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Osu, Rieko, Naoki Kamimura, Hiroshi Iwasaki, Eri Nakano,
Chris M. Harris, Yasuhiro Wada, and Mitsuo Kawato. Optimal
impedance control for task achievement in the presence of signal-
dependent noise. J Neurophysiol 92: 1199–1215, 2004; 10.1152/
jn.00519.2003. There is an infinity of impedance parameter values,
and thus different co-contraction levels, that can produce similar
movement kinematics from which the CNS must select one. Although
signal-dependent noise (SDN) predicts larger motor-command vari-
ability during higher co-contraction, the relationship between imped-
ance and task performance is not theoretically obvious and thus was
examined here. Subjects made goal-directed, single-joint elbow
movements to either move naturally to different target sizes or
voluntarily co-contract at different levels. Stiffness was estimated as
the weighted summation of rectified EMG signals through the index
of muscle co-contraction around the joint (IMCJ) proposed previ-
ously. When subjects made movements to targets of different sizes,
IMCJ increased with the accuracy requirements, leading to reduced
endpoint deviations. Therefore without the need for great accuracy,
subjects accepted worse performance with lower co-contraction.
When subjects were asked to increase co-contraction, the variability
of EMG and torque both increased, suggesting that noise in the
neuromotor command increased with muscle activation. In contrast,
the final positional error was smallest for the highest IMCJ level.
Although co-contraction increases the motor-command noise, the
effect of this noise on the task performance is reduced. Subjects were
able to regulate their impedance and control endpoint variance as the
task requirements changed, and they did not voluntarily select the high
impedance that generated the minimum endpoint error. These data
contradict predictions of the SDN-based theory, which postulates
minimization of only endpoint variance and thus require its revision.

I N T R O D U C T I O N

The CNS can control the mechanical impedance (inertia,
viscosity, and stiffness) of its motor apparatus (Hogan 1985;
McIntyre et al. 1996). For example, viscosity and stiffness can
be adjusted through mechanisms such as the co-contraction of
muscles. Several studies have examined impedance changes in
response to external perturbations. When trying to keep a hand
position constant (Mussa-Ivaldi et al. 1985) or moving (Burdet
et al. 2001; Milner and Cloutier 1993) against external per-
turbing forces, limb stiffness increases. Precise timed increases
in stiffness also occur in anticipation of predictable external
events, such as catching a ball (Lacquaniti et al. 1993). Imped-
ance changes can also parallel the learning of novel tasks.
Milner and Cloutier (1993), Osu et al. (2002, 2003), and

Franklin et al. (2003) reported that a co-activation of flexors
and extensors is observed in the early stages of dynamic and
kinematic learning, with co-activation decreasing with learn-
ing. Laursen et al. (1998) and Gribble et al. (2003) found that
muscle co-contraction estimated as EMG activity increased
with the higher accuracy requirements of multi-joint arm
movements. However, these previous studies did not examine
the variability in EMG activity, torque, or position dependence
on task conditions such as stiffness or accuracy. Furthermore,
they did not address the effects of volitional impedance
changes on attained movement variability or accuracy. Conse-
quently, it is unclear why a particular set of impedance param-
eters is chosen for a given task from the infinite set of possible
impedances that could produce the same endpoint kinematics
and forces.

A similar problem has been investigated for the kinematics
of movement. Given a reaching task, an infinite number of
hand paths and velocities can reach the goal. One framework
for selecting a trajectory is optimal control, in which the
solution with the smallest cost is selected. Several cost func-
tions (Flash and Hogan 1985; Nakano et al. 1999; Uno et al.
1989; Wada et al. 2001) have tried to account for the data, but
these models are incapable of predicting a trajectory that takes
into account the variance that changes according to the changes
in motor commands and/or impedance. Since the minimum-
jerk model is kinematic, there is no place for impedance.
Similarly, the minimum-torque-change model considers joint
torque but not muscle tension, so it cannot incorporate imped-
ance within its framework. The minimum-motor-command-
change model can actually deal with impedance because it
models the motor command for each muscle but always pre-
dicts the minimum motor command, thus minimum imped-
ance, which is at odds with the idea of different co-activation
levels dependent on different accuracy requirements (Gribble
et al. 2003; Laursen et al. 1998). These models neither have
variance as a penalty term nor implement noise in motor
commands but only deal with a mean or desired trajectory. A
recent computational model of movement planning consider-
ing the presence of signal dependent noise [task optimization in
the presence of signal-dependent noise (TOPS)] may provide a
unifying framework that could potentially account for both the
kinematics and impedance of a movement. In this framework,
the motor commands are assumed to be corrupted by noise,
whose SD increases with the level of the motor command
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(Harris and Wolpert 1998; Jones et al. 2002). Such signal-
dependent noise (SDN) plays through the muscle dynamics and
limb impedance, leading to variability in movement. Different
motor commands should thus lead to different movement
statistics. The TOPS model proposes that the cost depends on
these statistics (Hamilton and Wolpert 2002; Miyamoto et al.
2002). The motor command is selected to minimize the cost,
thus minimizing the deleterious effects of SDN on task perfor-
mance.

As the SDN plays through the impedance of the limb, the
impedance can be changed to modify the consequences of the
noise. Similarly, the change in impedance alters the noise in the
system because the co-contraction of muscles leads to larger
muscle activities, resulting in a larger SDN. Assuming the
presence of SDN, impedance should have complicated effects
of both increasing and decreasing the movement accuracy.
Given that changing either the motor command or impedance
can affect the movement statistics, the TOPS model has a
potential capability to coherently explain both trajectory plan-
ning and impedance control by including impedance parame-
ters within its framework. Therefore the first aim of this study
is to experimentally examine the effects of increased imped-
ance on movement accuracy.

The principle of the TOPS model is that the objective of
motor planning is to optimize task statistics to increase accu-
racy (cf. minimizing endpoint variance in Harris and Wolpert
1998). If this principle holds, we expect the optimal impedance
for minimizing movement error to be selected in voluntarily
executed movements. Then, if subjects are required to specif-
ically increase impedance during movements, a decrease in
accuracy is predicted because nonoptimal impedance should
generate poorer task statistics. On the contrary, if higher
movement accuracy is required, subjects should utilize the
same impedance as in ordinary conditions, where impedance is
already optimized to maximize accuracy. The second aim of
this paper is to examine whether these predictions can be
experimentally confirmed.

To investigate the relationship between impedance and
movement variability, we examined two tasks. In the first task
(target size), accuracy constraints were varied, and movement
variability and impedance were estimated. In the second task

(voluntary co-contraction), impedance was voluntarily con-
trolled, and movement variability and accuracy were exam-
ined. From the results of these two experiments, we found that
impedance does have the above-mentioned complicated effects
of both increasing SDN and decreasing endpoint accuracy and
that the data contradicted the predictions made by the TOPS
model.

M E T H O D S

Thirteen male subjects, aged 20–29 yr, participated in at least one
of the two experiments, and 11 were naı̈ve as to the purpose of the
study. Nine subjects participated in the target-size experiment, and
nine subjects participated in the voluntary co-contraction experiment.
For the five subjects who participated in both experiments, the
target-size experiment was carried out first, and then the voluntary
co-contraction experiment was conducted on another day. Each ex-
periment took several hours, since it consisted of EMG electrode
attachment, isometric force generation for parameter calibration of
index of muscle co-contraction around the joint (IMCJ), preparatory
trials to select movement times specific to individual subjects, and
main trials. Accordingly, a 1- to 2-h lunch break and frequent short
rests were allowed. We did not try to estimate muscle viscosity in this
study. However, from previous studies (Gomi and Osu 1998; Osu and
Gomi 1999), we expected that muscle viscosity would co-vary with
muscle torque, muscle stiffness, and EMG activity. The Institutional
Ethics Committee approved the experiments, and subjects gave in-
formed consent prior to participation.

