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Kadiallah A, Liaw G, Kawato M, Franklin DW, Burdet E.
Impedance control is selectively tuned to multiple directions of
movement. J Neurophysiol 106: 2737–2748, 2011. First published
August 17, 2011; doi:10.1152/jn.00079.2011.—Humans are able to
learn tool-handling tasks, such as carving, demonstrating their com-
petency to make movements in unstable environments with varied
directions. When faced with a single direction of instability, humans
learn to selectively co-contract their arm muscles tuning the mechan-
ical stiffness of the limb end point to stabilize movements. This study
examines, for the first time, subjects simultaneously adapting to two
distinct directions of instability, a situation that may typically occur
when using tools. Subjects learned to perform reaching movements in
two directions, each of which had lateral instability requiring control
of impedance. The subjects were able to adapt to these unstable
interactions and switch between movements in the two directions; they
did so by learning to selectively control the end-point stiffness counter-
acting the environmental instability without superfluous stiffness in other
directions. This finding demonstrates that the central nervous system can
simultaneously tune the mechanical impedance of the limbs to multiple
movements by learning movement-specific solutions. Furthermore, it
suggests that the impedance controller learns as a function of the state of
the arm rather than a general strategy.

adaptation; internal model; stiffness; unstable dynamics

MANY COMMON TASKS REQUIRING tools such as chiseling or
drilling are unstable. This instability amplifies the effects of
motor noise (Hamilton et al. 2004; Harris and Wolpert 1998)
and can lead to unpredictable and unsuccessful action (Burdet
et al. 2006). For instance, the hand of an apprentice carpenter
may slip when chiseling a piece of rough wood. However, with
practice he will learn to control movements with suitable force
and impedance in all directions and carve skillfully. To de-
velop these skills, he will need to tune his limb impedance
(Burdet et al. 2001; Gomi and Kawato 1996; Hogan 1984,
1985) to the instabilities that may vary across the workspace.
To modulate the limb impedance, he can either change the limb
posture (Hogan 1985; Rancourt and Hogan 2001; Trumbower
et al. 2009), modulate feedback control (Krutky et al. 2010;
Loram et al. 2011, 2009; Morasso 2011), or coactivate muscles
(Damm and McIntyre 2008; Hogan 1984; Milner 2002). In an
unstable or unpredictable environment, the central nervous
system (CNS) learns to co-contract suitable muscle pairs in-
volved in the movement (Burdet et al. 2001; Franklin et al.
2007a, 2003b) stabilizing the limb end point and minimizing
the production and effect of motor noise (Selen et al. 2005,
2009). However, all previous studies investigating impedance
control in reaching movements examined only a single move-

ment direction (Burdet et al. 2001, 2006; Franklin et al. 2003a,
2008; 2007a, 2003b, 2007b; Osu et al. 2003, 2002; Takahashi
et al. 2001; Wong et al. 2009a,b). Can humans learn impedance
control models to compensate for different directions of insta-
bility across the workspace?

Adaptation to stable dynamics takes place in the joint coor-
dinates of the neuromuscular system (Shadmehr and Mussa-
Ivaldi 1994) and generalizes across the workspace (Conditt et
al. 1997; Gandolfo et al. 1996; Malfait et al. 2005, 2002;
Shadmehr and Moussavi 2000; Shadmehr and Mussa-Ivaldi
1994). When different dynamics or visuomotor transforma-
tions are learned one after another, interference between the
two learned models results (Brashers-Krug et al. 1996; Caith-
ness et al. 2004; Karniel and Mussa-Ivaldi 2002; Mattar and
Ostry 2007; Osu et al. 2004; Shadmehr and Brashers-Krug
1997), making it difficult to learn independent internal models.
Exceptions have only been found for sufficiently different
environments (Krakauer et al. 1999) and in bimanual move-
ments where the context allows independent learning of mul-
tiple models (Howard et al. 2008, 2010; Nozaki et al. 2006).
However, when different force directions are learned as a
function of different movement directions, no interference
occurs (Shadmehr and Mussa-Ivaldi 1994; Thoroughman and
Taylor 2005) as a single model of the overall environment is
learned.

If impedance control uses similar neural structures as learn-
ing stable dynamics, it should be possible to independently
control limb stiffness across the workspace. To examine this
hypothesis, subjects reached to two different targets with
instability applied orthogonally to each trajectory (lateral in-
stability). We examined whether end-point stiffness adaptation
occurred in the same manner whether subjects moved to a
single target with one direction of instability or randomly to
one of two targets, each with its own instability direction. If
only a single co-contraction model is learned, then the stiffness
in the multiple movement direction condition would not be
optimal for both directions. However, if the impedance con-
troller can learn a single model generalizing across the work-
space or switches between multiple models for each direction
of movement, then subjects may learn the optimal stiffness for
adaptation to each direction.

MATERIALS AND METHODS

Simulation of general and selective end-point stiffness. Simulations
were performed to examine how the CNS may adapt end-point
stiffness of the arm when lateral instability is applied on the hand
during planar movements in different directions (Fig. 1A). The sim-
ulated task (identical to the experimental task) consisted of perform-
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ing two 25-cm long point-to-point movements: from (0, 31) cm
relative to the shoulder to (0, 56) cm for the D1 movement and from
the same start to (14, 52) cm for the D2 movement (which is separated
from D1 by 35° clockwise). The simulations explored possible strat-
egies for the CNS to move successfully in the lateral instability caused
by a divergent force field (DF), orthogonal to the movement trajectory
(Fig. 1A), defined by:

�F�

F�
� � ��x�

0 � (1)

where F� and F� indicate the force components normal and parallel to
the straight line from start to end points, respectively, � � 300 N/m,
and x� is the lateral deviation of the hand from this straight line. The
end-point stiffness necessary to compensate for this instability was
simulated at the middle of the movement.

