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Efficient reinforcement learning: computational theories,
neuroscience and robotics
Mitsuo Kawato1 and Kazuyuki Samejima2

Reinforcement learning algorithms have provided some of the

most influential computational theories for behavioral learning

that depends on reward and penalty. After briefly reviewing

supporting experimental data, this paper tackles three difficult

theoretical issues that remain to be explored. First, plain

reinforcement learning is much too slow to be considered a

plausible brain model. Second, although the temporal-

difference error has an important role both in theory and in

experiments, how to compute it remains an enigma. Third,

function of all brain areas, including the cerebral cortex,

cerebellum, brainstem and basal ganglia, seems to necessitate

a new computational framework. Computational studies that

emphasize meta-parameters, hierarchy, modularity and

supervised learning to resolve these issues are reviewed here,

together with the related experimental data.
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Introduction
Reinforcement learning algorithms, as proposed and
developed by Andy Barto and Rich Sutton in the early
1980s [1,2], have provided some of the most influential
computational theories in neuroscience. In a class of
reinforcement learning algorithms called ‘temporal-
difference learning’, the temporal-difference error has a
central role in guiding learning of the predicted reward
and behaviors. Wolfram Schultz and colleagues [3,4]
provided epoch-making neurophysiological data to
suggest that activities of dopaminergic neurons encode
temporal-difference error; this provoked several theorists
[5,6] to propose computational learning models of basal
ganglia and dopaminergic neurons based on reinforce-
ment learning algorithms. Much experimental support of
these models has been obtained over the past five years
from different levels of organisms (e.g. cell, circuit, brain

and behavioral levels) and use of different neuroscience
techniques (e.g. slice experiments, extracellular unit
recordings in behaving animals, lesion studies and human
imaging). This paper briefly reviews the resulting data,
and then describes the theoretical difficulties of using a
plain reinforcement learning algorithm as a brain model.
Several computational studies and relevant experimental
data are introduced to deal with these issues.

Experimental data that support
reinforcement learning theory
Various neurophysiological studies have focused on the
role of dopaminergic neurons in decision making [7–
9,10!,11], on the influences of these neurons on the stria-
tum [12,13,14!] and on activities in the striatum that
predict reward expectation [15,16!!], reward expectation
error [17,18!!] or action–reward association [16!!,18!!].
Reward prediction-related neuronal activity in association
learning has also been reported in prefrontal cortical areas
[19,20]. Prefrontal and parietal areas of the cortex exhibit
neuronal activities that are correlated with reward values
during decision-making tasks in which there is a stochastic
reward [21,22]. Neuronal activities in the lateral intrapar-
ietal region [22,23] were directly compared with compu-
tational representations in a dynamic stochastic-matching
model of choice behavior [24,25], and the matching beha-
vior could be explained by a reinforcement learning algor-
ithm [26!].Human functionalmagnetic resonance imaging
(fMRI) studies [27,28!!,29–36,37!,38] have also revealed
neural correlates of putative computational variables such
as discounted future reward [33,34], risk [35] and ambi-
guity [36] in decision-making tasks. Neural correlates of
reward expectation error have been reported in the dorsal
and ventral striatum [30,37!] and in the orbitofrontal cortex
[31,38].