Experimental apparatus

Subjects sat on a chair and rested their right elbow on a sponge
fixed to a table (Fig. 1A). The table was adjusted to lift the subject’s
arm to shoulder level so that movements were made in a horizontal
plane. The upper arm movement was constrained by fixing the
shoulder position with a harness and the elbow position with the
sponge. The subject’s wrist was braced. To reduce friction between
arm and table, the arm was attached to a board that levitated above the
table by an air sled (Fig. 1A). Subjects were asked to move only their
elbow joint. An OPTOTRAK 3020 was used to measure the position
of a marker placed on the end of a 9-cm vertical bar, which was
grasped by the subjects. The marker position was sampled at 500 Hz
and projected as a cross on a cathode-ray tube (CRT) screen, placed
in front of the subject, representing current hand position (Fig. 1, B
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FIG. 1. A: experimental setup and cathode-ray tube (CRT)
display patterns for changed target-size experiment (B) and
voluntary co-contraction control experiment (C). The 2 arm
positions shown in A indicate either start or end position
depending on extension or flexion movements. CRT display
patterns of B and C show extension movement. In EMG level
display of C, the 2 extensor-muscle activities are shown on the
right and the 2 flexor-muscle activities are shown on the left by
the X.
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and C). Subjects performed the task while looking only at the CRT
screen.

EMG

Surface EMG activity was recorded using pairs of silver-silver
chloride surface electrodes. The activities of two elbow muscles, the
brachioradialis and the medial head of the triceps brachii, and two
biarticular muscles, the biceps brachii and the long head of the triceps,
were recorded. The EMG signals were analog filtered at 25 Hz (high
pass) and 1.0 kHz (low-pass) with a Nihon Kohden amplifier (MME-
3132) and sampled at 2.0 kHz. All EMG comparisons between
different conditions as well as the calibration of IMCJ involved data
that were recorded on the same day without removing the electrodes.
From a previous study using the same methods (Osu et al. 2002), we
confirmed the stationarity of the EMG electrodes by comparing
torque-EMG relationships before and after the main experiment.

Stiffness estimation by IMCJ

Gomi and Kawato (1996) and Burdet et al. (2000, 2001) measured
stiffness during multijoint arm movements by applying mechanical
perturbations with a robotic manipulandum. Previous studies sug-
gested linear relationships among stiffness, torque, and surface EMG
activity signals (Osu and Gomi 1999; Tsuji et al. 1995). Based on
these previous studies, Osu et al. (2002) proposed an index of muscle
co-contraction around the joint (IMCJ) to evaluate joint viscoelasticity
during movements. IMCJ was defined as the summation of absolute
values of antagonistic muscle torques around the joint, and it was
computed from the linear relation between surface EMG activity and
joint torque. Osu et al. (2002) confirmed that IMCJ during isometric
contraction, as well as during movement, correlated well with joint
stiffness estimated by the conventional method, i.e., applying mechan-
ical perturbations, and proposed a formula to estimate stiffness from
EMG activity through the IMCJ. In this paper, based on the method of
Osu et al. (2002), stiffness during movement was computed for the
elbow joint in each trial. Assuming that surface EMG activity is
proportional to muscle tension, elbow torque can be expressed as
follows

� � a1u1�a2u2 � a3u3�a4u4 (1)

Here, u1 and u2 denote surface EMG activity of the elbow flexor and
extensor, and u3 and u4 denote surface EMG activity of the biarticular
flexor and extensor. The parameters ai include both the moment arm
and conversion factor from the muscle activity to muscle tension.
Using the parameters ai, the IMCJ of the elbow is computed as
follows

IMCJ � a1u1�a2u2�a3u3�a4u4 (2)

On each day of the experiment and before the main experiment,
subjects were asked to generate six different isometric force temporal
patterns with three different levels of force magnitude (maximum
forces of 5, 10, and 15 N) with five repetitions (90 trials � 6 � 3 �
5). The force temporal patterns were 1) extend and keep, 2) extend-
flex-relax, and 3) extend-relax-extend-relax-extend, with the same
three patterns for flexion, all executed within 3 s. The torques and
EMG activity recorded in these calibration experiments were used to
estimate the parameters ai of the IMCJ by the least-square-error
method (Osu et al. 2002).

We note that the estimation of stiffness from IMCJ should not be
taken as a rigorous method. We well realize the existence of variable
moment arms during movements, nonlinear properties of muscle
tension dependent on muscle length, shortening velocity, and motor
commands, all of which work against simple linear models such as
IMCJ to estimate the stiffness from EMG activity. However, quanti-
tatively speaking, IMCJ was found to be a good first approximation of

stiffness even during movement, which was independently measured
by mechanical perturbations (Osu et al. 2002). At the very least, IMCJ
is a much superior and more systematic way of weighting EMG
activity from multiple muscles while estimating stiffness than any
arbitrary method of weighting (cf. Gribble et al. 2003). To show the
robustness of the obtained results for the weighting of EMG activity
from multiple muscles, we analyzed identical data using the following
two different weighting methods. One is to normalize each muscle’s
EMG activity by its maximum value, which is the conventional
normalization technique but does not lead to a stiffness estimate. The
second method is to apply the smooth temporal filter from EMG
activity to muscle tension proposed by Koike and Kawato (1995) to
data from both calibration and main experiments to represent the
known electro-mechanical delay in computing IMCJ. All three meth-
ods of weighting EMG activity led to identical statistical results, and
thus only the results obtained by IMCJ without filtering are reported
here.

Furthermore, we note that hand paths were almost identical across
trials and subjects because only elbow rotation was included, and the
joint torques that were generated were also very severely controlled to
be the same because the movement duration was experimentally
controlled. With these stringent experimental paradigms, we expect
that any change in EMG activity is mainly due to a change in
co-contraction and stiffness, and not to changes in movement trajec-
tory, velocity, or torque profiles. This at least validates the usage of
IMCJ as a “relative” index for stiffness.

To confirm impedance changes in a more primitive way, we
compared root-mean-square (RMS) EMG of each muscle. Assuming
that EMG and stiffness have a monotonic relation, if the EMGs of all
muscles are larger in a particular condition than in other conditions,
we can conclude that stiffness was larger in that condition. The RMS
EMG was computed during the latter half of the movement, i.e., 250
ms before the end of the movement to the end of the movement
defined by an acceleration threshold (see Task).

