
J Physiol 598.5 (2020) pp 913–928 913

Th
e

Jo
u

rn
al

o
f

Ph
ys

io
lo

g
y

TOP ICAL REV IEW

Expansion coding and computation in the cerebellum:
50 years after the Marr–Albus codon theory

Terence D. Sanger1 , Okito Yamashita2,3 and Mitsuo Kawato2,3

1Departments of Biomedical Engineering, Neurology, and Biokinesiology, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles,
CA, 90089, USA
2Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International (ATR), Hikaridai
2-2-2, ‘Keihanna Science City’, Kyoto, 619-0288, Japan
3Center for Advanced Intelligence Project (AIP), RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027,
Japan

Edited by: Ian Forsythe & Ole Paulsen

Purkinje
cells

In Out

Granule
cells

Cerebellar cortex

Dentate

IO

Abstract Fifty years ago, David Marr and James Albus proposed a computational model of
cerebellar cortical function based on the pioneering circuit models described by John Eccles,
Masao Ito and Janos Szentagothai. The Marr–Albus model remains one of the most enduring
and influential models in computational neuroscience, despite apparent falsification of some of
the original predictions. We re-examine the Marr–Albus model in the context of the modern
theory of computational neural networks and in the context of expanded interpretations of the
connectivity and function of cerebellar cortex within the full motor system. By doing so, we
show that the original elements of the codon theory continue to make important predictions for
cerebellar mechanism, and we show that evidence appearing to contradict the original model is
based on an artificially narrow interpretation of cerebellar structure and motor function.

Terry Sanger holds an SM in Applied Mathematics (Harvard), PhD in Electrical Engineering and Computer Science (MIT),
and MD (Harvard), with medical specialization in Child Neurology and Movement Disorders. He is currently Provost Professor
of Biomedical Engineering, Neurology, and Biokinesiology at the University of Southern California (USC), Director of the
Pediatric Movement Disorders Clinic and Deep Brain Stimulation Program at Childrens Hospital of Los Angeles (CHLA),
and the founding Academic Director of the Health Technology and Engineering program at USC (HTE@USC). His research
on disorders of developmental motor control is driven by his interest in finding new treatments for children with movement
disorders including dystonia, chorea, spasticity and dyspraxia. He has a particular interest in computational motor learning,
and the role of motor learning in recovery from childhood brain injury. Major focus areas of laboratory research include
wearable devices to promote motor learning, EMG-driven communication devices and assistive prosthetics, and modelling of
the electrophysiology of deep-brain stimulation.
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Abstract figure legend Overall structure of the cerebro-cerebellum. We propose that the role of the cerebellar cortex
and Purkinje cells is to modulate and select signals from incoming mossy fibres for transmission through the dentate
nucleus to a highly compressed representation on the outgoing fibres projecting to frontal cortex. Inferior olive (IO)
provides the training signals for plasticity.

Introduction

Fifty years after it was initially proposed, the theory
of cerebellar computational function of Marr (1969)
and Albus (1971) remains one of the most influential
and debated computational models, driving the field of
cerebellar study and providing an important example
of the role of Computational Neuroscience for the
investigation of brain function. The theory was developed
based on work by Eccles, Ito and Szentagothai (Eccles et al.
1967), and although there are notable differences between
the details of the Marr and Albus models, the under-
lying structural similarities have endured. Despite the fact
that empirical investigations have provided evidence that
is sometimes at odds with predictions of the theory, an
accepted alternative theory of cerebellar cortical function
has yet to emerge.

Shared components of the Marr and Albus models
include (1) plasticity at the granule cell (parallel fibre)
to Purkinje cell synapses, (2) control of plasticity by
climbing fibre activity, and (3) expansion recoding of
mossy fibre inputs by granule cells. The existence of
plasticity and its modulation by climbing fibres, as well as
other sites of plasticity within cerebellum, has been studied
(Ito et al. 1982; Hansel et al. 2001; Jörntell & Hansel,
2006) and reviewed comprehensively (Hansel et al. 2001;
D’Angelo, 2014; Badura & De Zeeuw, 2017; Raymond
& Medina, 2018). Here, we examine the implications of
expansion recoding in terms of more recent theoretical
and experimental results. We focus primarily on motor
function of the cerebro-cerebellum, which controls arm
and dextrous hand movements through its connections
to frontal cortex via the dentate nucleus and motor
thalamus.

Codon theory (Blomfield et al. 1970; Marr, 1970)
was named after the nucleotide triplets that comprise
the genetic code, and its mechanism was based on
earlier theoretical work of Brindley (1969). Re-coding
of the input into discrete codon patterns has been
proposed as a mechanism to permit flexible representation
and rapid learning of non-linear functions and pattern
discrimination through plasticity at the parallel fibre to
Purkinje cell synapses (Blomfield et al. 1970; Cayco-Gajic
et al. 2017). Theoretical analyses have examined the
computational importance of the degree of connectivity
(Billings et al. 2014; Litwin-Kumar et al. 2017).

Predictions of the original codon theory included:

(1) only a few granule cells are active at a time;
(2) minimal overlap occurs between the granule cell

representations of different states;
(3) granule cells encode unchanging functions of the

mossy fibre inputs.

There is experimental evidence that calls each of these
predictions into question. There appears to be plasticity
throughout the cerebellum, including at the mossy fibre
to granule cell synapses, and within the deep cerebellar
nuclei (Gao et al. 2012; D’Angelo, 2014; Sgritta et al.
2017; Raymond & Medina, 2018). Multi-cell recording
and imaging methods have shown that very high numbers
of granule cells are simultaneously active, sometimes
approaching 50% at any given time (Badura & De Zeeuw,
2017; Giovannucci et al. 2017; Knogler et al. 2017; Gilmer
& Person, 2018). As a result, there may be significant over-
lap between the pattern of activity in different states. Much
of these data have been obtained using calcium-sensitive
dyes with two-photon imaging methods. Because the time
constants of the dyes (hundreds of milliseconds) and the
relatively low rate of image sampling (30 ms or more per
frame) are slow compared to the synaptic integration time
scale for granule cells (10–30 ms), simultaneous activation
of granule cells will be overestimated (Cayco-Gajic &
Silver, 2019). We further claim that these predictions do
not constitute required elements of the codon theory,
and thus their falsification does not negate the theory.
When placed within the context of the function and
input–output connectivity of the cerebellum, we believe
that the codon theory continues to describe the central
computational elements that result in cerebellar function
for motor control.

Early learning models were based on Rosenblatt’s
perceptron theory (Rosenblatt, 1958), which postulates
gradual changes in network output as a result of pairing of
input and a training signal. Albus assumed the climbing
fibre training signal is an error signal so that Purkinje
cell output should be reduced when errors occur (Albus,
1971). Marr assumed the climbing fibre training signal is
a teaching signal so that Purkinje cell output should adapt
to emulate its teacher (Marr, 1969). Marr predicted that
climbing fibre activity would facilitate Hebbian long-term
potentiation (LTP) at the parallel fibre to Purkinje cell
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synapses, whereas Albus predicted that climbing fibre
activity would cause long-term depression (LTD). LTD has
been experimentally verified, although LTP occurs in the
absence of climbing fibre activity (Ito et al. 1982; Hansel
et al. 2001; Gao et al. 2012; Raymond & Medina, 2018).