Most reinforcement learning algorithms possess meta-
parameters. These include the learning rate (which deter-
mines the effects of experienced stimulus, action and
reward on current estimates of values and resulting beha-
viors), the inverse temperature (which determines the
randomness of behavioral choice), and the discount factor
for future rewards (an important parameter that balances
future and immediate rewards). Schweighofer and Doya
[39] proposed their meta-learning hypothesis based on
the previous theory [40] that different neuromodulators
represent different meta-parameters. With regard to the
learning rate, fast adaptation and long-term accumulation
of experience should be assessed in stochastic environ-
ments because utilization of experience for current esti-
mates of values is an important issue for creatures that live
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in dynamic environments. Choice behavior of monkeys in
a matching task [22] can be explained by competition
between reward values that are obtained by integrating
past reward history with double exponential discounting,
with a steep curve of forgetting for near-past experience
and a long-tailed accumulation for experience in the far
past [25]. A lesion to the medial prefrontal cortex affects
length of time for which the experience of an outcome can
be used in handle-movement choice tasks that switch the
action–outcome contingency [41!!]. With regard to the
inverse temperature, the balance of exploitation and
exploration is one of the most important theoretical issues
in reinforcement learning, and it should be determined
based on the uncertainty of environments and the infor-
mation gained by exploration [42]. Neural activities that
relate to the information gained are observed in the dorsal
premotor cortex in monkeys [43], and exploratory beha-
viors activate anterior prefrontal cortical areas in humans
[44!!,45]. Uncertainty or information gained from exter-
nal environments could be used for behavioral control by
multiple decision systems within cortical and subcortical
structures [46!]. With regard to the discount factor, dis-
counting of future rewards has been studied in connection
with impulsivity and addiction [33,34,47–49,50!!]. The
reinforcement learning theories have been extended to
model the strategies of other people, game playing and
subjective values [21,51–54]. It now seems safe to state
that at least some aspects of learning that depend on
reward and penalty can be understood within the frame-
work of reinforcement learning theory.

Difficulties with plain reinforcement
learning and hierarchy
However, at least the following three difficult issues
remain unresolved. First, the plain reinforcement learn-
ing algorithm is so slow when applied to practical pro-
blems such as robot control or financial decision that it
cannot be considered a realistic model of brain learning.
Second, although it is highly probable that dopaminergic
neurons encode the temporal-difference error, the neural
circuits and neural mechanisms that are used to compute
this error are still unknown. Third, although some func-
tional aspects of dopaminergic and striatal neural circuits
might be understood by plain reinforcement learning
algorithms, much more complicated algorithms seem to
be required for behavioral learning that depends on the
cerebral cortex and cerebellum in addition to the basal
ganglia and brainstem.

The aforementioned three difficulties of plain reinforce-
ment learning — that is, slowness, computation mecha-
nism for temporal-difference error, and incompatibility
with the brain structure — all point to specific structures
and neural mechanisms for efficient learning algorithms.
One possible solution to the problem of slowness is to put
hierarchy into the algorithms [55–59]. In the upper part of
such a hierarchy, because the state space describing a

body and an external world is coarsely represented by a
reasonable number of discrete regions, cells or neurons
(e.g. up to one million neurons; a reasonable number for
one function), an approximate optimal solution could be
found in a reasonable time. In the lower part of this
hierarchy, the state space is finely represented and the
approximate solution that is obtained at the upper level
can constrain the possible range of exploration space.
Thus, the problem could be solved within a reasonable
amount of time and with the required accuracy. In most
studies, coarse representations have been specified in the
upper hierarchy or to predetermine motor primitives and/
or subgoals in the lower hierarchy. This recourse is nearly
equivalent to assuming the existence of a homunculus or
that those factors are all predetermined genetically —
both assumptions that are unacceptable from the view-
point of neuroscience. Most studies have dealt with
discrete-state and discrete-time examples such as a maze,
which is artificial from neuroscience viewpoint; one of the
rare exceptions that adopted continuous time and con-
tinuous state-space examples was a standing-up task
carried out by a multi-joint robot [60], which is compu-
tationally equivalent to human stand-up behaviors.