Task

The task was a single-joint extension or flexion movement of the
elbow, and it followed the experimental paradigm of Gottlieb et al.
(1989). In the target-size experiment, subjects were asked to move
their hand from a start circle with a radius of 1.0 cm and enter a target
circle with a different radius displayed on a CRT within a desired
movement duration (Fig. 1B). In the voluntary co-contraction exper-
iment, subjects were asked to move their hand from a start circle with
a radius of 1.0 cm and come as close as possible to a small target point
(3 mm radius) displayed on the CRT within a desired movement
duration (Fig. 1C). The shoulder angle (q1) was fixed to 94°. The start
and target positions were either an elbow angle (q2) of 41 or 97°,
depending on whether the movement was extension or flexion (Fig.
1A). Extension movements were first conducted in a batch, and then
flexion movements were carried out. The out-and-in movement dura-
tion was defined as the time (s) between when the hand exited the start
circle and entered the target circle and was used throughout the
experimental task control. Following the isometric force generation,
subjects conducted flexion and extension movements of 20 trials each
(preparatory experiment). Because this preparatory experiment was
conducted, we did not observe any apparent learning effects in the
main experiments. The desired out-and-in movement duration was
predetermined by its average over the last 10 trials during the
preparatory experiment to make the movement duration comfortable
for each subject. The desired out-and-in movement durations ranged
between 0.232 and 0.325 s for all subjects in the target-size experi-
ment and between 0.250 and 0.334 s in the voluntary co-contraction
experiment. For each subject, only movements with an allowable error
of �10% of the prespecified out-and-in desired movement duration
were recorded as successful movements. A computer program
checked whether the movement duration was within the allowable
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range, and a warning of “too early,” “too late,” or “out of target” was
fed back to the subjects after each trial when the hand entered the
target circle too soon, too late, or did not end within the target circle,
respectively. For the target-size experiment, average success rates
across subjects for large, medium, and small targets were 70 � 14,
62 � 14, and 45 � 13% (SD), respectively. For the voluntary
co-contraction experiment, average success rates across subjects for
normal, medium, and high co-contraction were 58 � 20, 66 � 11, and
62 � 25%, respectively.

Experiment I: changed target size

The task was to move (flex or extend) the hand to different-sized
target circles. The radii of the target circles were 3.5, 2.5, and 1.5 cm
for large, medium, and small conditions, and they were presented in
this order to subjects. Subjects were requested to bring their hand
within a target at the end of the movement. We recorded 40 successful
trials in which the hand reached the target within the allowable time
range for each target size and for either flexion or extension; 240
successful trials (2 directions � 3 sizes � 40 trials) were recorded and
used for analysis. The desired out-and-in movement duration was
corrected for the different distances that were traveled to the different
target sizes. No instructions were given on co-contraction. Although
EMG signals were recorded, muscle activity was not fed back to the
subjects (Fig. 1B).

Experiment II: changed co-contraction level

The task was to execute extension or flexion movement under three
levels of muscle co-contraction: a normal level with elbow muscles
relaxed; a high level in which elbow muscles were strongly co-
contracted so that the arm became stiff; and a medium level of
co-contraction between normal and high. To avoid presentation of the
target region that explicitly instructs the permitted endpoint variabil-
ity, a small target point was presented instead of a target circle. The
subjects moved their hand from a start circle to as close as possible to
the target point. The out-and-in movement duration was measured as
the time interval between when the hand exited the start circle and
entered a virtual endpoint-domain circle with a radius of 5 cm, whose
range was shown by two tangent lines on the CRT (Fig. 1C).

In the medium and high levels, subjects had to voluntarily co-
activate their muscles during movements. Because the strength of
muscles varies between subjects, the activation levels were set before
the main experiment in preparatory trials. In this phase, 20 trials each
for the normal and high conditions, in which the arm was relaxed or
stiffened, and for both flexion and extension, were preliminarily
recorded when the hand reached the virtual endpoint-domain circle
within the time limit. The elbow stiffness in 80 movement trials (2
co-contraction conditions � 2 directions � 20 trials) was estimated by
IMCJ. For each subject, the observed IMCJ range was divided into
high, medium, and low ranges. For each trial in the main experiment,
elbow IMCJ was computed to determine whether it was within the
predetermined range of the corresponding co-contraction condition.
The success or failure of achieving this required IMCJ level was fed
back to the subject at the end of each trial. To help subjects set an
appropriate co-contraction, the recorded EMG signals were shown on
the CRT in real-time to the subjects from before the start of movement
(Fig. 1C). We recorded 40 successful trials for each level of co-
contraction and for each direction of flexion and extension. Alto-
gether, 240 successful trials were obtained (3 stiffness conditions � 2
directions � 40 trials). The order of the three co-contraction condi-
tions was counterbalanced across subjects.

Analysis

Position data were digitally filtered by a third-order Butterworth
filter with an upper cutoff frequency of 15 Hz. Derivatives of the

position data were computed by applying a three-point local polyno-
mial approximation. The start and endpoints of each movement were
determined using an angular acceleration with a 1.0 rad/s2 threshold.
The movement duration determined from these start and endpoints
was called kinematic movement duration, and it was nearly two times
longer than the out-and-in movement duration. The out-and-in move-
ment duration was used only to control the movement duration during
the main experiment, and the kinematic movement duration was used
for all data analyses. The averages of kinematic movement durations
for the three target sizes and for individual subjects were within the
range of 0.462–0.533 s, and those for the voluntary co-contraction
experiment were within 0.520–0.616 s. The actuated torque of the
elbow � was calculated as the product of the estimated inertial
moment of the forearm from each subject’s body size and the angular
acceleration of the elbow joint. We did not include a viscosity term in
the calculation of the torque because most of the viscosity measured
around a joint arises from biochemical and mechanical processes
within the muscle rather than from the properties of the joint (Aka-
zawa 1994). The effect of gravity was ignored because the arm was
supported against gravity by the air sleds to reduce friction.

We examined whether experimental conditions such as target sizes
and the level of co-contraction affect EMG activity, torque, position,
and endpoints. Accordingly, we first computed the ensemble-averaged
temporal profiles over 40 trials of each signal. Ensemble-averaged
rectified EMG activity of the ith muscle at time t was as follows

EnsAveEi�t� �
1

40 �
j�1

40

�e i
j
�t�� (3)

where e i
j(t) denotes EMG activity of the ith muscle at time t of the jth

trial. Ensemble-averaged torque at time t was

EnsAveT�t� �
1

40 �
j�1

40

� j�t� (4)

where � j(t) denotes torque at time t of the jth trial. Similarly,
ensemble-averaged x- and y-position were computed as follows

EnsAvePx�t� �
1

40 �
j�1

40

x j�t� (5)

EnsAvePy�t� �
1

40 �
j�1

40

y j�t� (6)

where x j(t) and y j(t) denote x- and y-position at time t of the jth trial.
Signals are aligned so that the first 1.0 rad/s2 absolute angular
acceleration threshold of ballistic movements determines time 0.
Movement duration for each signal was normalized within the same
experimental condition to mean movement duration of that condition,
without changing the amplitude of the signal (see the next paragraph
for detail). The ensemble-averaged temporal waveforms of IMCJ and
velocity profiles were computed in the same way. These allow the
deviation time course of each trial to be calculated as the difference
from the ensemble-averaged time courses. The ensemble-averaged
deviation is defined as the root mean square of this deviation time
course over 40 trials. Therefore ensemble-averaged deviation of
rectified EMG of the ith muscle and ensemble-averaged deviation of
torque at time t are computed as follows

EnsDevEi�t� � � 1

40 �
j�1

40

�EnsAveEi�t� � �e i
j
�t��	2�0.5

(7)
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EnsDevT�t� � � 1

40 �
j�1

40

�EnsAveT�t� � � j�t�	2�0.5

(8)

In other words, we studied the variability across trials at each point in
time. As already mentioned in the description of stiffness estimation
by IMCJ, we examined the effect of first smoothing the EMG signal
by the temporal filter of Koike and Kawato (1995), and the same
results were obtained regarding the relation between EMG amplitude
and variance. Finally, we computed the time-averaged magnitude and
deviation on a per trial basis. The time-averaged EMG of the jth trial
was computed as mean rectified EMG between the time at the
beginning and the time at the end of movement tf, summed over all
muscles

