1,12 = 0.402, P = 0.538). In addition,we
found significant interactions between ROI and test (F3,36 = 3.293,
P = 0.031), between test and task condition (F1,12 = 5.363, P = 0.039),
and among the 3 factors (F3,36 = 4.120, P = 0.013). These results are
likely to reflect the difference between feature- and task-based
plasticity.

Second, we tested whether each of the 4 ROIs reflected fea-
ture- or task-based plasticity (Fig. 3A and Supplementary Fig. 3;
see below for details of statistical results). If an ROI reflects fea-
ture-based plasticity, the classification performance in the ROI
should improve between the pre- and post-test fMRI stages, irre-
spective of the task condition (active- or passive-test condition)

Two Types of Plasticity in Perceptual Learning Shibata et al. | 5

 at atrlibrary on June 13, 2016
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 



during the fMRI measurements. That is, a significant main effect
of the test stage should be observed, while there should be no sig-
nificant main effect of the task condition or interaction between
the test stage and task condition. On the other hand, if an ROI re-
flects task-based plasticity, the classification performance im-
provement in the ROI should be observed only in the active-test
condition. In this case, a significant interaction between the
test stage and task condition should be observed.

InV3A (Fig. 3A and Supplementary Fig. 3B), 2-wayANOVAwith
repeatedmeasures with factors being test (pre- vs. post-test fMRI
stages) and task condition (active- vs. passive-test conditions)
was conducted on the classification performance for the trained
direction. The results showed a significant main effect of test
(F1,12 = 11.712, P = 0.005), but neither themain effect of task condi-
tion (F1,12 = 0.431, P = 0.524) nor interaction between the 2 factors
(F1,12 = 0.248, P = 0.627) was found to be significant. These results
are in accordwith the hypothesis that neural sensitivity of V3A to
the trained direction significantly improved due to training on
the motion detection task, irrespective of whether subjects per-
formed the task during the fMRI test stages. That is, the classifi-
cation performance improvement obtained in the passive-test
condition is not likely to be due to improvement in the task-
related processing but due to refinement in representation of
the trained motion direction. These results are in accord with
the hypothesis that feature-based plasticity occurs in V3A.

InV1 (Fig. 3A andSupplementary Fig. 3A), the 2-wayANOVAon
the classification performance showed a significant interaction
between test and task condition (F1,12 = 10.024, P = 0.008), while
no significantmain effectwas found for test (F1,12 = 2.606, P = 0.133)
or task condition (F1,12 = 0.455, P = 0.512). Post hoc tests showed a
simplemain effect of test in the active-test condition (F1,24 = 9.467,
P = 0.005), but not in the passive-test condition (F1,24 = 0.135, P =
0.716). That is, the significant change in the fMRI responses in V1
was observed only when subjects engaged in the trained task on
the trained direction during the fMRI measurements. These re-
sults are in accord with the hypothesis that V1 reflects task-
based plasticity. This hypothesis is also supported by the result
of previous studies that V1 is involved in a detection task (Dupont
et al. 1993; Orbanet al. 1996;Huk andHeeger 2000; Jehee et al. 2011;
Gilbert and Li 2013; Saproo and Serences 2014).

In IPS (Fig. 3A and Supplementary Fig. 3D), the 2-way ANOVA
on the classification performance showed a significant main ef-
fect of test (F1,12 = 8.815, P = 0.012) and interaction between the 2
factors (F1,12 = 11.422, P = 0.006), but not the main effect of task
condition (F1,12 = 0.925, P = 0.355). These results suggest that IPS
is involved in task-based plasticity.

In MT+ (Fig. 3A and Supplementary Fig. 3C), the 2-way ANOVA
on the classification performance showed only marginal effect
of test (F1,12 = 3.920, P = 0.071). Neither task condition (F1,12 = 0.002,
P = 0.968) nor interaction between the 2 factors (F1,12 = 1.908,
P = 0.192) was significant. That is, although a certain degree of
changes occurred in MT+ in association with the VPL of global
motion, the change was not as robust as in V1, V3A, and IPS.
Thisweak tendency of changes inMT+ is consistentwith the pre-
vious findings that showed no or little changes in monkey MT
(Law and Gold 2008) or human MT+ (Chen et al. 2015) in associ-
ation with VPL of global motion.