A simplified version of the muscle limb model from (Selen et al.
2009) was used to predict both the baseline null field (NF) stiffness
and theoretical adaptations to the instability. The force attributed to
each muscle (Fm) was solved for such that the minimal summed
muscle activation was produced that could both result in the required
end-point force and sufficient end-point stiffness in the direction

perpendicular to the movement direction. Six muscles were simulated:
two single joint shoulder muscles, two single joint elbow muscles, and
two biarticular muscles. Muscle forces were required to produce the
joint torques (T) that created the appropriate end-point forces F for
each direction of movement:

F � �JT��1T � �JT��1DTFm (2)

where J is the Jacobian matrix of the limb configuration and D is
a 6 � 2 matrix of the moment arms of the muscles around the
shoulder and elbow joints. The end-point stiffness (K) for a given
muscle activation pattern was found using:

K � �JT��1�Rbase � DTdiag�cmFm�D �
dJT

d�
F�J�1 (3)

where cm is the stiffness scaling constant. As in Selen et al. (2009), we
used cm � 75 m�1 for all muscles, which was based on published joint
torque stiffness (Franklin and Milner 2003; Gomi and Osu 1998) and
muscle force stiffness (Edman and Josephson 2007) regressions. The
matrix Rbase is a 2 � 2 matrix [3.18 2.15; 2.34 6.18] Nm/rad
containing the baseline joint stiffness found experimentally (Gomi
and Osu 1998) when the muscle activation is zero.

Fig. 1. Strategies that the central nervous system (CNS) could use to compensate for lateral instability in 2 different directions of movement. A: an unstable force field
that creates instability perpendicular to the movement was created for movements in 2 directions (D1 and D2). B and C: predicted end-point stiffness in movement
direction D1 and D2, respectively. To adapt to environmental instability, subjects could increase the end-point stiffness in several methods to stabilize the interaction
with their limbs. All simulated end-point stiffness matrices maintain the net stiffness at or above the level of the null field stiffness (shaded ellipse) after compensating
for the instability. Dashed ellipses indicate the predicted end-point stiffness from a uniform co-contraction of all muscle pairs such that the stiffness in both movement
directions is larger than the instability in each direction. In this case, only a single contraction term needs to be learned to perform movements in each direction of
movement. Dotted ellipses represent the predicted end-point stiffness for a selective increase of co-contraction, which compensates exactly for both instability directions
simultaneously. Overall metabolic cost is much lower than for the uniform co-contraction condition. Solid ellipse indicates the predicted end-point stiffness for selective
co-contraction tuned independently for each movement direction for the instability. Note that the stiffness ellipse area is minimal in the latter possibility, which thus
requires least co-contraction. However, in this case, either 2 separate impedance control models are required, or the CNS must learn a single impedance control model
which generalizes across the workspace. D: experimental setup. Subjects sat in an adjustable chair, with their forearm and hand attached to the robotic manipulandum.
E: top view close-up of the forearm attachment to the robotic manipulandum (shown without subjects arm). This coupling of the subject’s forearm to the robotic
manipulandum is performed by creating an individual thermoplastic mold that fits around the subjects arm and robot handle. Straps attach this thermoplastic cuff to the
supportive forearm brace which is a part of the robotic manipulandum.
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To examine the predicted changes in end-point stiffness, the base-
line value of end-point stiffness of the limb for NF movements needs
to be determined. Previous studies have demonstrated that the NF
end-point stiffness is usually �200 N/m in the direction perpendicular
to that of the movement (Franklin et al. 2004), which may be due to
the interaction between stiffness and movement variability (Burdet et
al. 2001, 2006; Lametti et al. 2007). The simulated end-point stiffness
for each movement direction was solved subject to the constraint that
the end-point stiffness perpendicular to the movement was �200 N/m.
This produced stiffness ellipses qualitatively similar to those previ-
ously measured (Franklin et al. 2003a, 2004), which we used for the
baseline stiffness. For the predictions in the unstable force fields, the
stiffness constraint was such that the end-point stiffness perpendicular
to the movement was �500 N/m. This produced end-point stiffness
that compensated for the lateral instability (�300 N/m) such that the
net end-point stiffness was maintained (Burdet et al. 2001; Franklin et
al. 2004). The optimal muscle activation pattern (Fm) producing no
change in end-point force was solved for each prediction using the
fmincon function MATLAB (2007a; Mathworks) on Eq. 3. Additional
constraints are specifically detailed for each prediction below.

To adapt movements in two directions simultaneously, one possible
strategy for the CNS is to learn to co-contract all antagonistic pairs of
muscles equally such that movements in both directions would be
stabilized. To simulate this global co-contraction strategy, a single
co-contraction term, which increased the activation of all muscles,
was found such that the stiffness perpendicular to the movement
direction was sufficient to compensate for the instability of the force
field for both movement directions. Specifically, the increase in each
element of Fm was constrained to be equal (�F1 � �F2 � �F3 � �F4 �
�F5 � �F6) and occurred for adaptation to both directions of move-
ment (�Fm in D1 � �Fm in D2).

Alternatively the CNS may be able to learn to selectively control
the end-point stiffness to counteract the effect of lateral instability as
in previous work (Burdet et al. 2001), but only able to learn a single
end-point stiffness or set of muscle activations. To simulate this
strategy, we solved for the optimal set of muscle activations that
would produce the required end-point stiffness for both movement
directions simultaneously. Specifically, the same increase in each
element of Fm occurred for adaptation to both directions of movement
(�Fm in D1 � �Fm in D2).