TimeAveEj � �
i�1

4 1

tf
�
t�1

tf

�e i
j
�t�� (9)

The time averaged IMCJ magnitude of the jth trial was computed in
the same way

TimeAveIMCJj �
1

tf
�
t�1

tf

IMCJ j�t� (10)

The time-averaged deviation of the jth trial was computed as the
square root of the mean squared deviation time course between the
time at the beginning and the time at the end of movement tf

TimeDevEj � ��
i�1

4 1

tf
�
t�1

tf

�EnsAveEi�t� � �e i
j
�t��	2�0.5

(11)

TimeDevTj � �1

tf
�
t�1

tf

�EnsAveT�t� � � j�t�	2�0.5

(12)

TimeAvePj � �1

tf
�
t�1

tf


�EnsAvePx�t� � x�t�	2 � �EnsAvePy�t� � y�t�	2��0.5

(13)

The amount of scatter at endpoints, i.e., endpoint deviation, was
indicated by the SD of endpoint positions. On the other hand, the
endpoint error was defined as the root mean square of the distance
between the endpoint positions and the center of the small target point.
Endpoint deviation and endpoint error are generally different because
the average endpoint position deviates from the target center (Gribble
et al. 2003). Also, endpoint error is not an appropriate terminology for
an analysis of the target-size experiment because subjects were not
required to reach for the centers of target circles, and movements
ending within target circles were regarded as successful. To examine
the effect of SDN to various level of movement variance on a
trial-by-trial basis, we investigated the correlation between the time-
averaged IMCJ of an individual trial (Eq. 10) and the time-averaged
deviations of the torque (Eq. 12), position (Eq. 13), and endpoint of
the hand in that trial. In addition, we investigated the correlation
between the time-averaged EMG activity (Eq. 9) and the time-
averaged EMG deviation (Eq. 11). The correlation coefficients ob-
tained from these trial-by-trial analyses are shown in Fig. 11. To
investigate SDN during movements, we computed correlation coeffi-
cients and slopes for liner relationships between ensemble-averaged
EMG (Eq. 3) and ensemble-averaged EMG deviation (Eq. 7) at each
time point for each muscle of each subject.

In the computations of ensemble-averaged temporal waveforms and
time-averaged deviations of position and torque, the time was nor-
malized within the same experimental conditions to mean movement
time of that condition. That is, for each trial, each value (position,
velocity, and torque) was first computed, where the movement begin-
ning and end was defined by the acceleration threshold, as explained

above. Then each value was scaled only in time domain to mean
movement time of each condition by re-sampling using spline inter-
polation. Therefore the normalization did not change the amplitude of
each signal. We also adopted two other methods of ensemble aver-
aging without time normalization. In both methods, the physical time
was used in ensemble averaging over 40 trials, and all data in one
condition were first aligned at the time of movement start. In the
second method, all data in one condition were cut at the time of the
termination of the movement whose duration was shortest in that
condition. In the third method, all data in one condition were cut at the
time of the termination of the movement whose duration was longest
in that condition, and the values between the termination of each
movement and the time of data cutting were fixed to the value at the
end of each movement to avoid distortion due to feedback correction
or oscillation. Here, we show the results using the first method
because the results obtained from all three methods are similar.

To examine the effect of the target-size or muscle co-contraction
levels on mean performance, we carried out a two-way repeated
measures ANOVA (target-size or co-contraction levels � movement
directions), with subjects as a random factor, for time-averaged IMCJ,
time-averaged deviations of EMG activity, torque and position, and
endpoint, as well as endpoint errors and RMS EMG using data for all
subjects. F-ratios were computed by treating the target size or co-
contraction levels and movement directions as within-subject factors.
This was followed by Tukey’s HSD test.

R E S U L T S

SDN during movements

To examine SDN during movements, we computed signal
magnitude and its deviation at each time point of movements.
Because EMG signals during movements are not stationary,
time courses of EMG magnitude were computed as an ensem-
ble average of rectified EMG time course over 40 trials (Eq. 3).
Time courses of EMG deviations were computed as the root
mean square of difference between each one and the ensemble-
averaged EMG time course over 40 trials (Eq. 7). EMG
deviation at each time point was plotted against EMG magni-
tude at that time point for each muscle and each movement
direction, for each condition of each experiment, and for each
subject. Figure 2 shows plots of a typical subject during a
voluntary co-contraction experiment. Blue, red, and green dots
denote normal, medium, and high co-contraction conditions,
respectively. In all comparisons, EMG deviation linearly in-
creased with EMG magnitude. The mean and SD of correlation
coefficients across muscles, subjects, and conditions were
0.843 � 0.092 for extension and 0.821 � 0.099 for flexion in
the target-size experiment and 0.814 � 0.087 for extension and
0.814 � 0.088 for flexion in the voluntary co-contraction
experiment. We also computed slopes between EMG mean and
deviation for each comparison. Figure 3 shows the histogram
of the slopes for each movement direction. The slopes widely
ranged from �0.5 to 3, with a mean of 1.192 � 0.422, which
includes the predicted slopes of uniform, Gaussian, and Lapla-
cian distribution (0.58, 0.76, and 1.00, respectively) within the
2 SD region, suggesting that the observed linear relationship is
not a trivial mathematical result (see DISCUSSION for detail). The
slopes were significantly larger when muscles were working as
antagonists than as agonists for both target size (t-test, t(214) �
4.72; P  0.0001) and voluntary co-contraction experiment
(t(214) � 3.60; P  0.0005).
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Experiment I: changed target size

The averages of the kinematic movement durations across
subjects for the large, medium, and small target sizes were
0.498 � 0.069, 0.497 � 0.069, and 0.491 � 0.062 s, respec-
tively, and were not significantly different. Figure 4 shows the
hand paths, endpoint distributions (A), angular velocity profiles
(B), torque profiles (C), EMG time courses of the four muscles
(D), and stiffness profiles (E) of a typical subject recorded for
the different target sizes for extension movements. These
characteristics are in good agreement with previous studies
(Gottlieb et al. 1989). The endpoints of the hand were distrib-
uted along an arc within target circles (Fig. 4A). Therefore the
endpoint deviation increased as the target size increased in
accordance with our experimental design (see Fig. 7F for
statistics). The angular velocity profiles were bell-shaped, and

corrective movements were not observed. In Fig. 4, although
the hand paths (A), velocity (B), and torque profiles (C) were
similar for the three different target sizes, co-activation of
bi-articulator muscles (D) and resulting IMCJ increase (E)
were evident in the latter half of movement for the more
stringent accuracy requirements.

Figure 5 shows the ensemble-averaged time courses across
all subjects and all trials classified by target size for the
summed EMG activity over the four muscles (A; Eq. 3), IMCJ
(B), torque (C; Eq. 4), and velocity (D), as well as the
ensemble-averaged deviations across all subjects for the
summed EMG activity (E; Eq. 7; summed over the four
muscles before taking square root), torque (F; Eq. 8), and
position (G). The data from extension (Fig. 5, top) and flexion
(Fig. 5, bottom) are shown separately. Blue, red, and green
indicate large, medium, and small target sizes, respectively. In
Fig. 5, while average time courses for torque (C) and velocity
(D) were similar for different target sizes for both extension
and flexion, the summed EMG activity (A) and IMCJ (B)
profiles of the small target size were larger (green curves; see
Fig. 7, A and B, for statistics), suggesting that co-contraction
increased as target size decreased. In good agreement with the
assumption of SDN, the EMG deviations were also generally
larger for the small target size (Fig. 5E). However, no general
or marked differences between different target sizes were
observed for the torque and position deviations (Fig. 5, F and
G), except for the position deviation around movement end as
shown in the magnified inset (Fig. 5H), suggesting that noise
observed in the motor command was attenuated at torque and
position levels. Furthermore, around 0.4 s after movement
onset, three curves representing the positional deviations for
the three target sizes came very close in extension and crossed
in flexion. Accordingly, after 0.4 s, the positional deviation for
the smaller target size was smaller in accordance with the task
requirements, despite the large EMG deviation.