An important omission of the Marr and Albus models
was a failure to place the cerebellum in the context
of the complete sensory-motor apparatus necessary for
biological movement. Since the Purkinje cell output is
inhibitory, it must inhibit something, so understanding
the incoming excitatory mossy fibre drive to the deep
cerebellar nuclei is essential to any model of function.
Furthermore, the role of any training signal on the
climbing fibres needs to be interpreted in the context
of the inputs and outputs of the deep cerebellar nuclei
and the eventual effect of those outputs. The elegant
computational hypothesis of supervised learning failed
to specify the origin or type of training signal, the need
for a non-linear mapping of the sensory data, the purpose
or encoding at the output, or the relationship between
the cerebellum and other components of the feedback
and feedforward control systems. Figure 1 shows a more
complete schematic illustration of the connectivity of
the cerebellum and its reciprocal connections to motor
cortices.

The striking expansion of representation in humans
from approximately 250 million mossy fibres to more

CTCCPC

Cerebellar cortex

IO

Purkinje
cells

Dentate

Sensory MotorCerebral cortex

Figure 1. Input and output connectivity of the dentate
nucleus of the cerebellum
Inputs arise on mossy fibres from spinocerebellar and other sensory
systems, as well as from cerebral cortex via the
cortico-ponto-cerebellar (CPC) pathway. Outputs from the dentate
nucleus project to cerebral cortex via the cerebello-thalamo-cortical
pathway (CTC) as well as to the red nucleus (not shown). The effect
is a loop between cerebral cortex and cerebellar dentate nucleus as
shown with the blue arrows. Dentate transmission is regulated by
the inhibitory output from the Purkinje cells, which is determined by
the granule cell input and the results of plasticity controlled by
climbing fibres from the inferior olive. Sensory and cortical inputs
from mossy fibres branch to supply the granule cells.

than 50 billion granule cells (Herculano-Houzel, 2009),
followed by compression through 15 million Purkinje
cells (Eccles et al. 1967) was the basis for the original
codon theory. Equally striking, however, is the dramatic
compression from 250 million mossy fibres at the input
to fewer than 1 million cells in the dentate nuclear output
(300,000 per side in the human; Andersen et al. 2004),
a compression ratio of approximately 400:1. Since the
dentate output may represent activity in ‘microzones’
with 100 or more Purkinje cells each (Apps et al. 2018),
the mapping from mossy fibre input to dentate nuclear
output may effectively exceed 1000:1 compression if
correlated Purkinje cell outputs lead to correlated activity
in the dentate nucleus. The significance and function
of this dramatic compression remain unexplained and
were not considered in the original theory. Figure 2 gives
an approximate quantitative illustration of the relative
numbers of cells and synapses in each of the cerebellar
components. There are approximately 200 billion synapses
between the mossy fibres and granule cells, 10 trillion
synapses between granule cells and Purkinje cells, and
5 billion synapses between Purkinje cells and deep nuclear
cells (Apps et al. 2018). Therefore, while plasticity occurs
throughout the cerebellum, there is 50 times more
potential for stored information at the granule cell to
Purkinje cell synapses than in all other regions combined,
perhaps justifying Marr’s and Albus’s emphasis on the
importance of plasticity at these synapses. We will revisit
the original proposed structure of the computations that
serve essential motor functions of the cerebellum. Just
as different muscles, despite similar structure, have very
different functions depending on their origin, insertion
and innervation, so we believe cerebellum may have a very
different function for eye movement, balance, reaching
and cognition despite its homogeneity of structure. The
challenge is to propose a single computational structure
that can subserve many different functions. We will focus
primarily on the function of the cerebellar hemispheres,
the cerebrocerebellum, projecting to dentate nucleus and
believed to be most closely related to voluntary control of
the upper extremity, speech and some aspects of cognitive
function.

Behavioural functions of the cerebellum. Clues to
the behavioural function of cerebellum come from
observations of neurological disorders, including focal
lesions (Holmes, 1917), Purkinje cell degeneration (Boder
& Sedgwick, 1958), metabolic disorders (Steinlin et al.
1998) and disorders of cerebellar development (Fogel
& Perlman, 2007; Machado et al. 2015). Common
clinical signs included under the heading of ‘cerebellar
ataxia’ include poor coordination of multijoint movement
(dyssynergia), intention tremor, inappropriate magnitude
of movement (dysmetria), poor timing or rhythmicity
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(dysrhythmia), and inability to perform rapid alternating
movements (dysdiadochokinesia) (Schmitz-Hübsch et al.
2006; Machado et al. 2015). Recent clinical studies
document cognitive findings that form the ‘cerebellar
cognitive affective syndrome’, which includes deficits
of executive function (including abstract reasoning,
context-shifting, sequencing and planning), language
(including deficits of grammar as well as fluency), memory
(particularly spatial memory) and affect (Schmahmann &
Sherman, 1997, 1998; Kraan, 2016).

From deficits present in ataxia and similar disorders,
we can infer some possible roles of the cerebellum in
motor control. These include adaptation to biomechanical
context (Bastian, 2006), context-dependent modulation
of motor activity (Wolpert et al. 1998), coordination of
movement across multiple joints (Bhanpuri et al. 2014),
control of the dynamics of movement (Kawato et al. 1987;
Middleton & Strick, 1998; Doya, 1999; Morton & Bastian,
2007) and cognitive tasks (Ito, 2008).

An important distinction between different functions
is the need for different representations of information
(Giovannucci et al. 2017). Control of muscles
requires graded continuous activity that depends on
accurate representations of position, velocity and force.
Context-dependent movement, context-shifting, abstract
reasoning and executive function are more likely to depend
on discrete categorized representations of information.
Therefore motor control will tend to have continuous
representations that require calculations of smooth
functions, while abstract reasoning will tend to have
binary representations that require calculations of Boolean
logical operators. It is possible that some functions

such as context-dependent motor control will require a
combination of smooth and Boolean approximation. The
original codon representation suggested by Marr (1969)
and the cerebellar model articular controller (CMAC)
architecture suggested by Albus (1975) both assume that
information is encoded by binary patterns over the set of
granule cells. As with many subsequent extensions of these
theories (Houk et al. 1996), we emphasize that rate-coded
or bursting activity in granule cells could represent the
smooth continuous functions more relevant for motor
control. Throughout the discussion below, we will address
both continuous and discrete calculations that may be
performed by the same cerebellar structure.

Motor functions of the cerebellum. The output of the
cerebellum is generated exclusively by the deep cerebellar
nuclei. Output to frontal cortex arises from the dentate and
anterior interpositus nuclei, which in turn receive their
input from cerebrocerebellar cortex (Lu et al. 2007) (see
Fig. 1). Since the incoming mossy fibres synapse within the
deep nuclei as well as within the granule cell layer (Zhang &
Linden, 2006) and the Purkinje input to the deep nuclei is
purely inhibitory, there is increasing recognition that for at
least some functions, the role of cerebellar cortex may be as
a modulator of transmission or learning in the deep nuclei,
rather than as the desired output itself (Ito, 2006). In the
context of oculomotor control, it has been pointed out that
control and learning can occur in the absence of cerebellar
cortical input (Ito, 1984). This is presumably mediated by
the direct connection between mossy fibre inputs and the
deep cerebellar nuclei that provide the outputs (Zhang &

Mossy fibres (250 million)

Purkinje cells
(15 million)  

Dentate nucleus (<1 million)

......