Modular reinforcement learning
One of the common strategies for tackling complicated
and large-scale problems is ‘divide and conquer’. A crucial
and the most difficult issue in such modular reinforce-
ment learning [61] is how to divide or modularize the
original problem into subproblems [59]. One promising
approach is modular selection and identification control
(MOSAIC), which was originally proposed for supervised
learning [62–64] and then extended to reinforcement
learning [65]. In themost advanced form of reinforcement
MOSAIC (N Sugimoto, PhD thesis, Nara Institute of
Science and Technology, 2006), three different sets of
expert networks, each of which is specialized for each
subproblem, self-organize (Figure 1). One of these net-
work sets is composed of predictors of state transitions,
which are formally called internal forward models. An
internal forward model receives information about the
current state and the current motor command and then
predicts the next time-step state. The two other sets
approximate actual rewards and reinforcement learning
controllers that compute motor commands for optimal
control. The responsibility signal for the internal forward
model network is determined by prediction error in
dynamics, and the responsibility signal for the other
two networks is determined by approximation error in
reward and in reward prediction error; these signals are
used to weight outputs from experts. These signals also
gate the learning of each expert network by regulating the
learning rate. Consequently, modularity emerges without
ad hoc manual tuning by researchers or a homunculus.
Switching and weighting by approximation and predic-
tion errors are key features ofMOSAIC.Medial prefrontal
cortical areas might have an important role in detecting
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environmental change by accumulating prediction error,
as suggested by the corresponding electroencephalogram
(EEG) negativity in conflict monitoring or error detec-
tion. Lesion of the monkey medial prefrontal cortex
affects the length of accumulating reward prediction error
in contextual switching behavior [41!!]. The responsibil-
ity signal could be interpreted as posterior probability of
Bayesian inference, assuming that there are multiple
linear systems that have Gaussian noise. In a human
imaging study [38], ventromedial prefrontal activities
were correlated with Bayesian update errors of prob-
ability, which are differences between the posterior
and prior probabilities, in a stochastic reversal task.

Circumstantial support of hierarchy and modularity in the
context of reinforcement learning was obtained mainly
from neuroimaging and lesion studies. The activities of
many brain areas — including those of the prefrontal
cortex, orbitofrontal cortex, premotor cortex, supple-
mentary motor area, cerebellum and basal ganglia — are
correlatedwith important variables in reinforcement learn-
ing, such as accumulated reward, learned behavior, short-
term reward and behavioral learning, even in a simple
Markov decision process with monetary reward [32].
Furthermore, although activity in the human putamen is

correlatedwith reward prediction that depends on selected
actions, which is consistent with a study inmonkeys [16!!],
activity in the caudate is correlated more closely with
reward prediction error [18!!,30,37!]. Topographic repres-
entations that have different parameters of the discount
factor for reward prediction were found in the medial
prefrontal cortex and the insular cortex, and topographic
representations for reward prediction error were found in
the basal ganglia [33].

How can temporal-difference error be
computed?
The most important role of temporal-difference error is in
solving the temporal credit assignment problem in
reinforcement learning theory. Houk, Adams and Barto
[5] proposed an explicit neural circuitmodel for computing
the temporal-difference error (Figure 2a); later, Doya [6]
revised thismodel (Figure 2b). Inbothmodels, the primary
reward information r(t) is assumed to be carried to dopa-
minergic neurons in the substantia nigra pars compacta
(SNc) by direct excitatory inputs. By contrast, the reward
expectation of the next time step V(t + 1) = {r(t + 1) +
r(t + 2)+. . .} minus the reward expectation at the current
time step "V(t) = "E{r(t) + r(t + 1)+. . .} is assumed to be
computed within the basal ganglia network; these two

Efficient reinforcement learning: computational theories, neuroscience and robotics Kawato and Samejima 207

Figure 1

Overall organization of the architecture used for combinatorial module-based reinforcement learning (CMRL). The architecture consists of
forward models, reward modules and reinforcement learning (RL) controllers. The forward models ( fi) predict the environmental dynamics (X

!
)

from the current state and action (x and u, respectively) and segregate the environmental dynamics into several subdynamics based on the
prediction error of the dynamics. Each reward module (rj) represents the local reward function conditioned on the state. Then an RL controller,
receiving outputs from forward and reward modules, approximates local value functions (Vk) and outputs the local greedy action (uk). Finally, the
CMRL computes the sum of these local actions weighted by the responsibility signal of each RL module (lck ), a posterior probability obtained
from the squared temporal-difference errors (d2k ) of each RL module (likelihood) and the usage history of component forward and reward modules
(priors). Prior probabilities of selecting a specific forward model or a reward model are generally useful because contextual cues often indicate
probabilistically in which part of the environment animals are situated and what task requirements are there. These priors can be again
computed as the responsibility signals of forward and reward modules (l f