To confirm that co-contraction increased later in the move-
ment for higher accuracy requirements, we plotted the late
RMS EMG of each muscle for each subject and movement
direction against target sizes (Fig. 6). For all four muscles, late
RMS EMG for small target was significantly larger than that
for medium and large targets (repeated measures ANOVA; see
figure legend and insets for statistics). This suggests that
co-contraction was utilized to control endpoint accuracy.

Figure 7 shows observations similar to those shown in Fig.
5 and their statistics in time-averaged data. Figure 7, A and B,
again shows an increased motor command with a decreased
target size. Figure 7A shows the means across all subjects for
each target size of the summed EMG activity that was time-
averaged over the entire movement duration. Figure 7B shows
those for the time-averaged IMCJ. The gray lines denote
extension and the black lines denote flexion data. The horizon-
tal lines in Fig. 7 indicate significant comparisons in posthoc
tests (P  0.05). The main effect of the target size was
significant for the amount of muscle activity in terms of the
time-averaged summed EMG activity (F(2,16) � 10.86; P 
0.005; Fig. 7A) as well as the time-averaged IMCJ (F(2,16) �
12.22; P  0.001; Fig. 7B). The muscle co-contraction, exam-
ined either as the time-averaged summed EMG activity or the
time-averaged elbow IMCJ, was significantly higher in the
small target than the medium and large targets for both flexion
and extension. Other figures show that target size has a differ-

FIG. 3. Histograms of the slopes between EMG magnitude and EMG
deviation estimated for each muscle of each subject. Top 2 panels are
histograms of target-size experiments and bottom 2 are those of co-contraction
experiments. Vertical lines denote slopes of uniform, Gaussian, and Laplace
distributions.
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ent effect on different deviations. Figure 7, C–E, shows the
means across subjects for each target size of the deviations that
were time-averaged over the entire movement duration for
EMG activity, torque, and position, respectively (see METHODS

for equations of time-averaged deviations). Figure 7F shows

the mean of the endpoint deviation across subjects for each
target size. The main effect of the target size was significant for
the time-averaged deviation of EMG activity (F(2,16) � 12.27;
P  0.001) and the endpoint deviation (F(2,16) � 157.80; P 
0.0001). The EMG variability was significantly largest for the
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small targets both for extension and flexion, which is consistent
with SDN. In contrast, the endpoint deviation was significantly
larger in the large target than the medium target and signifi-
cantly larger in the medium target than the small target;
consequently, the experimental manipulation of the endpoint
variability went well for the target-size experiment.

Similar trends to Figs. 5 and 7 were observed when EMG
activity, torque, and position ensemble averages were calcu-
lated using the shortest movement duration of each condition
(2nd method; see METHODS) or when using duration of each
movement and extrapolate by the final value until longest
movement duration (3rd method; see METHODS). The summed
EMG activity (F(2,16) � 8.35; P  0.005 for shortest move-
ment duration, F(2,16) � 11.90; P  0.001 for longest move-
ment duration) and IMCJ (F(2,16) � 9.12; P  0.005 for
shortest movement duration, F(2,16) � 11.85; P  0.001 for
longest movement duration) were significantly different and
were largest for the small targets.

Experiment II: changed muscle activation level

The means of the kinematic movement durations across
subjects for the normal, medium, and high co-contraction
conditions were 0.581 � 0.073, 0.558 � 0.071, and 0.537 �
0.062 s, respectively, and decreased significantly for the higher

co-contraction level, although the predetermined desired out-
and-in movement duration was the same for the three condi-
tions. Figure 8 shows the hand paths, endpoint positions,
angular velocity profiles, torque profiles, EMG time courses of
the four muscles, and IMCJ profiles recorded for the three
levels of co-contraction for the same subject, in a similar
format to Fig. 4. The endpoints of the hand were distributed
along an arc around the target point more narrowly for the
larger co-contraction level (Fig. 8A). The angular velocity
profiles were bell-shaped, and corrective movements were not
observed. Although the EMG activity of all four muscles (Fig.
8D) and IMCJ (Fig. 8E) were much larger over the entire
movement duration for the higher level of co-contraction, the
ensemble-averaged hand paths (Fig. 8A), velocity (Fig. 8B),
and torque profiles (Fig. 8C) were similar among the three
co-contraction conditions. However, we must note that the
velocity profiles for high co-contraction were more symmetri-
cal than those for low co-contraction (Figs. 8B and 9D). The
velocity peak in low co-contraction condition was slightly, but
significantly, earlier than in medium and high co-contraction
conditions (F(2,16) � 20.50; P  0.0001). Mean velocity peak
in low co-contraction condition was significantly earlier than
the midpoint of movement duration (t-test, t(8) � 2.67; P 
0.05 for extension, t(8) � 3.41; P  0.01 for flexion), while that
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in high co-contraction condition was not significantly different
(t(8) � 1.05; P � 0.32 for extension, t(8) � 1.83; P � 0.10 for
flexion), suggesting that velocity profiles for high co-contrac-
tion condition were significantly more symmetrical.

Figure 9 shows the ensemble-averaged time courses of the
summed EMG activity, IMCJ, torque, and velocity as well as
the ensemble-averaged deviation time courses of the summed
EMG activity, torque, and position classified by co-contraction
levels combining data from all subjects and all trials, in a
similar format to Fig. 5. Blue, red, and green indicate normal,
medium, and high co-contraction conditions, respectively.
While the average time courses for the torque and velocity
were similar for different co-contraction levels (Fig. 9, C and
D), the summed EMG activity and IMCJ profiles for the larger
co-contraction conditions were larger (Fig. 9, A and B), which
shows that subjects actually followed the instruction and could

voluntary control co-contraction levels. In good agreement
with SDN assumption, the time courses of EMG activity,
torque, and position deviations were generally larger for the
larger co-contraction conditions (Fig. 9, E–G), except for the
position deviation around movement end, as shown in the
magnified inset (Fig. 9H). Around 0.5 s after the movement
onset, however, three curves representing the positional devi-
ation for the three co-contraction levels converged and/or
crossed. That is, after 0.5 s, the positional deviation for the
different co-contraction levels became nearly indistinguish-
able, suggesting attenuation of SDN. Data from extension and
flexion were qualitatively similar.

Figure 10 shows observations similar to those shown in Fig.
9 and their statistics in time-averaged data. Figure 10, A and B,
shows the mean across all subjects of the time-averaged
summed EMG activity and time-averaged IMCJ, respectively,
for each co-activation requirement. The gray lines denote
extension, and the black lines denote flexion. The horizontal

FIG. 7. Means and SD (vertical bars) of 6 indices across all subjects for
each target size. Large, medium, and small indicate large, medium, and small
target sizes, respectively. Gray lines denote extension data, and black lines
denote flexion data. Horizontal lines indicate significant comparisons. An
interaction between target size and movement direction was significant for all
indices except endpoint deviation (P  0.01). A and B: means and SD across
subjects for the summed EMG activity and stiffness, respectively, which were
time-averaged over the entire movement duration. C–E: means and SD of
deviations that were time-averaged over the entire movement duration for
EMG activity, torque, and position, respectively. F: mean and SD of the
endpoint deviation. See METHODS for the equations used to calculate the
time-averaged deviations in C–E.