200 billion
5 billion

10 trillion

Granule cells (50 billion)

Figure 2. Illustration of the relative
numbers of cells and synapses in each
region of cerebellum
The area of each grey rectangle is
proportional to the approximate cell count
in that region. The area of each blue inset
illustrates (but not to scale) the relative
number of output synapses from that
region. Note that the dentate nuclei are
almost invisible due their relatively small
counts and size.
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Linden, 2006; Requarth &and Sawtell, 2011; Raymond &
Medina, 2018).

The cerebellum is not directly responsible for motor
output to muscles. We propose that the cerebellum
provides input to cortical and brainstem motor areas that
is appropriate for correction of error during movement.
The dentate nucleus projects to the red nucleus in
the brainstem, and via thalamus to frontal cortex and
striatum (Rand, 1954; Kelly & Strick, 2003; Gallay et al.
2008). In return, cerebral cortex (and possibly basal
ganglia) project back to the cerebellum via pontine relay
centres (Kelly & Strick, 2003; Palesi et al. 2017). The
cerebellum is thus a relay station from mossy fibre input
to deep nuclear output, with the relay modulated in
a highly context-specific way by the cerebellar cortex.
This modulation can provide gating (allow or prevent
transmission), gain control (modulation of pass-through
signals), multiplexing (selection of which of many possible
signals to transmit) or compression (mixing input signals
to produce relevant outputs). The multiplexing and
compression functions may be particularly important
because the number of mossy fibre inputs (250 million) far
exceeds the number of dentate nuclear outputs (300,000
per side in human; Andersen et al. 2004). For perspective,
it is worth realizing that the number of output neurons
is fewer than the number of neurons in the substantia
nigra compacta that project to and modulate striatal
function. Therefore it seems likely that the output from
the cerebellum is unable to provide detailed patterns
for control of frontal cortex, but may rather provide
widespread modulation, perhaps with precise timing.

Removal of some or all of the cerebellum in paediatric
tumour patients is compatible with complete neurological
recovery in as many as one-third of cases (Cochrane
et al. 1994; Sonderkaer et al. 2003). The motor system
is capable of learning and control, including feedback
control, in the absence of a fully functioning cerebellum
(Criscimagna-Hemminger et al. 2010). Recent evidence
supports the hypothesis that at least some climbing fibres
encode motor error (Giovannucci et al. 2017; Herzfeld
et al. 2018). If climbing fibres indicate error, then this
is error due to the current inability of the remainder
of the motor system to reduce that error. Therefore
we might imagine a system in which the cerebellum is
called upon to correct errors only when the rest of the
system is unable to do so. This could occur while the
rest of the system is learning, or it could occur following
learning if the rest of the system does not possess the
computational structures or data connectivity sufficient to
reduce certain types of error. In either case, an important
role of the cerebellum could be as a rapid computational
‘patch’ to either temporarily or permanently permit
correction or compensation for specific motor outputs
in specific situations. It can do this by providing access
to context-specific sensory or state data in the precise

situations in which these data are needed. This hypothesis
suggests an interpretation of climbing fibre input as a
request for help; it could encode a specific request for more
or less activity, or a more general request for information or
computational support. Depending on the way in which
error information is calculated, other areas of the brain
that learn more slowly than the cerebellar cortex might
eventually catch up, reduce the errors to zero, and the
cerebellar cortex would no longer need to perform those
calculations (see Fig. 3). This could be one explanation
for the transient nature of representations in cerebellum
following initial exposure to new tasks (Raymond &
Medina, 2018).

Stability requirement. The brain must be able to protect
the body from harm (Sanger, 2014). A significant risk
to the body is the presence of multiple positive and
negative feedback loops that link sensory information to
motor output. It is striking that despite these feedback
loops, healthy vertebrates are almost never destabilized
by the environment to exhibit involuntary oscillation or
uncontrolled increases in output. Nevertheless, instability
is a constant risk for any motor control system that
includes feedback. This is particularly true in biological
systems for which the very large dimensionality of sensory
input could drive, either through context or by direct
reflexes, any of the muscles contributing to motor output.
An essential component of control and stability is to
limit the sensory influence on motor output to only the
components of the sensory input that are relevant to
the task being performed. Failure to regulate the gain of
sensory input or to limit the influence of irrelevant input
will lead to instability and uncontrolled variability (Sanger
et al. 2005).

Network A

Network B

Network C

+

–Desired
Actual

Error

OutputPlant

Figure 3. Illustration of the effect of multiple learning
networks in parallel
The output is generated by the sum of the network outputs, and
comparison with the desired output provides an error that can be
used to train all the networks. As soon as any of the networks
succeeds in reducing the error to zero, the remaining networks do
not need to train further; the network that learns fastest and most
accurately will become responsible for reducing error.
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There is a continual competition between LTP and
LTD at the parallel fibre to Purkinje cell synapses, with
non-specific LTP competing with highly context-specific
LTD (Hansel et al. 2001; Jörntell & Hansel, 2006). Since
the Purkinje cell output inhibits the deep nuclei, this
mechanism can be interpreted as inhibiting cerebellar
output except in very specific contexts indicated by
climbing fibre activity (Tyrrell & Willshaw, 1992). This
is consistent with the observation of high spontaneous
firing rates in Purkinje cells, particularly in the absence of
climbing fibre input (Montarolo et al. 1982; Cerminara &
Rawson, 2004; Zhou et al. 2014). High Purkinje cell firing
rates provide tonic inhibition to the deep cerebellar nuclei,
potentially preventing transmission of data from mossy
fibres to the thalamus. By inducing LTD, the climbing
fibre inputs permit very selective information trans-
mission. Such a structure may be particularly important
for reducing the risk of instability, because the overall gain
in the sensori-motor loop passing through cerebellar deep
nuclei is kept low except in very specific circumstances.

Computational implications of the codon theory

A striking feature of the human cerebellar cortex is not only
the 200:1 expansion from 250 million mossy fibre inputs
to more than 50 billion granule cells, but the fact that
each granule cell contacts only a small number of different
mossy fibres (typically 4, with a range from 1 to about
7) (Eccles et al. 1967; Marr, 1969; Herculano-Houzel,
2009; Badura & De Zeeuw, 2017; Knogler et al. 2017;
Litwin-Kumar et al. 2017; Raymond & Medina, 2018).
From an anatomical viewpoint, this does not have to
be the case; there are certainly many areas in brain with
much higher connectivity. This suggests that there is some
computational reason why such a small number is needed,
and why larger numbers do not occur (Billings et al.
2014; Cayco-Gajic et al. 2017; Litwin-Kumar et al. 2017;
Sawtell, 2017). In the following sections we explore the
computational consequences of this structure.