Third, we further examined the degree towhich classification
performance improvement in each ROI is task-dependent. We
calculated a task-dependency index (Supplementary Fig. 5) for
each of V1, V3A, and IPS which had shown the significant classi-
fication performance improvement (Fig. 3A). The results are in
accord with the results of ANOVA in that response changes in
IPS and V1 reflected significant task-dependency, whereas
changes in V3A did not.

Finally, we tested the validity of the aforementioned assump-
tion that the fMRI responses to the untrained direction should
not change when VPL of the trained motion direction occurs.
Figure 3B shows the classification performance improvement
for the untrained direction (see Supplementary Fig. 4B for an add-
itional analysis based on the signal detection theory). A 3-way
ANOVA with factors being ROI, test and task condition was ap-
plied to the classification performance to the untrained direction.
While we found a significant main effect of ROI (F3,36 = 4.945,
P = 0.006), none of main effects of test (F1,12 = 0.989, P = 0.340)
and task condition (F1,12 = 0.004, P = 0.954) was significant.
We did not find any significant interactions between ROI and
test (F3,36 = 0.021, P = 0.996), ROI and task condition (F3,36 = 0.847,
P = 0.477), test and task condition (F1,12 = 1.407, P = 0.259), or
among the 3 factors (F3,36 = 0.377, P = 0.770). These results indicate
that VPL of the trained direction influenced the fMRI responses
specifically to the trained direction, but not to the untrained direc-
tion. This result is in accord with the behavioral results (Fig. 2C).

Discussion
The purpose of the present study was to provide empirical evi-
dence that supports the 2-plasticity model on VPL. After training
on a motion detection task, in V3A the fMRI response to the mo-
tion stimuli was changed specifically to the trained direction, in-
dependent of whether subjects conducted the motion detection
task on the motion stimuli or they were passively exposed to the

Figure 3. (A) Mean (±SEM) classification performance improvements across subjects for the trained direction from the pre- to post-test fMRI stages for V1, V3A, MT+, and

IPS. Red and blue bars represent the classification performance improvements for the active- and passive-test conditions, respectively. (B) Mean (±SEM) classification

performance improvements across subjects for the untrained direction from the pre- to post-test fMRI stages for V1, V3A, MT+, and IPS.
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stimuli. This is in accord with the hypothesis that feature-based
plasticity involves V3A, which has been suggested to be a main
area that processes the type of motion stimulus used in this ex-
periment (Braddick et al. 2000, 2001; Koyama et al. 2005; Kolde-
wyn et al. 2011; Maus et al. 2013). On the other hand, in V1 and
IPS significant changes in fMRI responses were found only
when subjects performed the motion detection task on the
trained direction. This result is consistent with the hypothesis
that task-based plasticity involves V1 and IPS which are among
the areas that have been reported to be differentially activated
depending on visual tasks (Dupont et al. 1993; Orban et al. 1996;
Huk and Heeger 2000; Shadlen and Newsome 2001; Lawand Gold
2008; Jehee et al. 2011; Gilbert and Li 2013; Saproo and Serences
2014). Collectively, these results support the 2-plasticity model
in which VPL of global motion results at least from the 2 qualita-
tively different types of plasticity (refinement in sensory re-
presentation and improvement in task processing), which are
subserved by different areas.

Is there any possibility that no significant change in the clas-
sification performance for IPS in the passive-test condition
(Fig. 3A, blue) was simply due toweak fMRI responses in this con-
dition? In the pre-test fMRI stage, the mean classification perfor-
mances for IPS were significantly above chance (50%) in both the
active- (1-sample t-test, t12 = 4.145, P = 0.001) and passive- (t12 =
5.749, P < 10−3) test conditions (Supplementary Fig. 3D, blue). In
addition, therewas no significant difference in themean classifi-
cation performance for IPS between the active- and passive-test
conditions in the pre-test fMRI stage (paired t-test, t12 = 0.484, P =
0.637). These results are at odds with the possibility that no
change in the classification performance for IPS in the passive-
test condition in the post-test stage was merely due to weak
fMRI responses in IPS for the passive-test condition.