FIG. 6. Root-mean-square (RMS) EMG of each muscle for each subject
and movement direction against target size. Large, medium, and small indicate
large, medium, and small target sizes, respectively. Open circles, flexion
movements; X, extension movements. P values in each panel denote results of
repeated measures ANOVA among target sizes (F(2,16) � 6.98 for elbow
flexor, F(2,16) � 10.04 for biarticular flexor, F(2,16) � 12.52 for elbow extensor,
F(2,16) � 6.74 for biarticular extensor). Horizontal bars denote significant
comparison in posthoc test (Tukey’s HSD test; P  0.05).
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lines indicate significant comparisons in posthoc tests (P 
0.05). The main effect of the muscle co-activation requirement
was significant for the amount of muscle activity in terms of
time-averaged summed EMG activity (F(2,16) � 29.09; P 

0.0001) as well as time-averaged IMCJ (F(2,16) � 17.16; P 
0.0005). Furthermore, the muscle activity, i.e., arm IMCJ, was
significantly smallest in the normal level and significantly
largest in the high level. Accordingly, the main task design of
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the voluntary co-contraction experiment was fulfilled. Other
figures show that the co-activation level has different effect on
different deviations. Figure 10, C–E, shows the means across
all subjects for time-averaged deviations of EMG activity,
torque, and position, respectively, for each co-contraction re-
quirement. Figures 10F and G show the means across all
subjects for the position deviation at the endpoint as well as the
endpoint error for each co-contraction requirement. A larger
variability in EMG activity, torque, and position was observed
for the higher muscle activation level, although there was no
such trend for the endpoint deviation, and the relationship was
reversed for the endpoint error. The main effects of the muscle
activation level were significant for variabilities in EMG ac-
tivity (F(2,16) � 40.04; P  0.0001), torque (F(2,16) � 66.53;
P  0.0001), position (F(2,16) � 11.74; P  0.001), and
endpoint error (F(2,16) � 6.26; P  0.01). The variabilities in
EMG activity and torque were significantly larger in the high
level and smaller in the normal level. The endpoint error in the
normal level was significantly larger than in the medium and
high levels for both extension and flexion.

The same trends shown in Figs. 9 and 10 were observed
when the EMG activity, torque, and position deviations were
calculated using the shortest movement duration of each con-

dition (2nd method; see METHODS) or when using the duration of
each movement and extrapolating by the final value until the
longest movement duration (3rd method; see METHODS). That is,
these variabilities were significantly different (EMG deviation;
F(2,16) � 28.59; P  0.0001 for shortest duration, F(2,16) �
30.45; P  0.0001 for longest duration, torque deviation;
F(2,16) � 32.19; P  0.0001 for shortest duration, F(2,16) �
30.78; P  0.0001 for longest duration, position deviation;
F(2,16) � 10.10; P  0.005 for shortest duration, F(2,16) � 8.84;
P  0.005 for longest duration) and larger at the high level but
smaller at the normal level.

The observed reversed relationship between motor com-
mand magnitude and endpoint error suggests that SDN is
attenuated as the space shifts from intrinsic motor command
space to extrinsic task space. Noise was highly positively
correlated with magnitude of motor command at EMG or
torque level but was negatively correlated at target achieve-
ment level. To further show the degradation of correlation
between motor command magnitude and deviations, we com-
puted the correlation coefficients between the co-contraction
magnitude and EMG deviation, torque deviation, position
deviation, endpoint deviation, and endpoint error on a trial-by-
trial basis (Fig. 11). For each movement trial of an individual
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FIG. 9. Ensemble-averaged time courses across all subjects and all trials classified by co-contraction levels shown by 3 colors:
blue for normal, red for medium, and green for high in a similar format to Fig. 5. A–D: summed EMG activity over the 4 muscles,
stiffness, torque, and velocity. E–G: ensemble-averaged deviations across all subjects for the summed EMG activity, torque, and
position, respectively. H: magnification of G around the end of movement. Data from extension (top) and flexion (bottom) are
shown separately.
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subject, such as those shown in Fig. 8, the following seven
quantities were first computed. The first two were the summed
rectified EMG activity and its deviation, both of which were
time-averaged over movement duration. The equations are
given in METHODS (Eqs. 9 and 11). The third to fifth were IMCJ
and the deviations of torque and position, all of which were
time-averaged over movement duration. The equations are
given in METHODS (Eqs. 10, 12, and 13). The last two quantities
were endpoint deviation and endpoint error. Then, for each
subject and for each movement direction, a correlation coeffi-
cient was computed from 120 movement trials (40 trials � 3
stiffness conditions) between two quantities for each of the
following five pairs. The first is between the time-averaged
summed EMG activity and its time-averaged deviation. The
second is between the time-averaged IMCJ and the time-
averaged torque deviation. The third is between the time-
averaged IMCJ and the time-averaged position deviation. The
fourth is between the time-averaged IMCJ and the endpoint
deviation. The fifth is between the time-averaged IMCJ and the
endpoint error. Figure 11A plots these 18 correlation coeffi-
cients (2 movement directions � 9 subjects) for the voluntary
co-contraction experiment while connecting the same subject
by the thin line and representing the same movement direction
by the same symbol. The light and dark shaded regions show
the insignificance ranges of correlation coefficients, outside of
which the coefficient is statistically different from zero for an

individual data item and the data from all subjects, respec-
tively. For the relationship between EMG activity and EMG
variability, the correlation coefficients of all subjects were
positive and very close to 1 (Fig. 11A, left). The correlation
coefficients of IMCJ and torque variability were positive and
relatively high and significant for all but one subject (Fig. 11A,
2nd). The correlation coefficients of IMCJ and position vari-
ability were positive for 15 of 18 cases and relatively small and
insignificant for most subjects (Fig. 11A, middle). The corre-
lation between IMCJ and endpoint deviation was positive or
negative depending on the subject and movement direction,
and most coefficients were small in magnitude and insignifi-
cant (Fig. 11A, 4th). The correlation coefficients between IMCJ
and endpoint error were negative in 13 of 18 cases, and some
were significant (Fig. 11A, right). Figure 11A also shows, by
thick black lines and asterisks, the correlation coefficients for
the five relationships computed from all 2,160 trials of all
subjects. The correlation coefficient was close to 1 and signif-
icant for EMG deviation. It was positive and significant for
torque deviation. It was slightly positive but significant for
position deviation. It was slightly negative but significant for
endpoint deviation and negative and significant for endpoint
error. Figure 11B plots the same correlation coefficients for the
relationships from the target-size experiment and shows similar
trends.