Finally, the possibility is that the CNS adapts end-point stiffness
optimally to the instability specific to each direction of movement.
This would mean that either the CNS could switch from one learned
impedance model to another dependent on the movement state or
learns an impedance model that can be modulated across the work-
space. To simulate this strategy, the optimal muscle activations were
solved independently for each movement direction. Specifically, no
constraint was applied on the change in muscle force, such that
independent patterns could be learned for each movement direction
(�Fm in D1 was not constrained to be equal to �Fm in D2).

Experimental methods. Ten right-handed male subjects without any
known neurological problem (aged 19–34 years) participated in the
study. The institutional ethics committee approved the experiments
and subjects provided informed consent.

Subjects sat on an adjustable chair with harness over their upper
trunk, which prevented movement of the trunk (Fig. 1D). A subject
specific custom-molded thermoplastic cuff was used to restrict motion
of the wrist and firmly attach the subject’s hand and forearm to the
manipulandum (Fig. 1E). The forearm and cuff were coupled to the
handle of the parallel-link direct drive air magnet floating manipulan-
dum (PFM; Gomi and Kawato 1996, 1997). The coupling of the
forearm to the manipulandum was such that measurements could be
made and movements could be performed without subjects explicitly
grasping the handle. Detailed figures of the PFM and the experimental
setup are found in Franklin et al. (2007b). The arm was restricted to
planar motion of the shoulder and elbow, where the positive x and
positive y directions correspond to the right and forward of the

subject, respectively. Hand position was estimated from the PFM joint
encoders (409,600 pulse/rev), and force exerted on/by the hand was
measured using a force sensor (resolution 0.006 N) placed between
the handle and the manipulandum’s links. Both force and position
signals were sampled at 500 Hz.

Subjects were instructed to perform point-to-point movements
from a starting circle (1.5-cm diameter) centered at (0, 31) cm relative
to the shoulder and towards two targets denoted by D1 and D2,
respectively, within 600 � 100 ms. Each target was a 2.5-cm diameter
circle that was 25 cm apart from the starting point. D1 movements
were performed to a target at (0, 56) cm straight-ahead of the shoulder
and D2 movements towards a circle centered at (14, 52) cm, which
was at 35° clockwise rotation from the first target. A cursor repre-
senting the actual hand position was beamed from a ceiling mounted
projector onto an opaque cover that prevented subjects from seeing
their hands or the robot. Start circle and the selected target circle were
also displayed before and during each trial to indicate the movement
subjects needed to make. A screen in front of subjects displayed
feedback about successful and nonsuccessful movements after each
trial. An unsuccessful trial was indicated by “out of target,” “too
slow,” or “too fast” on a monitor placed in front of subject after the
trial. All movements were recorded during the experiment, whether
successful or not. There was no time constraint as to when the
following trial should start, and so subjects could rest between trials.
Subjects were required to bring the cursor inside the start circle before
a beep sound signaled start of the movement. Each time the cursor was
brought within the start circle, a trial was initiated by three beeps at
500-ms intervals. Subjects were instructed to start moving their hand
at the third beep and reach the specified target circle by the fourth
beep, 600 ms later. Finally, two subsequent beeps, 500 ms apart,
indicated that the trial had finished.

Subjects produced movements in either a NF environment where
only the robot’s dynamics were felt (Burdet et al. 2006; Tee et al.
2004) or in a DF where the robot applied an unstable force field on the
hand producing a force perpendicular to the movement (Fig. 1A) as
defined by Eq. 1. During trials in the DF, a safety boundary was
implemented when the hand deviated by �5 cm perpendicularly from
the straight line between start and end targets. The safety boundary
was implemented by large damping replacing the negative stiffness of
Eq. 1. There was no force field inside the start and end circles.

Subjects started by familiarizing themselves with the PFM and the
task by performing NF reaching movements. They had to practice on
the robot at least 1 day before starting the experiment, by performing
movements in both the D1 and D2 directions. Targets were randomly
mixed, and subjects had to achieve 30 successful trials in each
direction. The experiment was then conducted on 3 separate days for
each subject. On day 1, subjects learned movements in one direction,
while they performed movements towards the other direction on day
2, and on day 3 they practiced in both directions simultaneously.
Subjects were separated into two groups of five to study any possible
confound associated with learning one direction of movement before
another. Subjects in group I performed D1 movements on day 1 and
D2 movements on day 2, whereas the counterbalanced order was
performed by subjects in group II.

On each of day 1 and day 2, subjects first performed 20 successful
NF trials followed by a further 100 successful NF trials in which
perturbations were applied to measure end-point stiffness. Then,
subjects had to learn the DF by performing 100 successful trials. After
this learning phase, stiffness was estimated while subjects made a
further 148 successful trials. On day 3, the movement directions were
selected randomly. Subjects performed trials with the same phases as
on day 1 and day 2 subject to the requirement that the minimum
number of successful trials was achieved in each direction. For
example, in the first phase, subjects had to produce 20 successful D1
trials and 20 successful D2 trials.

The method for the stiffness estimation is described by Burdet et al.
(2000). Briefly, subjects first completed 20 successful trials in which-
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ever force field was being tested. After this, half of the additional trials
were randomly selected for stiffness estimation. On each of these
trials, a 300-ms displacement was applied near the midpoint of the
movement in one of eight equally spaced directions, encompassing the
full 360°. The displacement consisted of a smooth 100-ms ramp-up,
100-ms hold, and a smooth 100-ms ramp-down segment.

This study was performed by constraining the wrist for each
subject, which was necessary to allow end-point Cartesian stiffness
measurement. However, during normal object manipulation, humans
are free to change the wrist or limb posture depending on the task,
another method that the sensorimotor control system could use to
adapt to the environment and one that may be of importance during
tool manipulation. However, the focus of this work is not to explain
tool-use but instead to investigate the mechanisms available to the
sensorimotor control system.