Similar to Rosenblatt’s perceptron theory, the
Marr–Albus theory is based on Purkinje cells forming a
synaptically weighted linear combination of the granule
cell inputs. This is therefore a regression model, and the
optimal weights will be formed from the regression of
the desired outputs on the input, as we discuss below in
the section on learning. We emphasize that although the
underlying computational structure performs regression,
this same structure can be used to perform either
smooth function approximation or Boolean function
approximation, depending on whether the inputs and
outputs are interpreted as continuous or binary. In the
following, we discuss how the cerebellar cortical structure
can be used both for smooth function approximation and
for Boolean function approximation.

Smooth function approximation. The original Marr–
Albus theory posited that granule cell connections were
randomly selected codons that could be used to represent
higher-order features of the input. We do not disagree.
However, we extend the Marr–Albus model to include
non-Boolean functions of the input, since dynamic control
is based on calculation of continuous variables such as
torque or muscle force. The original Marr codons were
Boolean combinations of the instantaneous mossy fibre
firing pattern (Marr, 1969; Tyrrell & Willshaw, 1992),
extended by Albus to include Boolean combinations of
the bits of the binary representation of continuous inputs
(Albus, 1975). There are a number of different ways to
represent non-binary data in neural firing patterns. The
simplest is through the use of rate coding, in which the
firing rate (or probability of firing) is proportional to
the encoded signal. There are examples of rate coding
in cerebellar granule cells (Arenz et al. 2008), and we will
use rate coding here for illustration. Other non-binary
codes include temporal codes, coincidence codes, inter-
spike interval codes and burst codes (Rancz et al. 2007).

Suppose the granule cell output rate can be modelled as
a non-linear-output weighted sum

g i = σ

⎛

⎝
4�

j =1

bij mj

⎞

⎠ (1)

where gi is the ith granule cell output, mj is the mossy
fibre input firing rate, bij is the weight, and σ is a
non-linearity. If we consider the Taylor expansion σ(x) =
a0 + a1x + a2x2 + . . ., then we see that depending on the
nature ofσ the output may have linear or polynomial terms
in its output. These terms will include mn1

1 mn2
2 mn3

3 mn4
4 that

indicate the non-linear interactions between mossy fibre
inputs for integer values of ni . If the granule cells are
summed by the Purkinje cell, then the Purkinje cell will
fire when

θ <

�
�

k

wkm
n1,k

1,k m
n2,k

2,k m
n3,k

3,k m
n4,k

4,k

�

(2)

where θ is the firing threshold, and wk is the weight for
the kth monomial, which may be carried on multiple
parallel fibres. Therefore we see that this Purkinje cell
output represents a fourth order polynomial in the mossy
fibre inputs. The number of granule cells is insufficient
to represent all possible fourth order monomials of the
mossy fibres, so it is possible that plasticity at the mossy
fibre to granule cell synapse selects monomials that occur
with higher likelihood.

Calculation of force output requires access to position,
velocity, acceleration and opposing force, so fourth
order non-linear interactions may be required to solve
dynamics problems. Mossy fibre inputs may indicate
different derivatives of elements of state, or time-delayed
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representations of state (van Beugen et al. 2013). For
instance, calculation of the required torque to drive a
serial-link manipulator such as an arm requires calculation
of inertial forces due to joint angular acceleration, as
well as centrifugal and Coriolis forces. Acceleration forces
depend on the second derivative of joint angle. Coriolis
forces depend on the products of the first derivatives of
interacting joints. Therefore successful control of reaching
requires knowledge of the first and second derivatives of
the angle of all joints, as well as cross products between
all interacting joints. These interactions must be learned
in each behavioural context, because they change, for
example, in a viscous environment (such as in water),
an inertial environment (such as when holding a heavy
object), or a mechanically constrained environment (such
as when wearing a long-arm cast).

Boolean function approximation. If the mossy fibre
inputs represent discrete states rather than continuous
variables, then granule cells will represent a Boolean
combination of up to four of the inputs. For Boolean
functions, the inputs and outputs are interpreted as a 1
if there is a spike during a particular time interval, and 0
otherwise. Expansion coding enables linear combinations
of binary inputs to represent a more complete set of
Boolean functions. Typical uses of Boolean functions
include pattern separation, classification, or any task for
which the desired output is a discrete or categorical
variable.

Depending on the threshold for Purkinje cell firing,
a linear combination of binary inputs could reflect
the conjunction (OR) of the inputs, the disjunction
(AND) of the inputs, or a combination of OR and
AND. For illustration, suppose the granule cell represents
disjunction (AND), meaning that all four mossy fibres
would have to fire simultaneously to trigger the granule
cell. Then if the Purkinje cell performs a conjunction (OR)
of the parallel fibres, the result is disjunctive normal form:

∨
k

m1,k ∧ m2,k ∧ m3,k ∧ m4,k (3)

which is the Boolean equivalent of a fourth order poly-
nomial. It is not necessary that each granule cell performs
a disjunction (AND) of the mossy fibre inputs, so it is
probably more accurate to write:

∨
k

bk(m1,k, m2,k, m3,k, m4,k) (4)

where bk is the Boolean function computed at the granule
cells. The effect of the Boolean calculation is the same:
the Purkinje cell will inhibit the deep cerebellar nuclei
whenever some or all of the input conditions are satisfied.
Conversely, the Purkinje cell will not fire only if most of

the connected inputs are not firing, so the deep cerebellar
nuclei are disinhibited whenever:

∧
k

b̄k(m1,k, m2,k, m3,k, m4,k) = 1 (5)

Synchrony between firing of different Purkinje
cells (Person & Raman, 2012a,b) would represent
simultaneous Boolean computations, leading to the
intriguing hypothesis that the population output is a
synchronized digital representation.

There is evidence from recordings that multi-modal
interactions of multiple sensory modalities occur in
granule cells (Huang et al. 2013; Ishikawa et al.
2015). Therefore granule cells need access to several
mossy fibre inputs in order to be able to perform
multi-modal processing. They can pass multi-modal
information between multiple parts of the body and
multiple representations in order to fine-tune the selection
of specific behavioural contexts. Parallel fibre inputs
whose effect on the Purkinje cell have been suppressed
through climbing fibre-induced LTD can be active without
necessarily causing Purkinje cell firing, and thus they
reflect multi-modal components of input patterns whose
transmission is permitted.

Expansion recoding. Pattern separation has been
identified as an important justification for expansion
coding (Billings et al. 2014; D’Angelo, 2014; Cayco-Gajic
et al. 2017; Gilmer & Person, 2018; Cayco-Gajic & Silver,
2019). Discrete patterns are more likely to be linearly
separable in a high-dimensional space, and therefore
expansion coding enhances the ability of a linear Purkinje
cell model to have flexible learned responses to differing
inputs. For example, Minsky & Papert (1969) showed that
no linear function of two binary inputs a and b could
compute exclusive-OR, whereas expansion to include the
additional input a and b resolves this problem.