The pattern-classification analysis in this study revealed the
significant activation changes in V3A to account for feature-based
plasticity, and activation changes inV1 and IPS for task-based plas-
ticity (Fig. 3A). Did the activation changes in these areas occur
independently from each other? If this is the case, there should
be no significant correlation in the classification performance im-
provements among these areas across subjects. However, we
found significant correlations between the classification perform-
ance improvements among V1, V3A, and IPS (Supplementary
Fig. 6). Thus, although V3Amay be predominantly involved in fea-
ture-based plasticity and V1 and IPS may be predominantly in-
volved in task-based plasticity, these 2 types of plasticity may
cooperatewith each other at some level. Future investigation is ne-
cessary for clarifying the nature of the cooperation.

Interestingly, no significant classification performance im-
provement was observed for the untrained direction (Fig. 3B) in
the active-test condition as well as in the passive-test condition,
in V1, MT+, or IPS in which active plasticity may have occurred.
This result suggests that feature-based attention to the trained
feature (Watanabe et al. 1998; Treue and Martinez Trujillo 1999;
Saenz et al. 2002) is involved in task-based plasticity.

Note that the finding that V3A reflects feature-based plasticity
in association with the VPL of global motion does not necessarily
indicate that V3A is associatedwith feature-based plasticity in all
types of VPL. As discussed above, a feature representation for glo-
bal motion may occur mainly in V3A. We believe that is why the
feature-based plasticity is associated with changes in V3A. Thus,
it is likely that feature-based plasticity in VPL of a visual feature
occurs in other areas depending on the feature.

Why did previous brain studies not clarify the 2 types of
plasticity? The majority of previous studies measured neural
activities in only either the active- or passive-test condition.

Although some studies (Li et al. 2004, 2008; Law and Gold 2008;
Adab and Vogels 2011) indeed employed both active- and pas-
sive-test conditions, they did not compare results from these 2
conditions to discern the 2 different types of plasticity in a
brain area. As discussed in Introduction, in that case, it is impos-
sible to determine whether the area is involved in feature-based
plasticity, task-based plasticity, or both.

One previous fMRI study has reported that VPL of global mo-
tion is associated with changes in both V3A and connectivity be-
tween V3A and IPS (Chen et al. 2015). This result is in accord with
our 2-plasticity model. However, their study did not show func-
tional differences between these 2 areas. As discussed above, it
is necessary to compare neural activations between the active-
and passive-test conditions to determine whether a brain area
is involved in feature-based plasticity or task-based plasticity.
The present study compared neural activations between the 2
conditions and revealed, for the first time, the differential func-
tional roles of V3A and IPS in VPL of global motion.

Note that VPL occurs as a result of exposure to a feature that is
irrelevant to a given task (Watanabe et al. 2001, 2002; Seitz andWa-
tanabe 2003; Xu, He, et al. 2012; Chang et al. 2014) as well as train-
ing on a feature that is task-relevant (task-relevant VPL). One
previous study has reported that task-relevant VPL (Supplemen-
tary Fig. 7, top) is associated with changes in an area beyond the
visual cortex, whereas task-irrelevant VPL (Supplementary Fig. 7,
bottom) is associated with changes in visual areas (Zhang and
Kourtzi 2010). The purpose and finding of this previous study are
totally different from those of our present study. The previous
study found that the area associated with VPL depends on the
type of training (task performance vs. exposure) and, therefore,
the type of VPL (task-relevant VPL vs. task-irrelevant VPL). On
the other hand, the present study concerned only with task-rele-
vant VPL and found that training on a task leads to 2 different
types of plasticity, feature-based and task-based plasticity.

Itwasnot clearwhether task-relevantVPL is associatedwith re-
finement ofaneural representationof a trained featureor improve-
ment ofprocessing related toa trained taskor both. Although some
recent studies have suggested that task-relevant VPL is associated
with changes in multiple brain areas (Sagi 2011; Chen et al. 2015),
the roles of these areas have remained unclear. The results of the
present studysuggest that task-relevantVPL is the end result of the
qualitatively different types of neural plasticity that reflect the vis-
ual representation refinement and the improvement in task-re-
lated processing, which are subserved by different brain areas.
Thesefindings support the 2-plasticitymodel and represent an im-
portant step toward comprehensive understanding of VPL (Shibata
et al. 2014; Watanabe and Sasaki 2015).

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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