Data analysis. The hand path error (Osu et al. 2003)

E � �0

T

�x���ẋ��dt (4)

was used to examine learning, where x� is the perpendicular compo-
nent of the deviation to the straight line from the start to the target and
ẋ� is the parallel velocity component. The hand-path error is the area
between the realized path and the straight line from start to target. It
was calculated from time 0 (75 ms before crossing a hand-velocity
threshold of 0.05 ms�1) to time T (when curvature exceeded 0.07
mm�1). If the movement deviated for �5 cm from the straight line
(outside the safety boundary), it was assumed that the position of the
hand followed the 5-cm parallel line until the movement end.

Previous work has shown that adaptation to unstable divergent
fields occurs with no change in the end-point force unlike adaptation
to velocity dependent force fields (Franklin et al. 2003a). As changes
in end-point force can significantly change the end-point stiffness
(Gomi and Osu 1998; McIntyre et al. 1996; Milner and Franklin 1998;
Perreault et al. 2001, 2004), it is important to also examine the
end-point force to determine whether any change in stiffness was
produced as a byproduct of a net change in force (such as occurs after
adaptation to velocity dependent force fields; Franklin et al. 2003a) or
was being controlled directly. In addition, it should be mentioned that
the end-point stiffness measured during movements in the NF such as
in this work as well as previous studies (Burdet et al. 2001; Franklin
et al. 2003a, 2007a, 2007b, 2004) will not be equivalent to the
end-point stiffness measured with no external force in the static
condition (Flash and Mussa-Ivaldi 1990; Gomi and Osu 1998; Mussa-
Ivaldi et al. 1985; Tsuji et al. 1995). This is due to the fact that while
the movement is in the NF condition, there are still forces that the
subject produces to move the arm, which are different depending on
the direction of movement. As we know from several studies (Frank-
lin and Milner 2003; Gomi and Osu 1998; McIntyre et al. 1996;
Perreault et al. 2001, 2004), the end-point stiffness changes as the
direction and magnitude of the force changes. This means that the NF
stiffness will be different for different directions of movement. To
examine any differences in the end-point force after adaptation to the
force fields, the end-point force was measured using the first 10
successful trials in the stiffness measurement session. The mean force
in the middle of each unperturbed movement corresponding to the
time of stiffness estimate (80 ms) was obtained for each trial to see if
subjects changed the end-point force as a mechanism to adapt to the
divergent force field.

Stiffness was computed using the perturbed trials. The average
force and displacement measured during the final 80 ms of the hold
period were used to estimate the end-point stiffness matrix K:

��F�

�F�
� � K��x�

�x�
� . (5)

The mean changes in the end-point force in displacement, in the normal
and perpendicular directions �F�, �F�, �x�, and �x� relative to the
unperturbed trials, were used to estimate the components

K � �K�� K��

K�� K��
� (6)

using a least square fit of Eq. 5. For instance, K�� is the stiffness in the
normal direction due to a hand displacement in the parallel direction.
End-point stiffness was visualized by an ellipse (Mussa-Ivaldi et al.
1985), whose size, shape, and orientation were computed from sin-
gular value decomposition (Gomi and Osu 1998). The joint stiffness
matrix R was computed from the hand space stiffness K using the
relationship (McIntyre et al. 1996):

R � JTKJ �
�JT

��
F . (7)

Data was analyzed using MATLAB (2007a; The Mathworks), while
statistical analysis was performed using the general linear model in
SPSS 10.0 (SPSS, Chicago, IL) to perform ANOVA. Statistical
significance was considered at the 0.05 level.

RESULTS

Simulation of general and selective end-point stiffness. Sim-
ulations were performed to examine how the CNS may adapt
end-point stiffness of the arm when lateral instability is applied
on the hand during planar movements in two different direc-
tions labeled as D1 and D2 (Fig. 1A). The predictions of three
possible impedance learning strategies to perform successful
movements to simultaneous directions were investigated. First,
the CNS may learn a single strategy for both directions of
movement involving globally co-contracting all muscle pairs
sufficiently to produce successful movements in both direc-
tions (dashed lines in Fig. 1, B and C). However, as illustrated
by the large ellipse size, this means a large physical effort to
compensate for the external instability. Another possibility is
that the CNS learns to selectively increase co-contraction of
only the muscles required to compensate for the instability in
both directions simultaneously (dotted lines in Fig. 1, B and C).
This strategy would require less energy expenditure relative to
the global strategy but still not predict the changes in the
end-point stiffness that were found previously for a single
movement direction (Burdet et al. 2001; Franklin et al. 2003a,
2004). Finally, it is possible that the CNS might be able to
selectively co-contract muscles pairs to tune impedance to the
environment instability for every movement direction (solid
lines in Fig. 1, B and C). This strategy provides optimal
adaptation to the instability but requires that the brain is able to
learn independent muscle strategies for each movement direc-
tion and switch between them.

Learning is not affected by the order of learned movements.
Results were first analyzed for the two groups separately,
where the subjects from group I started by training with D1 on
day 1 and then with D2 on day 2 and conversely for the
subjects of group II. However, statistical analysis showed that
subjects from the two groups performed similarly in the same
direction on day 1 and day 2 and that they also performed
similarly on day 3. An ANOVA showed that there was no main
effect of group for hand-path error [F(1,192) � 1.038; P �
0.309] or end-point force in either the x-axis [F(1,64) � 2.002;
P � 0.162] or y-axis [F(1,64) � 0.078; P � 0.781]. Exami-
nation of the stiffness ellipses found no significant main effect
of group for orientation [F(1,64) � 2.770; P � 0.101] or size
[F(1,64) �1.380; P � 0.244]. Similarly, no main effect
of group was found for Cartesian end-point stiffness (K)
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[F(1,256) � 0.110; P � 0.741] or joint stiffness (R) [F(1,256) �
0.745; P � 0.389]. Based on these results, we determined that
both groups of subjects adapted in the same manner to the force
fields. Therefore, data from both groups were collapsed to-
gether and the following analysis presents the results across all
subjects in both groups.