i and lrj) by applying Bayes rule to the prediction error of the
environmental dynamics and reward approximation error, respectively. Please note that the architecture does not select only one forward model,
reward model or RL controller, but instead utilizes many of them and blends their outputs, which are weighted by the responsibility signals.
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expectations utilize double-inhibitory and inhibitory con-
nections, respectively, from the common source of the
value function V(t + 1) represented in the striatum. These
models satisfy the most basic assumption of a reinforce-
ment learning algorithm—that is, theBellman consistency
(approximately V(t) = V(t + 1) + r(t) while neglecting dis-
counting) as the source of the error signal — and they
utilize the known neural network within the basal ganglia
to compute this equation.However, no direct physiological
support has been obtained for these models. Furthermore,
double inhibition might not be able to generate burst
firing of dopaminergic neurons in response to a cue signal
that predicts the future reward, owing to the membrane

properties of dopaminergic neurons that were revealed in
slice experiments.

The SNc receives major excitatory synaptic inputs from
the pedunculopontine tegmental nucleus (PPN) [66].
Recent neurophysiological studies [67] further suggest
that excitatory inputs from the PPN to the SNc are central
to computing temporal-difference error. Monkeys per-
formed saccade tasks in which variable reward amounts
were indicated by the shape of a fixation spot. Two
populations of neurons whose firing rates varied with
reward amount were observed: one population of neurons
that seemed to encode the primary or current reward r(t),

208 Cognitive neuroscience

Figure 2

Models for computing temporal-difference error. (a,b) Possible mechanisms for computations of the temporal-difference error from the value
function, as represented in the basal ganglia by the Houk model (a) [5] and the Doya model (b) [6]. Small white circles represent excitatory
connections and small black circles represent inhibitory connections. Red circles represent sources of possible time delay. Abbreviations: GPe,
globus pallidus pars externa; GPi, globus pallidus pars interna; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; ST,
subthalamic nucleus; Str, striatum; VP, ventral pallidum. (c,d) Two possible neural circuit models for computing the temporal-difference error,
with emphasis on excitatory inputs from the pedunculopontine tegmental nucleus (PPN) to the SNc. Please note that in models of (a) and
(b), the striatum represents V(t + 1), but in the model of (d), the striatum represents V(t) and PPN represents V(t + 1). What unit of time is
represented by ‘1’, and how time advance or time delay is neurally implemented, still remain an enigma in reinforcement learning models for
neuroscience.

Current Opinion in Neurobiology 2007, 17:205–212 www.sciencedirect.com
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and another population that started to fire at the presen-
tation of the fixation spot and maintained firing until
saccades or delivery of the primary reward ended, even
after the fixation spot was extinguished. Furthermore, the
firing rates of this second population of neurons predict
the amount of future reward, thus seeming to encode the
predicted reward or the value function V(t + 1). These
remarkable findings suggest two possible neural mechan-
isms (Figure 2c,d) for computation of temporal-difference
error. In Figure 2c, some intranuclear circuits within the
PPN or SNc, or some membrane properties of dopamin-
ergic neurons, execute either temporal difference or differ-
entiation (box in Figure 2c). By contrast, the model in
Figure 2d predicts that the primary reward information r(t)
and the expected reward at the next time step V(t + 1) are
carried by excitatory inputs from the PPN to the SNc,
whereas the inhibitory input from the striatum conveys the
subtracted predicted reward information at the current
time"V(t). Themodel in Figure 2d seemsmore plausible,
first because neither cellular nor circuit mechanisms
for temporal difference or differentiation is known in

the PPN or SNc, and second because the inhibitory inputs
from the striatum to the SNc are well established — it
would be odd if they did not contribute to computing the
temporal-difference error at all.

Heterarchical reinforcement learning model
In themodels ofFigure 2a–c, the temporal-difference error
is computed from the same source as the value function,
thus conforming to the most basic principle of temporal-
difference learning: the Bellman consistency. By contrast,
V(t) and V(t + 1) come from different sources in Figure 2d,
and thus doubt is thrown on the fidelity of thismodel to the
Bellman consistency; however, this deviation might lend
efficiency and power to the model. If subtraction can be
computed at the SNc between the PPN and striatal inputs,
some supervised learning aspects could be introduced into
the reinforcement learning: the learner V(t) might partially
approximate the teaching signal r(t) + (t + 1), and the error
signal for this supervised learning might be conveyed by
dopaminergic neurons. Themodel shown in Figure 2d led
to the ‘heterarchical’ reinforcement learning model shown