FIG. 10. Means and SD (vertical bars) of 6
indices across all subjects for each co-contraction
level in a similar format to Fig. 7. Norm, med, and
high indicate normal, medium, and high co-con-
traction levels, respectively. Gray lines denote
extension, and black lines denote flexion data.
Horizontal lines indicate significant comparisons.
An interaction between co-contraction level and
movement direction was significant for summed
EMG, EMG, torque, and position deviation (P 
0.01). A and B: summed EMG activity and stiff-
ness, respectively, which were time-averaged
over entire movement duration. C–E: means and
SD of deviations that were time averaged over
entire movement duration for EMG activity,
torque, and position, respectively. F: mean and
SD of endpoint deviation. G: mean and SD of
endpoint error.
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D I S C U S S I O N

We showed that when subjects made single-joint elbow
movements to targets of different diameters, IMCJ and EMG
variability increased with the required accuracy of the task and
reduced endpoint variability. When subjects were asked to
increase co-contraction during movements, the temporal pro-
files of EMG activity and torque both increased in variability.
However, final positional error was largest for the lowest and
normal co-contraction levels. The qualitative trends of EMG
activity, torque, and position variabilities and endpoint devia-
tions and error with respect to increased IMCJ were similar
between these two experiments, although the range of co-
contraction in response to different target sizes was over a
much smaller range than could be voluntarily elicited (an 11
vs. 196% increase). SDN suggests high correlation between
motor command magnitude and movement deviation, but this
is true only for intrinsic parameters such as EMG and torque.

For the parameters in the task space (Cartesian space), the
correlations are low and at the final task level (endpoint error);
furthermore, correlation was negative, meaning that SDN no
longer holds. This shows that SDN is not sufficient to explain
movement variance, but actually SDN is attenuated by imped-
ance at the task level. Such reversed relationship between
EMG variability and positional variability has also been ob-
served when movement speed was increased (Darling and
Cooke 1987).

SDN during movement

When subjects were asked to move with larger co-contrac-
tion levels, they increased the motor command signals of the
flexor and extensor simultaneously. It has been suggested that
the SD of the neuromotor commands increases with its mean
based on both motoneuronal firing studies (Clamman 1969;
Matthews 1996) and surface rectified EMG signals (Clancy
and Hogan 1999; St-Amant et al. 1998) during static force
tasks. Psychophysical studies of isometric force production
have shown a strong relationship between mean force level and
force variability as measured by SD (Jones et al. 2002; Schmidt
et al. 1979; Sherwood and Schmidt 1980; Sherwood et al.
1988). Sherwood et al. (1988) also reported a strong relation-
ship between mean force level and force variability in the
elbow-joint movement task when different loads were added to
a hand-held bar.

These previous behavioral studies investigated the change in
force variability in isometric tasks (Jones et al. 2002; Schmidt
et al. 1979; Sherwood and Schmidt 1980) or moving conditions
under normal co-contraction (Sherwood et al. 1988). This
study is the first to examine the relationships between stiffness,
EMG activity, torque, and position variabilities and endpoint
deviation and error during movements. Analysis of EMG
variability showed a strong linear relationship with the rectified
EMG level (Fig. 2). This is not a trivial mathematical result of
rectifying an AC signal. For a stochastic variable x with zero
mean and even probability distribution, there is generally no
linear relationship between the SD and mean of the rectified
signal. If the distribution changes its shape with different motor
command levels, not only the linear relationship but also the
monotonically increasing relationship of the deviation as a
function of mean may not hold. For an evenly distributed
zero-mean random variable x, the variance of the rectified
signal is given as follows: V(�x�) � V(x) � E(�x�)2. From this,
the observed linear relationship holds if and only if V(x) is
proportional to E(�x�)2, which is not a generic property of the
zero-mean even distribution. This condition is satisfied for
well-known uniform, Gaussian, and Laplacian distributions,
where the predicted slopes are �0.58, 0.76, and 1.00, respec-
tively. That is, if either uniform, Gaussian, or Laplace distri-
bution is maintained for different levels of motor commands,
the linear relationship between the mean and the SD is math-
ematically derived. For our data, the slope between EMG
deviation and magnitude widely raged with a mean larger than
that of Laplace distribution (Fig. 3), suggesting that the EMG
signal is corrupted by larger noise when the mean level of the
signal becomes large. Our results also suggest that movement
EMG distributions ranged wider than those in a constant-force,
constant-angle condition, which fell between Gaussian and
Laplacian distributions (Clancy and Hogan 1999). Further-

FIG. 11. Plots of correlation coefficients between the stiffness and variabil-
ities of 5 quantities for all subjects. A: voluntary co-contraction control
experiment. B: target-size experiment. Circles, extension coefficients; squares,
flexion coefficients. Coefficients from the same subject are connected by a thin
line. Bold line with asterisks shows correlation coefficients that were calcu-
lated from all trials of all subjects for both flexion and extension data. EMG
deviation shows correlation coefficients between EMG activity and EMG
variability. Torque deviation shows correlation coefficients between stiffness
and torque variability. Position deviation shows correlation coefficients be-
tween stiffness and position variability. Endpoint deviation shows correlation
coefficients between stiffness and endpoint deviation. Endpoint error shows
correlation coefficients between stiffness and endpoint error. Dark shaded
regions show range of statistical insignificance, outside of which correlation
coefficients computed from all trials of all subjects are statistically significantly
different from 0. Light shaded region is the insignificance range for an
individual subject.
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more, the deviation is measured as an RMS distance from the
ensemble-averaged rectified trajectory, showing true variabil-
ity in the nonstationary signal. This allows EMG variability to
be measured during movement for the first time. Consequently,
SDN was confirmed during single-joint movements.

Negative correlation of endpoint error with stiffness

Analysis of torque variability in the voluntary co-contraction
experiment (Figs. 10D and 11A) showed that it increased with
stiffness but with a weaker correlation than EMG variability.
The positional variability averaged over the movement dura-
tion also increased significantly with IMCJ, but with an even
weaker correlation (Figs. 10E and 11A). In stark contrast, the
final endpoint error was significantly larger for the lowest
co-contraction level than for the medium or high level (Figs.
10G and 11A). For the higher accuracy requirements of the
target-size experiment, subjects chose a higher IMCJ level and
achieved a lower endpoint deviation (Fig. 7). Therefore sub-
jects exploited the relationship between stiffness and accuracy
as the task demands changed.

Although these findings seem counterintuitive because
higher stiffness involves larger motor commands, resulting in
larger SDN, they can be reconciled within the extended TOPS
framework as will be explained later. Co-contraction has two
effects within this model. First, it increases the noise produced
by the actuators; although some of the forces in co-contraction
cancel each other out, the variabilities from both agonist and
antagonist are additive. Second, it changes the impedance of
the limb. The impedance determines how the noise plays
through the motor apparatus into the endpoint error. Figure 11
most markedly demonstrates this effect of decreased and re-
versed correlation with IMCJ as the signal is transformed from
EMG activity to torque, to position, to endpoint variability, and
finally to endpoint error.

Decreased endpoint error under higher co-contraction might
be explained by two control mechanisms. One is the imped-
ance control that utilizes the muscle’s intrinsic spring proper-
ties to realize a desired trajectory or endpoint in negative
feedback control (Burdet et al. 2001; Franklin et al. 2003;
Hogan 1985; Osu et al. 2002). When muscle stiffness is
increased by feedforward and predictive co-contraction, the
increased feedback gains bring higher accuracy. The achieve-
ment of the desired trajectory and endpoint is suggested be-
cause the endpoint error decreased while the endpoint devia-
tion showed no definite trend as IMCJ increased in the co-
contraction control experiment (Fig. 10, F and G).
Furthermore, in the target size experiment, the positional de-
viation decreased with higher stiffness (small target size) only
in the late stage of movement (Fig. 5G), corresponding to the
larger EMG activity and IMCJ in only the latter half of
movement duration (Fig. 5, A and B). A second possible
control mechanism is the optimal feedback control proposed by
Todorov and Jordan (2002), where time variant feedback gains
are optimally selected based on neural feedback computations
rather than muscle co-contraction. This computational theory
seems to suggest larger torque variability for higher gains of
neural feedback loops, which seems at odds with our results
showing higher stiffness and accuracy with little change in
torque variability (Fig. 7, D and F). Therefore we may con-
clude that co-contraction leads to a trade-off between increased

noise and reduced consequences due to the changed imped-
ance. In our experiment, the increased variability of position
seen during movement can be interpreted as the effects of
increased SDN, whereas the reduced final error may be due to
the impedance change, which reduces variability.