The calculation of Boolean or polynomial functions
from the mossy fibre inputs leads to a potentially much
larger number of functions than the original set of inputs.
This phenomenon is well-known in mathematics, and
was the original concept behind the ‘radial basis function’
neural network algorithm (e.g. Broomhead & Lowe, 1988).
The underlying idea is that any desired function y(x) can
be approximated as the weighted sum over a set of basis
functions g i(x):

y(x) ≈ ŷ(x) =
N�

i=0

wig i(x) (6)

If the basis set {g i} (represented by the granule cell
outputs from eqn (1)) is sufficiently rich, then the expected
error E [y − ŷ] can be made arbitrarily small by choosing
a sufficient number of basis functions in eqn (6). The
number of possible basis functions N is typically much
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larger than the dimensionality M of the input x. In
extreme cases, there can be an infinite number of basis
functions even for x with only one dimension, as in the
Taylor expansion of a univariate function g i(x) = xi . The
generalization to multivariate x leads to the polynomial
basis. Other examples of multivariate bases include the
Fourier basis g i(x) = sin(f ix + φi), radial basis functions
g i(x) = h(||x − xi||), wavelet expansions, and generalized
splines. The basis proposed by Albus for the CMAC
architecture is a particularly interesting one, consisting
of all possible Boolean combinations of the bits of the
digital representation of x (Albus, 1975). Unlike the pre-
ceding examples, this allows discontinuous functions and
perhaps for this reason it has shown utility for the control
of robotic manipulators.

Non-linear basis function approximation methods can
be considered examples of ‘expansion recoding’. They
non-linearly transform an input x of dimension M into
an expanded code g of dimension N >> M. While certain
codes may have a sparseness property (for which only
a subset of the outputs g i are non-zero), this is not a
requirement of expansion recoding, and many common
codes (including the Fourier and Taylor bases) do not
have this property. The purpose of expansion recoding
for function approximation is not sparseness, but rather
the ability to approximate a large class of functions. For
example, the Taylor expansion can approximate arbitrary
analytic functions to arbitrary accuracy, and the Fourier
expansion can approximate arbitrary cyclic functions
to arbitrary accuracy. In the absence of (non-linear)
expansion recoding, only linear functions

�
wixi can

be approximated, and the set of linear functions is
not sufficient for motor control. In the absence of
expansion recoding, certain Boolean functions cannot be
approximated (this was the basis for Minsky and Papert’s
famous criticism of the Perceptron theory; Minsky &
Papert, 1969).

For 18 years until the publication and widespread
investigation of multilayer perceptrons (Rumelhart et al.
1987), the codon theory, CMAC architecture and other
basis-function representations were the only biologically
inspired examples of universal non-linear function
approximators. With our current appreciation of the larger
class of such approximators and their importance and
utility for biological and robotic control, we now recognize
that the codon theory implements expansion recoding and
fourth order polynomial approximation. This permits the
cerebellum to calculate non-linear and non-somatotopic
functions that are inserted as needed to modulate and
correct errors in the otherwise (approximately) linear and
somatotopic dynamics implemented by other motor areas.
When the codon theory is interpreted in the broader
context of expansion recoding, it is synonymous with
basis-function representations and contains all of their
power and flexibility.

Modulation of dynamics. When non-linear basis-
function approximators are inserted into a control
system, they permit control and stabilization of dynamics.
Consider a linear system

ẋ = Ax + Bz (7)

where x is cortical state and z is sensory input. The
matrix A represents local recurrent connections that
implement dynamics within cerebral cortex, and the
matrix B represents the transmission and transformation
of sensory data z to the cerebral cortex. If there are only
local somatotopic interactions, then the matrices A and B
will be approximately diagonal, which permits only very
limited control possibilities. Such a system would not be
able to compensate for interactions between the joints of
a multi-joint manipulator, for example, and it would be
expected to show poor coordination, possibly similar to
what is seen in cerebellar ataxia.

This suggests that one role of the cerebellum is to
augment dynamics with non-linear and non-local inter-
actions (Kawato et al. 1987; Kawato & Gomi, 1992;
Ishikawa et al. 2015). In order to maintain consistency
with anatomical structures for cortically controlled
movement, we include separate terms for the cerebellar
and extracerebellar dynamics. Therefore suppose that Ax
and Bz are the state update and sensory input to cortex
that are independent of cerebellum (eqn (7)), and let Cx
and Dz be the state update and sensory input to cortex
that are routed from mossy fibre connections to the deep
cerebellar nuclei and back to cortex. A, B, C and D are all
assumed to have somatotopy, in the sense that localized
inputs project to localized outputs. This means that these
matrices are all near-diagonal.

Now let φC(x, z) and φD (x, z) be the non-linear
functions calculated by the outputs of Purkinje cells that
modulate Cx and Dz, respectively. Then we can write the
combined dynamics as:

ẋ = Ax + Bz + (1 − φC)Cx + (1 − φD )Dz (8)

where φC(x, z) and φD (x, z) are diagonal matrices
multiplying Cx and Dz corresponding to the assumption
that the Purkinje cell outputs are modulators of signals that
are transmitted through the deep cerebellar nuclei. The
terms are written as (1 − φ) to correspond to inhibitory
outputs since greater firing rates of the Purkinje cells φ

correspond to greater inhibition of the deep cerebellar
nuclei (with the assumption that φ ≤ 1). φC and φD can
depend on both cortical state x and sensory state z, and they
can calculate smooth modulation functions or Boolean
on/off functions. Time-dependent, frequency-dependent,
or delayed inputs x(t − δ) are possible, and such
inputs provide additional non-linearities capable of
implementing time-dependent dynamics (Requarth &
Sawtell, 2011; van Beugen et al. 2013; Sawtell, 2017).

C⃝ 2019 The Authors. The Journal of Physiology C⃝ 2019 The Physiological Society



J Physiol 598.5 Computation in cerebellum 921

In the absence of climbing fibre synaptic modulation,
the Purkinje cells will fire for almost all mossy fibre inputs
(see discussion below). Thus φC and φD will by default
be close to maximal firing leading to inhibition of trans-
mission through the deep cerebellar nuclei Cx and Dz.
Therefore the system defaults to stabilization of dynamics,
preventing excessive feedback gain (A + C)x or (B + D)z.

φC and φD not only calculate non-linear inter-
actions, but also allow non-somatotopic or multi-modal
elements of x and z to have influences that affect distant
parts of the body. This is particularly important for
balance and multi-joint interactions at higher speed.
Equation (8) shows that 1 − φC and 1 − φD could be
zero (corresponding to complete Purkinje cell inhibition
of deep cerebellar nuclei) whenever the linear dynamics in
eqn (7) are sufficient for behaviour. Equation (7) will be
expected to perform well for slow, single-joint, or smooth
cyclic movements since it implements a linear filter for the
sensory input z. For movements that are rapid, multi-joint,
or require sudden transitions, non-linear functions such
as those in eqn (8) are required, and this will necessitate
cerebellar intervention and reduction in Purkinje cell
inhibitory outputs.

This structure permits great flexibility of control. In
principle, eqn (8) could calculate

ẋ = f (x, z) (9)

for any function f, which is the most general form of a
non-linear dynamic system. Equation (8) predicts that
complete cerebellar loss that includes injury or loss of the
deep nuclei will lead to loss of movement precision and
coordination of non-local interactions, but would not lead
to total loss of control since the basic cortical dynamics in
eqn (7) would be preserved. However, it also predicts that
loss or injury of Purkinje cells alone could be much worse,
since disinhibition of the deep nuclei could cause excessive
gain in eqn (8) and potentially lead to destabilization,
tremor, or involuntary sustained muscle activation.