Evidence and characteristics of learning. In both D1 and D2
directions, initial hand trajectories in the divergent field devi-
ated to either side of the straight line joining start and end
targets (Fig. 2, A–C), often exiting the safety zone. However,
with repeated trials, trajectories became straighter and similar
to those in the NF. Hand-path error, representing the area
between hand movement and the straight-line between start
and target points, was examined during repeated trials in NF
and DF. The mean error over the subjects decreased as subjects
continued to experience the DF (Fig. 2, D and E), as shown by
the significant decrease of mean error between the first five
and last five trials in both directions and on every day
[F(1,9) � 33.670; P � 0.001]. This shows that there was
learning on every day and in both D1 and D2, which was
corroborated by a large improvement of the success rate,
i.e., the moving average of success in 10 consecutive trials
[F(1,9) � 55.561; P � 0.001].

Subjects were required to produce 100 successful move-
ments in each direction and on each day during the learning
session. The average � SD number of trials performed by
subject was 197 � 44 when learning the DF in D1 only and
151 � 25 trials when learning in D2 only. On day 3, when both
directions of movements were made, 174 � 38 and 136 � 20
trials were required in D1 and D2, respectively. This suggests
that movements were easier in the D2 direction and that
learning in the two single directions on day 1 and day 2
facilitated performance in these directions on day 3. These two
observations were confirmed by ANOVA of the hand-path
error. The two movements D1 and D2 were characterized by
different levels of error in the five initial [F(1,9) � 19.911;
P � 0.002] movements. Furthermore, for a given direction,
the error level in five initial trials was different between single
and multiple directions learning [F(1,9) � 6.067; P � 0.036],
showing that subjects retained learning from the first 2 days
going into the third day of the experiment.

However, these differences were not found after learning.
The difference in hand-path error in the two movements D1
and D2 in the last five trials was not statistically significant
[F(1,9) � 4.114; P � 0.073]. Moreover, the error level in the
last five trials was not significantly different between single

Fig. 2. Initial and final reaching movements in the divergent force field (DF) during the learning experiment. A: initial and final 6 trajectories in the DF for
movement direction D1 when only a single direction of movement was learned. Trajectories are shown from a single representative subject for all conditions.
A virtual safety zone was implemented, outside of which the force field was turned off. The safety zone was implemented on DF trials if the lateral position
exceeded 5 cm relative to the straight-line joining the start and target positions. B: initial and final 10 trajectories in the DF for movement direction D2 when
only a single direction of movement was learned. C: initial and final 6 trajectories for learning the DF simultaneously in both D1 and D2. D: hand-path error
in null field (NF; grey bars) and DF (black bars) when learning to adapt to a single direction of movement in either movement direction D1 (left) or D2 (right).
Hand-path error is calculated for all learning trials (both successful and unsuccessful) averaged across subjects. Thin colored lines represent a power-model fit
to the data. E: hand-path error in the NF and DF when learning to adapt simultaneously to movement directions D1 (left) and D2 (right). While trials in the two
directions were intermingled in the experiment, they have been separated in the results for clarity.
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and multiple direction learning [F(1,9) � 0.673; P � 0.433].
This suggests that subjects reached the same level of adaptation
to the force fields when learning in one direction only com-
pared with learning in two directions simultaneously. Subjects
had no particular difficulty in performing movement towards
two directions simultaneously.

End-point force. The end-point force applied by the sub-
jects in the movements was analyzed to determine if
changes in the end-point force could be responsible for
changes in the measured stiffness of the limb. The mean
end-point force was calculated over the interval in the
middle of the movement where stiffness was estimated in
the NF and DF for each subject (Fig. 3). Similar levels of
end-point force were produced in the divergent field as was
produced in the NF. With the use of the first 10 unperturbed
trials during stiffness measurement, an ANOVA showed
that there was no main effect of force field on the force
applied by the subject in either the x-axis [F(1,9) � 0.116;
P � 0.742] or y-axis [F(1,9) � 0.626; P � 0.449]. This
indicates that any change in the end-point stiffness that was
produced during adaptation to the DF was not due to a
change in the end-point force. This finding was also sup-
ported by the reduction in hand-path error after learning,
indicating that subjects make fairly straight movements,
which would then have little change in end-point force
compared with the NF movements.

End-point stiffness adaptation. To examine how subjects
adapted the impedance of their limb to the instability produced
by the DF, end-point stiffness was estimated mid-movement by
displacing the hand relative to a prediction of the trajectory, and

measuring the restoring force (Burdet et al. 2000). Figure 4
visualizes end-point stiffness geometry through stiffness el-
lipses, averaged across subjects, in NF and DF for both the D1
and D2 movement directions. In both cases, the stiffness
ellipses after adaptation to the DF are elongated primarily
orthogonal to the movement direction, along the direction of
instability.

Differences across the conditions were examined by testing
the geometric characteristics of the stiffness ellipse. The shape
of stiffness ellipse, i.e., the ratio of smaller to larger singular
values, was not significantly different in DF than in NF [F(1,9) �
4.147; P � 0.072; Fig. 4C]. The size of the ellipse (propor-
tional to the product of the singular values) was significantly
larger in DF than in NF across both movement directions
[F(1,9) � 24.924; P � 0.001; Fig. 4D]. The orientation was
not found to be significantly different between the NF and the
DF [F(1,9) � 0.701; P � 0.424; Fig. 4E]. However, the
orientation of the stiffness ellipses in the DF was significantly
different in the two directions of movement D1 and D2 [F(1,9) �
86.804; P � 0.001], and tended to align with the direction of
instability. Most critically, none of these features were signif-
icantly different between single or multiple direction learning
[shape: F(1,9) � 2.992; P � 0.118, size: F(1,9) � 0.450; P �
0.519, and orientation: F(1,9) � 2.475; P � 0.150], indicating
that similar changes occurred for adaptation to instability in
either a single direction of movement or multiple directions of
movement.