In the co-contracted state, the limb is clearly more stable
against external noise or perturbations. However, because there
was no explicit external perturbation in the current experi-
ments, it is not appropriate to ascribe the observed reduction of
final task error to the rejection of external perturbation. One
possible explanation is other uncontrolled internal processes
that can have an effect on final accuracy, such as an increase in
the overall level of attention, were triggered by the increase of
co-contraction. That is, accuracy and impedance are indepen-
dently regulated and subject generated higher levels of co-
contraction while producing less variable feedforward com-
mands. Another possible explanation is that at some level of
co-contraction the limb may also be more stable against inter-
nally generated noise. How the impedance could reduce the
internally generated noise is an open question because the
reference trajectory, or the equilibrium position itself, could be
perturbed by internally generated noise. Assuming that muscle
visco-elasticity changes according to muscle activation (Bizzi
et al. 1984), the equilibrium position can be expressed as the
difference of two antagonistic muscles’ activation divided by
the summation of their activation (co-contraction), i.e., (uflex �
uext)/(uflex � uext) (Hogan 1984). When noise is added to one
or both of the two antagonistic muscles, changes in the equi-
librium position generated by the noise are smaller when the
denominator, i.e., the amount of co-contraction, is larger.
Therefore the effect of internally generated noise on the refer-
ence trajectory may possibly smaller when stiffness is larger.
Thus co-contraction could possibly be one of factors in reduc-
ing the effect of internally generated noise on the final endpoint
variability.

Shorter movement duration with higher stiffness

In the co-contraction control experiment, a significantly
shorter kinematic movement duration was observed with larger
co-contraction, although the required out-and-in movement
duration was constant irrespective of the co-contraction level.
In the target-size experiment, the same effect was observed,
although it was much smaller and not significant. A shorter
movement duration for higher accuracy is apparently contrary
to Fitts’ law (Fitts 1954; Hirayama et al. 1993) and to TOPS
model, which predicts Fitts’ law (Harris and Wolpert 1998). A
shorter movement duration with higher stiffness may be inter-
preted as a consequence of the mechanical resonant frequency
of the forearm link, which increases in proportion to the square
root of the elbow stiffness. The shorter movement duration
with the same movement amplitude leads to higher accelera-
tion and larger EMG activity, but this effect is negligible
compared with large differences in EMG levels. That is,
movement duration change was only 1.48 and 7.52%, while
stiffness increase was 11 and 196% in the target-size and
co-contraction control experiments, respectively. Assuming
that EMG linearly increases with muscle torque and stiffness,
it is expected that joint torque, and thus the reciprocal compo-
nent of EMG, change with the square of duration change.
Although a higher-order relationship between EMG and dura-
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tion might exist because of the nonlinearity between EMG and
stiffness, the order-of-magnitude smaller change of movement
duration compared with IMCJ increase suggests that IMCJ
increase was not merely due to reciprocal activation caused by
joint torque increase but mainly due to additional co-contrac-
tion. The movement trajectories and torque profiles were very
similar between different experimental conditions (see Figs. 5,
C and D, and 9, C and D), and their differences were too small
to explain differences in EMG activity and IMCJ changes.
Because the kinematic and dynamic features of the movements
are almost invariant across different experimental conditions,
IMCJ could be regarded at least as a good relative measure for
stiffness (see METHODS). For similar movement trajectory, IMCJ
has been shown to linearly increase with stiffness (Osu et al.
2002). Thus we conclude that the stiffness changes were
caused by the different accuracy requirements and voluntary
co-contraction.

Stiffness control dependence on tasks

The largest endpoint errors were observed when subjects did
not increase co-contraction above the normal level. Similarly,
subjects could increase their accuracy in response to a smaller
target by increasing co-contraction. Consequently, without the
need for greater accuracy, subjects accepted worse perfor-
mance but with lower stiffness. This contradicts the principle
of TOPS and suggests that minimizing the endpoint deviation
or endpoint error alone may not be the sole consideration for
task optimization. There is an extra dimension to stiffness
control, which increases accuracy but also leads to undesirable
factors. For example, the CNS may adopt criteria such as
minimization of fatigue (Dul et al. 1984), energy consumption
(Alexander 1997), commanded torque change (Nakano et al.
1999), or motor command change (Kawato 1992) in combina-
tion with the maximization of task achievement. Miyamoto et
al. (2002) and Nagata et al. (2002) showed that the TOPS-�
model, where a cost term in the motor command magnitude
multiplied by � is added to the task achievement term, gives
better prediction of trajectories than the TOPS model for a
large number of point-to-point movements. The TOPS-�
model combines maximization of task achievement and mini-
mization of motor command magnitude. The relative contribu-
tion of these two terms to the overall cost is determined by the
coefficient �, which is the weighting constant for motor com-
mand magnitude. If � is zero, the TOPS-� model is the same
as the TOPS model, which maximizes task achievement. If �
is large, the motor command magnitude is reduced at the
expense of performance. The TOPS-� model is consistent with
the current results in the sense that, without the need for the
greatest accuracy, subjects accept worse performance but with
lower stiffness, resulting in reducing motor command magni-
tude. Slightly different movement duration and velocity pro-
files for different co-contraction levels may also suggest that
desired trajectories were computed taking into account the
magnitude of stiffness.

The results of our experiments suggest that the CNS some-
how acquires the knowledge of the relationship between stiff-
ness level and size of endpoint deviation and error allowing it
to generate the stiffness necessary for difficult tasks. Further-
more, stiffness is reduced as long as the task demand is
satisfied under skilled and natural movements. Optimal imped-

ance control may be accomplished to generate the proper
trajectory for the task requirements through a trade-off between
the stiffness level and task achievement.

Generalization to multi-joint movements

The required movements were unnatural, and most subjects
never rotated only the elbow without friction or gravity. There
were three major reasons for this experimental setting. First, by
minimizing the gravity and frictional forces during the move-
ments, we could reliably estimate dynamic torques from sur-
face EMG recordings. This was important for stiffness estima-
tion via IMCJ. Second, by avoiding the shoulder freedom, we
did not need to record from many shoulder muscles, thus
shortening the experimental duration and simplifying the IMCJ
computation. Finally, and most importantly, the hand path was
forced to be identical between trials and subjects, and move-
ment variability could result only from changes in velocity
profiles. This is very important because we wanted to examine
the effect of stiffness control on movement accuracy while
minimizing changes in trajectory shapes. For multi-joint move-
ments, it is known that the hand paths themselves fluctuate
between trials and change systematically between subjects.
Laursen et al. (1998) and Gribble et al. (2003) examined
multi-joint movements and measured muscle activation by
EMG activity for different accuracy requirements. Although,
unlike us, they did not estimate joint stiffness and did not
examine voluntary co-contraction, they found qualitatively
similar results for the effects of accuracy requirements on
co-contraction. Thus we expect that at least a part of our results
could be extended to more natural movements.
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