Learning algorithm

Neural-inspired learning algorithms have been studied
extensively. Mathematical models of un-normalized LTP
are unstable and can grow without bound, but models
of un-normalized LTD can never be unstable because
synaptic strength cannot decrease below zero. The pre-
sence of Golgi cells and other interneurons can be used to
stabilize the firing rates of both the Purkinje cells and the
granule cells (Albus, 1971; Hansel et al. 2001; Ito, 2006).
The result of climbing fibre activation is to reduce via LTD
the effect of a particular set of basis functions (granule
cells) on the Purkinje cell, selectively disinhibiting only in
very specific contexts.

Effect of expansion coding on learning. Most of the
literature on granule cell encoding assumes that the
decoding is performed by a linear mixing operation at
the Purkinje cells. Equation (6) is a linear mixture of
non-linear functions gi (x), and all the non-linearity arises
from the granule cell input layer gi, with linear mixing
performed by weighted summation at the Purkinje cell.
Equation (6) shows that once the granule cell outputs gi

are calculated, the output ŷ is formed by a weighted linear
combination that can be written wT g. The optimal weights
w∗ in the linear approximation are given by the regression
of the desired output vector y on the vector of granule cell
inputs g:

w∗ = E [gg T]−1E [gyT] (10)

where E [gyT] is the cross correlation between y and g, and
E [gg T]−1 is the inverse of the autocorrelation matrix of g.

Under the assumption that the encoding g(x) is not
changing, the weights w can be learned through several
different iterative algorithms. The least-mean-square
(LMS) or Widrow–Hoff rule (Widrow & Hoff, 1960)
is a recursive learning algorithm that performs gradient
descent on the mean-squared error E [||y − wTg ||2] and
is given by:

dw

dt
= γg(x)(y(x) − ŷ)T (11)

where γ is a learning rate, y(x) is the desired output for
state x, ŷ = wTg(x) is the current approximation, and
dw/dt is the instantaneous change in the weights. LMS
has the advantage of being a local learning algorithm,
meaning that only information present at the granule
cell to Purkinje cell synapse is needed for learning. Inter-
estingly, the rate of convergence of this algorithm is not
affected by size, sparseness, or orthogonality of the basis
g(x), but rather it depends only on γ and the eigenvalues
of the cross-correlation matrix E[ggT] (Haykin & Widrow,
2003).

If the inputs are uncorrelated so that E[ggT] is diagonal,
then w∗ = E[gyT] and the desired output can be learned
using the simpler algorithm:

dw

dt
= γḡ yT (12)

where the total weight ||w|| is normalized, and ḡ is the
normalized granule cell input (a process that has been
attributed to the Golgi cells; Albus, 1971; Hansel et al.
2001; Ito, 2006; D’Angelo, 2014). (To obtain the exact
correlation requires ||w|| = E [||y||] and E [||ḡ || = 1].)
The advantage of this algorithm is that it does not depend
on calculation of the network output ŷ but requires only
the teaching signal y. Therefore the climbing fibres can
represent the desired output y and not the error signal
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y − ŷ. Although error signals may be present (Herzfeld
et al. 2018), y could be a performance error that needs to
be corrected, rather than the explicit Purkinje cell output
error. Lack of requirement for explicit representation of ŷ
or y − ŷ in the climbing fibres would solve the theoretical
problem that the inferior olive (the source of the climbing
fibres) has only indirect access to the Purkinje cell output
ŷ via transmission through deep cerebellar nuclei which
compress and mix the Purkinje outputs with mossy fibre
inputs. Since expansion coding tends to decorrelate inputs,
one important purpose of the codon representation may
be to permit use of eqn (12) for learning.

Generalization. Generalization describes the behaviour
of the network when presented with previously unseen
data. While smooth basis functions (including radial basis
functions, and the Fourier and Taylor bases) provide
some local generalization, we expect that for stability,
generalization in the cerebellum will be designed to inhibit
the output for any data points that are far from pre-
viously seen data. Given the large number of granule
cells and the constant pressure of LTP to increase their
ability to drive Purkinje cell inhibition, this is likely to
happen automatically. The system starts out as inhibiting
everything, with full generalization of inhibition over all
possible mossy fibre inputs. It then selectively permits
disinhibition (Tyrrell & Willshaw, 1992). This is a sculpting
operation: the default behaviour is globally generalized
inhibition, which is the safest solution. The Appendix
shows an example of a rapid sculpting algorithm of this
type. Generalization is determined not only by the granule
cell representation, but also by the representation that is
incoming on the mossy fibres. Mossy fibres of cortical
origin entering via the pons will reflect the representation
in the cortex (Kennedy et al. 2014; Giovannucci et al.
2017).

There may not be a single unique signal transmitted
on the climbing fibres (Simpson et al. 1996). In some
cases, this signal is postulated to be the sensory prediction
error: the difference between the predicted sensory result
of an action and the actual sensory result. If this were used
for training in eqn (12), it would lead to the cerebellar
output reflecting computations required for correction
of forward dynamics. Inferior olive has a rich sensory
representation (Gellman et al. 1983), although it is not
clear whether sensory prediction error is directly encoded.
On the other hand, if the climbing fibres represent an
error computed in motor output coordinates, as might
be the case for oculomotor control, then the output of
the Purkinje cells will resemble computations required for
inverse dynamics (Herzfeld et al. 2018). The output of a
(potentially low-quality) feedback controller is sufficient
to produce motor error signals for this purpose, and
this is the basis for the feedback-error learning algorithm

(Kawato et al. 1987; Miyamoto et al. 1988). If the errors
reflect higher-level behaviours such as social behaviour,
then the Purkinje cell outputs will represent higher-order
functions (Wolpert et al. 2003). If the climbing fibres
indicate the presence of error but not its sign, then the
output will predict the presence of errors in each context,
and the weightings and sign would have to be learned
by a downstream network. If the climbing fibres indicate
a forward-model prediction of future state, then the
Purkinje cells will learn to predict (and cancel) the sensory
effects of self-generated actions (Requarth & Sawtell, 2011;
Kennedy et al. 2014). If the climbing fibres indicate the
expected reward in a given state, then the output will learn
a value function of state that can be useful for optimal
control, as in temporal-difference learning. In all cases, the
outputs will be predicted to show generalized inhibition
with very context-specific disinhibition that is related to
everything from low-level motor state to high level social
and behavioural context.

An assumption of the original Marr and Albus models
was that the granule cell representation was random and
unchanging. While this can be effective for computation,
it is likely that many random combinations of mossy
fibre inputs would never occur or would have little use
for computation. Therefore it is not surprising to find
plasticity at the mossy fibre to granule cell synapses that
could either be unsupervised (reflecting the statistics of the
mossy fibre inputs) or supervised (tailored to the needs of
the specific functions to be approximated) (Sgritta et al.
2017). We note that learning a granule cell representation
would be expected to increase the representational and
computational power of the network (Schweighofer et al.
2001; D’Angelo, 2014).