To further investigate the changes in end-point stiffness that
occurred during the adaptation to environmental instability,
changes in each component of the end-point stiffness matrix

Fig. 3. End-point force was not modified during ad-
aptation to the instability. Means and SD of the end-
point force after learning for each subject, measured
in the middle of the movement. A: mean force normal
to the direction of the movement in direction D1.
Values are shown for the NF and DF both in single and
multiple directions of learning. B: mean force parallel
with the direction of the movement in direction D1.
C: mean force normal to the direction of the movement
in direction D2. D: mean force parallel with the direc-
tion of the movement in direction D2. There was no
change between force applied in NF (star) and DF
(square) for either direction of movement in any exper-
imental condition.
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were examined (Fig. 5). In movement direction D1 (Fig. 5A),
the DF stiffness was significantly increased relative to the NF
stiffness in K�� [F(1,9) � 108.649; P � 0.001], but no
significant differences were found between DF and NF stiff-
ness for any of the other three terms of the stiffness matrix
[K��: F(1,9) � 0.752; P � 0.408] [K��: F(1,9) � 2.251; P �
0.168] [K��: F(1,9) � 1.182; P � 0.305]. For all four terms of
the stiffness matrix, no significant main effect was found
between single or multiple direction learning [F(1,9) 	 2.825;
P 
 0.127]. In movement direction D2 (Fig. 5B), there were
significant increases in the DF stiffness compared with the NF
stiffness both for the K�� [F(1,9) �197.738; P � 0.001] and
K�� [F(1,9) � 7.136; P � 0.026] elements. However, no
significant difference was found in the other two elements of
the stiffness matrix [K��: F(1,9) � 0.717; P � 0.419] [K��:
F(1,9) � 2.192; P � 0.173]. No significant difference was
found between single and multiple direction learning [F(1,9) 	
1.768; P 
 0.216] except for K�� [F(1,9) � 13.479; P � 0.005].
However, in this case, the decrease in stiffness for the multiple
direction learning was present in both the NF and DF condi-
tions [no significant interaction effect between the field and
number of movements learned; F(1,9) � 0.139; P � 0.718].
The relative changes in end-point stiffness after adaptation that
occurs in all components of the stiffness matrix were examined

(Fig. 5C). Overall, the largest increase in stiffness in the DF
occurred in the K�� component of the stiffness matrix in both
directions of movement. This component directly acts to com-
pensate for the added environmental instability.

Previous work has shown that subjects compensated almost
“exactly” for the DF, such that the net stiffness (end-point
stiffness � environmental instability) was similar to the stiff-
ness in the NF (Burdet et al. 2001; Franklin et al. 2004). In
movement direction D1, the net stiffness K�� in the DF was
not significantly different from that in the NF [F(1,9) � 2.992;
P � 0.118] similar to previous results. However, in movement
direction D2, the net stiffness K�� in the DF was significantly
smaller than that in the NF [F(1,9) � 44.233; P � 0.001]. This
may be related to the significant increase found in the K��
component after adaptation to the force field in this direction,
which also contributes to stabilize the limb-environment inter-
action. F(1,9)

Joint stiffness adaptation. Joint stiffness was computed from
end-point stiffness to examine the contribution of different
muscle pairs. The contributions of muscle pairs to each ele-
ment of the joint stiffness matrix can be seen in (McIntyre et al.
1996). In particular, the single joint shoulder and elbow mus-
cles only influence the diagonal components, whereas the
biarticular muscles influence all four components of the matrix.

Fig. 4. End-point stiffness increased in the direction of the instability after adaptation to the DF. A: mean end-point stiffness ellipses for movements in direction
D1 in both the NF (dotted) and after adaptation to the DF (solid) while performing either only in a single direction (dark blue) or simultaneously in multiple
directions (light blue). Direction of instability (black arrows) is perpendicular to the direction of movement (grey dashed line). B: mean end-point stiffness ellipses
for movements in direction D2 while performing either only in a single direction (red) or simultaneously in multiple directions (green). In both conditions, the
end-point stiffness increases primarily along the direction of instability. C: means and SD of the stiffness ellipse shape. D: means and SD of the size of the
stiffness ellipses. E: means and SD of the stiffness ellipse orientation.
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In direction D1 (Fig. 6A), we found significant increases in all
components of the joint stiffness matrix [Rss: F(1,9) � 92.156;
P � 0.001] [Rse: F(1,9) � 82.949; P � 0.001] [Res: F(1,9) �
64.395; P � 0.001] [Ree: F(1,9) � 46.135; P � 0.001] but no
significant effect of single or multiple directions of movement
for any of the four terms [F(1,9) 	 4.362; P 
 0.066]. In
direction D2 (Fig. 6B), we found significant increases in three
of the components of the joint stiffness matrix [Rss: F(1,9) �

136.457; P � 0.001] [Rse: F(1,9)�19.323; P � 0.002] [Res:
F(1,9) �18.833; P � 0.002]. However, there was no signifi-
cant change in the elbow joint stiffness [Ree: F(1,9) � 1.487;
P � 0.254], suggesting that the adaptation in the two directions
of movement was produced by different patterns of joint
stiffness. Again in D2, there was no significant effect of single
or multiple directions of movement for any of the four terms
[F(1,9) 	 5.030; P 
 0.052].