Efficient reinforcement learning: computational theories, neuroscience and robotics Kawato and Samejima 209

Figure 3

A basic heterarchical reinforcement learning model consisting of a caudate–prefrontal loop (red) and a motor–putamen loop (blue). Also involved
are the ventral tegmental area (VTA), substantia nigra pars compacta (SNc) and pedunculopontine tegmental nucleus (PPN). White and colored circles
show excitatory (disinhibitory) and inhibitory projections, respectively. The double inhibitory connection (open circle) from the caudate to VTA/SNc is
realized by neural circuits depicted in Figure 2 (a) and (b). VC and VP represent a coarse value function in the caudate nucleus and a fine value
function in the putamen, respectively. r is a reward, g is a discount factor for future rewards, and e is a time-varying weighting factor between
VC and VP.

www.sciencedirect.com Current Opinion in Neurobiology 2007, 17:205–212
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in Figure 3 [68!!], which has two almost independent
closed loops: a cognitive loop involving the prefrontal
cortex, caudate nucleus, ventral tegmental area and
PPN; and a sensorimotor loop involving the motor cortex,
putamen, SNc and PPN. If these two closed loops are
entirely independent, then they conform to the Bellman
consistency. However, the heterarchical structure enables
the cognitive-loop value function to spread to that of the
sensorimotor loop, by neural connections from the caudate
to the ventrolateral part of the SNc, and also connections
from the prefrontal cortex to the part of the PPN that
innervates the ventrolateral SNc, which are supported by
the spiral connections of corticostriatal and striatonigral
loops [69]. This heterarchicalmodel captures some aspects
of the hierarchical reinforcement learning models [55–60]
but does not have any strict hierarchy — hence the name
‘heterarchy’.Representations of the state and actions in the
cognitive loop are much coarser than those for the sensor-
imotor loop, so reinforcement learning progresses much
more quickly in the cognitive loop. Then, the earlier
learned value function in the cognitive loop VC(t + 1) acts
as a teaching signal for the sensorimotor loop. However, a
much more fine-grained value function will be ultimately
learned by the proper reinforcement learning that is imple-
mented by the sensorimotor loop. Thus, fast but accurate
learning is possible, and no distinct boundaries need to be
set by a homunculus. PPN neural firing has been charac-
terized as encoding intrinsic motivation or internal rewards
[70]. Because the PPN receives strong inputs from brain-
stem nuclei, the future expected reward V(t + 1) could be
represented on the basis of relatively coarse and
endogenous factors, almost to the exclusion of sensor-
imotor or cognitive inputs; however, even the coarse
future expected reward might still be very helpful for
fine-tuning value functions on the basis of sensorimotor
and cognitive inputs, similar to a computational tech-
nique known as ‘reward shaping’ [71]. Consequently, the
spiral and heterarchical structure might provide a coher-
ent resolution to the three theoretical difficulties of
reinforcement learning — that is, slowness, computation
of temporal-difference error, and global neural networks
— in addition to a clue for refining computational under-
standing of intrinsic motivation.

Conclusions
Reinforcement learning theory has gained much support
from experiments conducted at different levels within
organisms and using different techniques. Important vari-
ables such as the reward prediction error and value func-
tions that depend on state or on both state and action have
been found to correlate with neural activities and/or fMRI
blood oxygen level dependent (BOLD) signals of various
brain areas. Hyper-parameters in the reinforcement learn-
ing algorithms, such as the learning rate, the inverse
temperature and the discount rate, are now known to be
important in guiding experimental paradigms and inter-
preting experimental data. However, difficult theoretical

issues remain to be explored in combination with new
experimental paradigms. First, the plain reinforcement
learning is much too slow. Second, how can temporal-
difference error be computed? Third, how do global brain
networks function in reward-dependent behavioral learn-
ing? Hierarchy, modularity and solutions blended with
supervised learning have been studied in computational
fields to cope with these issues. The PPN might provide
the most important information in computing temporal-
differenceerror, andaheterarchical reinforcement learning
model based on this hypothesis might coherently resolve
the theoretical difficulties.
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