Role in cognition

The role of the cerebellum for cognitive function has
been increasingly recognized (Schmahmann & Sherman,
1997). The effects of cerebellar injury on multiple
higher-order functions including behaviour, language and
affect suggests a strong modulatory or computational
role (Leiner et al. 1993; Schmahmann & Sherman,
1997, 1998; Kraan, 2016). The computational basis of
higher-order cognitive and language processing is a
matter of speculation. Presumably cerebellar influence is
mediated through connections from the ventral dentate
nucleus to prefrontal cortex (Middleton & Strick, 2001).
Higher cognitive function is less dependent on sensory
input compared with lower-level motor control, and
therefore we expect that the mossy fibre inputs to
prefrontal-projection regions of dentate nucleus and
cerebellar cortex will contain data from cerebral cortex,
most likely prefrontal and higher order association areas.
The cerebellum is connected in a way that permits
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modulation of cortical dynamics which can be modelled
similar to eqn (8) as:

ẋ = Ax + (1 − φ(x))Cx (13)

where x represents the cortical state, Ax is the internal
cortical dynamics, and φ(x)Cx is the component of the
dynamics controlled by cerebellum. Just as for motor
control, the cerebellum in this case allows non-linear
and non-local information to contribute to the ongoing
cortical dynamics. To prevent oscillation or saturation of
the cortical activity, the positive cerebellar feedback loop is
inhibited as much as possible, with disinhibition permitted
only in very specific situations.

The nature of the climbing fibre training signal for
cognitive function is not known. One can conjecture that it
could be used to train forward or inverse models of human
behaviour, social interactions, or planned sequences of
action. Since language involves the manipulation of
discrete symbols, much of language processing would be
likely to use Boolean basis functions, whereas emotional
states or social interactions might be more likely to use
continuous basis functions.

Conclusion

We propose that the cerebro-cerebellar cortex is an
inhibitory modulator of incoming sensory signals and
state feedback signals that drive cerebro-cortical dynamics.
We propose that it does so by using expansion coding
and a non-linear basis function representation to identify
specific states. When these states occur, the Purkinje cell
output modulates, selects or multiplexes task-relevant
signals in the deep cerebellar nuclei. The structure
permits great flexibility, allowing smooth inputs or binary
inputs, computation of continuous functions or Boolean
functions, and learning many different types of functions
depending on the nature of the teaching signal provided
by the climbing fibres.

Our hypotheses remain consonant with the initial pre-
dictions of Marr and Albus. The expansion recoding from
mossy fibres to granule cells continues to serve the purpose
of allowing non-linear (or Boolean) interactions to be
modelled, and for learning to occur using a Hebbian
algorithm equation 12 rather than the more complex
supervised learning rule equation 11. The main difference
we propose is that we see the overall purpose as being
highly selective disinhibition, and we interpret the role
of LTP as creating a default of widespread inhibition and
stabilization. We propose that this is beneficial because
it creates maximum safety for survival by reducing the
chance of dynamic instability. The learning algorithm can
be reinterpreted as sculpting small regions of disinhibition
from a large region of inhibition.

In light of the above discussion, we suggest that
Marr’s and Albus’ original predictions based on the
codon theory including sparse and unchanging granule
cell representations are not necessary consequences of
expansion recoding, and are not essential to learning or
representation. Therefore their falsification does not falsify
the codon theory. We suggest that the true significance
of the codon theory lies in the computational power of
expansion recoding. When cerebellar function is inter-
preted in the context of both smooth and Boolean
computation, and when the inhibitory effect of the
Purkinje cells on the deep cerebellar nuclei is recognized,
the persisting implications of the Marr–Albus model
become evident.

We hypothesize that the overall purpose of the
cerebellum is to provide otherwise unavailable signals
to drive the temporal dynamics of multiple cerebral
cortical and brainstem regions. Cerebellum is called to
action when other brain regions do not have access to
the data or computational ability required to perform
their functions. In this interpretation, the climbing fibre
input can be considered a call for help; it indicates
computational assistance is needed, and the cerebellum
responds by supplying the most selective and specific
information in order to solve the problem without creating
instability. The cerebellum works in tandem with the other
components of motor function to ensure stability and to
guarantee selectivity of context and appropriateness of
sensory and state data for computation and behaviour.
The Marr–Albus model continues to provide a strong
theoretical basis for how this can be accomplished.

Appendix: Sandcastle Algorithm

Consider a non-orthogonal and possibly non-sparse code
that takes random Boolean functions of N-dimensional
input x, but which is allowed to depend on at most four
elements of x. There are N4 possible basis functions, so a
complete code is not possible, but instead we can construct
a random code φ(x). Each φi(x) is quite simple. If it is only
AND gates then it will be selective for a particular pattern.
If it is only OR gates then it will respond to any patterns
with an on bit. All possibilities in between are allowed.
This is intended to model the granule cell responses to the
incoming mossy fibres.

Now the Purkinje cells can implement an AND function
of a subset of φi(x), or an OR function of a subset of
φi(x), or both. Suppose that initially the Purkinje cell
thresholds are low so that they implement an OR gate.
Then every time that the climbing fibre signals an error,
LTD will reduce the effect of all the currently firing inputs,
essentially causing a ‘sculpting’ of its response. If the
climbing fibre is an error signal, then sculpting will occur
whenever the Purkinje cell fires in an incorrect context,
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so it is deleting an inappropriate generalization from the
current context. There may also be changes in the overall
threshold, so that a larger number of inputs are required
to fire, which will lead to selectivity, although there is no
guarantee that the coincidence of all of the granule inputs
can actually be achieved by any real input.

LTP will gradually cause an increase in the synaptic
efficacy of all synapses, proportional to the environment
statistics. So there is an ongoing balance between LTP
causing a statistical response to the environment, and LTD
deleting inappropriate generalization. This process could
stabilize at a cell that generalizes appropriately or that
forms a suitable basis for generalization. This is consistent
with the hypothesis that the purpose of the cerebellum may
include finding basis functions that have generalization
properties that are tailored to the task at hand.

Sandcastle algorithm

Suppose we have a desired Boolean function yα(x) and
let χ1 = {x|yα(x) = 1} be its positive support. Instead
of constructing yα as a combination of the output of
other Boolean functions, think of constructing χ1 as a
combination of the positive support of other Boolean
functions. Consider the algorithm:

(1) Initialize φ(x) = φ1(x) ∨ φ2(x) ∨ . . . for a large set of
functions {φi}, and assume that the positive support
of yα is fully contained in the positive support of the
initial φ(x).

(2) Repeat: for each xk, if yα(xk) < φ(xk) remove all
functions φi for which φi(xk) = 1

This process will ‘sculpt’ the positive support of φ. It is
possible that too much will be removed, so that at some
point the support of yα will no longer be contained in
the support of φ. In that case, we could add back some
functions, perhaps the disjunction (AND) of pairs or
groups of functions, in order to achieve greater specificity.
Rather than do so, we use an iterative algorithm to change
thresholds:

(1) Initialize

φ(x) =
�

1 if
�

wiφi(x) > θ

0 else

for a large set of functions {φi}, weights wi ≥ 1, and firing
threshold θ. Assume that weights are chosen such that the
positive support of yα is fully contained in the positive
support of the initial φ(x).