The results of the joint stiffness suggested that two different
strategies were used to adapt to instability in the two different
directions of movement. In D1, the biarticular muscles may
have been predominately utilized, resulting in increases across
all four components of the joint stiffness matrix. In contrast, in
movement D2, the increase was mainly found in the shoulder
joint stiffness, suggesting that most of the adaptation was
produced by co-contraction of the shoulder joint muscles
(although some contribution of biarticular muscles would be
required to increase the cross joint terms of the stiffness
matrix). To test the theory that different patterns of joint
stiffness were produced in each of the two movement di-
rections, the ratios of the change in shoulder stiffness rela-
tive to that of the cross-joint stiffness and elbow stiffness
were examined (Fig. 6C). The ratio of the change in shoul-
der (Rss) to elbow (Ree) stiffness was larger in D2 than in D1
[F(1,9) � 5.889; P � 0.038]. This would suggest that there
was a larger contribution to the limb stiffness produced by
shoulder joint muscles than by elbow joint muscles in D2
compared with D1. Similarly the ratio of the change in
shoulder stiffness (Rss) to cross joint stiffness (Res and Rse)
was much larger in D2 than D1 [F(1,9) � 8.933l; P �
0.015]. This suggests that there was a larger contribution to
the limb stiffness produced by single shoulder joint muscles
than by double joint muscles in D2 compared with D1.
Importantly, there was no significant difference between
learning a single direction of movement and learning mul-
tiple directions of movement for either the shoulder to
elbow ratio [F(1,9) � 0.652; P � 0.440] or shoulder to cross
joint ratio [F(1,9) � 0.930; P � 0.360]. These results
demonstrate that adaptation to the instability in each of the two
directions of movement was produced by different changes in the
joint stiffness, independently controlled for each movement direc-
tion. Moreover, these differences in the method of adaptation for
each movement direction were not changed by performing mul-
tiple directions of movement.

Fig. 5. Changes in the end-point stiffness matrix components after adaptation
to the unstable environmental dynamics. For comparisons across the 2 move-
ment directions, the stiffness matrix has been solved for relative to the
movement direction (see MATERIALS AND METHODS for description). A: end-
point stiffness components in the NF (stars) and DF (squares) for movement
direction D1. Lines have been draw joining the four components in the same
condition (dark blue: single direction) (light blue: multiple directions) for
clarity. B: end-point stiffness components in the NF (stars) and DF (squares)
for movement direction D2 (red: single direction) (orange: multiple directions).
C: changes in the end-point stiffness after adaptation to the DF (data replotted
from A and B but collapsed across the conditions). Each bar indicates the total
change (KDF � KNF) in the end-point stiffness after adaptation in movement
directions D1 and D2. Color indicates the stiffness component responsible. In
both movement directions almost all of the change in the end-point stiffness
occurred in the K�� component, compensating directly for the added envi-
ronmental instability.
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DISCUSSION

Subjects adapted to two directions of environmental insta-
bility, each of which was associated with a single direction of
movement. On the first two days, subjects learned to adapt to
each direction separately, and on the third day, subjects
switched randomly between the two directions of movement.

End-point stiffness of the arm was estimated in the NF before
learning and after learning the DF. In both directions of
movement the end-point stiffness increased in the direction of
instability with little or no change in the perpendicular direc-
tion. No difference was found between performing either only
a single direction of movement or simultaneously performing
movements to two different targets. The joint stiffness demon-
strated that different patterns of adaptation were used for
adaptation to each direction of movement.

The initial learning in each direction was performed on 2
consecutive days with a counterbalanced order of the two
target directions between two groups of subjects. This was
followed on the third day by performing movements to both
targets randomly intermixed. The results showed that the two
groups learned similarly for each direction, although move-
ments were performed on the first day for one group and on the
second day for the other group. This suggests that learning to
compensate for the instability in one direction neither helped
nor hindered the learning of compensating for the instability in
the other direction. In other words, there was no evidence that
compensating for the instability transferred to the other move-
ment direction as has been seen for stable force fields (Donchin
et al. 2003; Thoroughman and Shadmehr 2000). This also
indicates that impedance control learning does not generalize
in trajectory-based coordinates, as both force fields had insta-
bility perpendicular to the direction of movement. This might
suggest that impedance control, like force control (Shadmehr
and Mussa-Ivaldi 1994), is learned in joint coordinates. The
results also show that there was no interference between the
learning of the two different unstable force fields while earlier
studies for stable force fields showed strong interference
(Brashers-Krug et al. 1996; Caithness et al. 2004). This was not
entirely unexpected as the two fields were separately presented
for two different trajectories for which limited interference was
previously found (Thoroughman and Taylor 2005). However,
even in the case of smoothly varying stable force fields, some
interference has been shown as the angle between the two
directions becomes larger (Donchin et al. 2003; Thoroughman
and Shadmehr 2000).

On the other hand, training in the two directions on the first
2 days resulted in better initial performance in both directions
on the third day. Although only the generalization from single
directions to multiple directions of movement was examined,
these findings suggest that learning to compensate for instabil-
ity in a movement was retained to some degree and could be
used to successfully perform this movement on later days.
Furthermore, the subjects were able to make the synthesis of
these two different force field models so as to successfully
switch from one movement to the next using the suitable
control. Not only was there no evidence of interference be-
tween the two movements, but the subjects were able to
combine the two learned movements in an efficient, move-
ment-specific manner.

This study investigated adaptation to an unstable force field
amplifying lateral deviations, when reaching movements were
performed to two directions separated by 35°. In contrast,
previous studies (Burdet et al. 2001; Franklin et al. 2007a;
Takahashi et al. 2001) had investigated the adaptation to
unstable or unpredictable dynamics along only a single direc-
tion of movement. Compensating for instability in different
directions requires the CNS to coordinate the muscles care-

Fig. 6. Joint stiffness demonstrates that different adaptation strategies were used in
each movement direction. A: joint stiffness components in the NF (stars) and DF
(squares) for movement direction D1. Lines have been draw joining the four
components in the same condition for clarity. B: joint stiffness components in the
NF (stars) and DF (squares) for movement direction D2. C: ratios of the change in
shoulder joint stiffness (Rss) relative to either the change in elbow joint stiffness
(Ree; left plot) or the change in cross joint stiffness (Rse and Res; right plot). Ratios
are smaller for adaptation to the DF in movement direction D1 rather than
movement direction D2. This indicates that the limb stiffness was independently
modulated for the instability in each direction of movement.
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fully, taking into account changing moment arms and the
nonlinear properties of muscles (Murray et al. 2000, 1995),
although we should note that this is true even for a single
movement of any reasonable length. However, the results show
for the first time that subjects are able to learn to perform
movements in unstable dynamics in several directions simul-
taneously.

The simulations (Fig. 1) proposed three possible methods of
adaptation to two directions of movement. The first model
suggested that, unlike previous studies examining only a single
direction of movement (Burdet et al. 2001; Franklin et al.
2003a, 2007a; Franklin et al. 2004), selective control of the
end-point stiffness for two different instability directions might
not be possible to learn. Instead subjects might be required to
globally co-contract their arm muscles to produce enough
stiffness to compensate for both directions of movement. This
would have produced an increase in all four terms of the
end-point stiffness matrices, which was not found. Instead, the
major increase in the end-point stiffness was produced along
the direction of instability. The second model proposed that
subjects would still be able to learn the optimal end-point
stiffness of the limb, reducing the metabolic cost, but that only
a single model of the required impedance could be learned.
This would mean that the same change in joint stiffness and
muscle activity would be produced in both directions of move-
ment. The results clearly demonstrated that movements in each
direction in the DF were associated with significantly different
changes in joint stiffness and muscle activity. Therefore, this
model is also demonstrated to be incorrect. The third model,
which proposed selective control of end-point stiffness inde-
pendently for each direction, is supported by the results. Clear
differences in the change in joint stiffness were found for
each direction of movement. Moreover, there were no sig-
nificant differences between the mechanisms of adaptation
to multiple directions of movement and single directions of
movement. Subjects were instead able to produce the ap-
propriately tuned end-point stiffness (without superfluous
stiffness increase in stable directions) for each direction of
movement and switch between these.

The simulations used to explain and predict the changes
in limb stiffness only consider feedforward control of mus-
cle activation as a method of modulating stiffness. However,
reflex excitability changes during adaptation to environ-
ments (Akazawa et al. 1983; Asai et al. 2009; Damm and
McIntyre 2008; Doemges and Rack 1992a,b; Krutky et al.
2010; Perreault et al. 2008). Moreover there is some evi-
dence for reflex contributions to changes in end-point stiff-
ness during movement (Franklin et al. 2007a). An alterna-
tive explanation therefore is that the adaptation to the insta-
bility occurs through modulation of the long latency
feedback pathways, which have been shown to be sensitive
to the task goals (Kurtzer et al. 2008; Pruszynski et al.
2008). Short-latency reflex responses could contribute to the
limb impedance but tend to modulate very little with task
(Pruszynski et al. 2008) and occur too early to contribute to
our measured stiffness [short latency contributions to EMG:
20 –50 ms (Lewis et al. 2006; Matthews 1991; Pruszynski et
al. 2008, 2011); force responses delayed by a further 25 ms
(Ito et al. 2004)]. However, this alternative explanation does
not change the findings of this study. First, reflex actions,
similar to feedforward muscle co-activation, cannot produce

different changes in joint stiffness for the same perturba-
tions unless a task-dependent reflex modulation, indepen-
dent for each movement direction, was learned. Thus the
simulations based on muscle actions are still useful for
interpreting the results of this study. Secondly, several stud-
ies have shown that large increases in muscle activation
relative to the NF occur during adaptation to unstable force
fields in movement (Franklin et al. 2003a, 2007a). Thus we
predict that both reflexive and intrinsic adaptation contribute
to the modification of end-point stiffness in this study.

The results clearly indicate that distinct control over the
end-point stiffness in the DF was produced for each direction
of movement. Subjects were able to switch between these
depending on the movement direction. How was this learning
represented computationally within the brain? One possibility
is that subjects gradually formed a single feedforward model of
the external dynamics, i.e., a mapping from a state space to
muscle activation, compensating for the force and instability
encountered during movements in any direction. Such a model
would be roughly equivalent to models that map the state space
of the limb to end-point force or joint torque for stable
adaptation (Donchin et al. 2003; Hwang et al. 2003; Thorough-
man and Shadmehr 2000). Using information about the in-
tended motion velocity, the CNS may be able to infer the
direction of instability that is normal to the movement. Simu-
lations have shown that it is indeed possible to learn a model
to deal with environmental instability valid in multiple direc-
tions based on state information (Kadiallah 2008). Alterna-
tively, the CNS might acquire two distinct dynamic models and
switch between them using contextual information (Haruno et
al. 2001; Wolpert and Kawato 1998). Evidence for such
switching depending on contextual information has been
shown for certain conditions (Howard et al. 2008; Nozaki et al.
2006; Osu et al. 2004).

In summary, these results show that humans are able to
adapt to instability in multiple movement directions and can
alternate between these movements with good performance.
This simultaneous adaptation occurred despite the fact that
instability in each movement direction required different com-
pensation in terms of the limb stiffness. Within each move-
ment, the correct pattern of muscle activation was produced
such that the required impedance to compensate for the envi-
ronment instability was achieved tuned independently for each
direction of instability. This finding suggests that minimal
extraneous stiffness or co-contraction was produced in each
movement, which could indicate that the sensorimotor control
system finds a solution with a minimal metabolic cost. This
ensured a stability margin similar to movements in the NF
condition. This may explain how humans are able to learn to
work with tools requiring the control of instability in a range of
directions.
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