(1) Repeat: for each xk, if yα(xk) < φ(xk) set wi ← wi −
γφi(xk) for all i.

This reduces the weights for components that
over-generalize. Components with wi < 1 still contribute,
because if several trigger together then the weights may add

to a number greater than θ and thereby trigger the output.
So this means that the output calculates the AND of the
over-generalizing functions.

In combination with the above algorithms, we can have
a continual increase

wi ← wi + γφi(xk) (A1)

which will cause weights to reflect the statistics of the
input. Weight normalization is required to maintain
boundedness. The overall behaviour is a competition
between the continual LTP increase based on the statistics
of the input, and the LTD decrease based on sculpting
from the output.

This is different from radial basis functions, which
assemble the output through synthesis. Sandcastle creates
the output by removal. It will automatically generalize, and
then reduce generalization whenever an error occurs. This
is similar to the idea in the basis-function tree algorithm
for which in the absence of information to the contrary,
the network generalizes as much as possible (Sanger et al.
1992).

Simulation

To illustrate the algorithm in the case of continuous
approximation, we simulate 400 mossy fibres, 20,000
parallel fibres, and a single Purkinje cell. The input
x = (x1 . . . x4) has four dimensions. There are 100 mossy
fibres mij for each dimension j, and each mossy fibre is
tuned to one of the scalar inputs with either a linear
or non-linear smooth tuning function mij(xi). These
functions are chosen using a randomly weighted Fourier
basis (a random combination of sin and cos functions).
The tuning curves for m1j; m2j; m3j; m4j are the same, so the
representation is the same for each of the four dimensions,
although on different groups of mossy fibres. There are
20,000 granule cells. Each takes input from four mossy
fibres, one from each of the four input dimensions. The
choice of mossy fibre inputs is random but unchanging.
In the non-linear case, the four mossy fibre inputs are
multiplied to obtain the granule cell activity. In the linear
case, they are added. A randomly selected target function
is obtained by multiplying six randomly chosen smooth
Fourier basis functions f (x) = f 1(x) × f 2(x) × . . . f 6(x)
to obtain a smooth non-linear random function that is
different from any of the mossy fibre or granule cell
functions. The single Purkinje cell output is calculated as a
weighted sum of the granule cell outputs, with weighting
vector w.

For training, 2000 samples of x are presented in
sequence. Samples are constrained to a linear sub-
space of the four-dimensional space. For each sample,
the granule cell outputs g(x) are calculated, and the
output of the Purkinje cell is given by y = 1 − wTg(x),
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since the output is inhibitory. An error is calculated
as e = f (x) − y, and this is assumed to be carried on
the climbing fibre. The weights are updated according
to a Hebbian LTD rule, �w = −γ(ewTg(x)), where γ

is a learning rate set to 0.0003 for the simulations.
Figure 4 shows a comparison of the output for the
non-linear and the linear granule cell model. The test

set of inputs is the full set of training inputs (we do
not test generalization). The non-linear model learns
quickly, converging within fewer than 2000 iterations,
even though there are 20,000 granule cell inputs that
need to be trained. The linear model does not converge,
and it shows poor approximation. Even when the linear
model is applied to approximate a linear function (not
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Figure 4. Comparison of the sculpting
algorithm using granule cells
representing fourth-order non-linear
interactions between mossy fibres (A),
and granule cells representing linear
interactions between groups of four
mossy fibres (B)
Top traces show error as a function of time,
with one example input/output pair per unit
time. Bottom traces compare the learned
network output (continuous line) to the
target function (dashed line).
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shown) the approximation is poor, most likely because
even with 20,000 granule cells, linear combinations only
have 100 linearly independent representations. (Matlab
code for this simulation can be downloaded from
http://www.sangerlab.net/SandcastleAlgorithm.m.)

References

Albus JS (1971). A theory of cerebellar function. Math Biosci
10, 25–61.

Albus JS (1975). A new approach to manipulator control: The
cerebellar model articulation controller (cmac). J Dyn Syst
Meas Contr 97, 220–227.

Andersen B, Fabricius K, Gundersen H, Jelsing J & Stark A
(2004). No change in neuron numbers in the dentate nucleus
of patients with schizophrenia estimated with a new
stereological method – the smooth fractionator. J Anat 205,
313–321.

Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G,
Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C,
Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I,
Valera A, Voogd J, Wylie DR & Ruigrok TJH (2018).
Cerebellar modules and their role as operational cerebellar
processing units. Cerebellum 17, 654–682.

Arenz A, Silver RA, Schaefer AT & Margrie TW (2008). The
contribution of single synapses to sensory representation in
vivo. Science 321, 977–980.

Badura A & De Zeeuw CI (2017). Cerebellar granule cells:
dense, rich and evolving representations. Curr Biol 27,
R415–R418.

Bastian AJ (2006). Learning to predict the future: the
cerebellum adapts feedforward movement control. Curr
Opin Neurobiol 16, 645–649.

Bhanpuri NH, Okamura AM & Bastian AJ (2014). Predicting
and correcting ataxia using a model of cerebellar function.
Brain 137, 1931–1944.
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Häusser M (2007). High-fidelity transmission of sensory
information by single cerebellar mossy fibre boutons. Nature
450, 1245.

Rand RW (1954). An anatomical and experimental study of the
cerebellar nuclei and their efferent pathways in the monkey.
J Comp Neurol 101, 167–223.

Raymond JL & Medina JF (2018). Computational principles of
supervised learning in the cerebellum. Annu Rev Neurosci 41,
233–253.

Requarth T & Sawtell NB (2011). Neural mechanisms for
filtering self-generated sensory signals in cerebellum-like
circuits. Curr Opin Neurobiol 21, 602–608.

Rosenblatt F (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psychol
Rev 65, 386.

Rumelhart DE, McClelland JL & PDP Research Group (1987).
Parallel Distributed Processing, volume 1, Explorations in the
Microstructure of Cognition: Foundations. MIT Press,
Cambridge, MA, USA.

Sanger TD (2014). Risk-aware control. Neural Comput 26,
2669–2691.

Sanger TD, Kaiser J & Placek B (2005). Reaching movements in
childhood dystonia contain signal-dependent noise. J Child
Neurol 20, 489–496.

Sanger TD, Sutton RS & Matheus CJ (1992). Iterative
construction of sparse polynomial approximations. In
Advances in Neural Information Processing Systems 4, ed.
Moody JE, Hanson SJ, Lippmann RP, pp. 1064–1071,
Morgan Kaufmann, San Mateo, CA, USA.

Sawtell NB (2017). Neural mechanisms for predicting the
sensory consequences of behaviour: insights from
electrosensory systems. Annu Rev Physiol 79, 381–399.

Schmahmann JD & Sherman JC (1997). Cerebellar cognitive
affective syndrome. Int Rev Neurobiol 41, 433–440.

Schmahmann JD & Sherman JC (1998). The cerebellar
cognitive affective syndrome. Brain 121, 561–579.

C⃝ 2019 The Authors. The Journal of Physiology C⃝ 2019 The Physiological Society



928 T. D. Sanger and others J Physiol 598.5
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