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Abstract. Mean firing rates (MFRs), with analogue
values, have thus far been used as information carriers
of neurons in most brain theories of learning. However,
the neurons transmit the signal by spikes, which are
discrete events. The climbing fibers (CFs), which are
known to be essential for cerebellar motor learning, fire
at the ultra-low firing rates (around 1 Hz), and it is not
yet understood theoretically how high-frequency infor-
mation can be conveyed and how learning of smooth
and fast movements can be achieved. Here we address
whether cerebellar learning can be achieved by CF
spikes instead of conventional MFR in an eye movement
task, such as the ocular following response (OFR), and
an arm movement task. There are two major afferents
into cerebellar Purkinje cells: parallel fiber (PF) and CF,
and the synaptic weights between PFs and Purkinje cells
have been shown to be modulated by the stimulation of
both types of fiber. The modulation of the synaptic
weights is regulated by the cerebellar synaptic plasticity.
In this study we simulated cerebellar learning using CF
signals as spikes instead of conventional MFR. To
generate the spikes we used the following four spike
generation models: (1) a Poisson model in which the
spike interval probability follows a Poisson distribution,
(2) a gamma model in which the spike interval proba-
bility follows the gamma distribution, (3) a max model
in which a spike is generated when a synaptic input
reaches maximum, and (4) a threshold model in which a
spike is generated when the input crosses a certain small
threshold. We found that, in an OFR task with a
constant visual velocity, learning was successful with
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stochastic models, such as Poisson and gamma models,
but not in the deterministic models, such as max and
threshold models. In an OFR with a stepwise velocity
change and an arm movement task, learning could be
achieved only in the Poisson model. In addition, for
efficient cerebellar learning, the distribution of CF spike-
occurrence time after stimulus onset must capture at
least the first, second and third moments of the temporal
distribution of error signals.

1 Introduction

The cerebellum has been shown to play a pivotal role in
motor learning (Ito 1984). Cerebellar Purkinje cells
(PCs), the only efferent neurons in cerebellar cortex,
receives two major afferents: multiple parallel fiber (PF)
inputs encoding the sensori-motor context to PCs, and a
single climbing fiber (CF) input encoding the error
signals for learning (Kitazawa et al. 1998; Kobayashi
et al. 1998). The CF inputs have been postulated to be
essential for modifying the PF-PCs synapses in a
supervised-learning manner, resulting in an acquisition
of cerebellar representation of the inverse model (Ka-
wato 1999).

Cerebellar synaptic plasticity has been shown to
provide the biological basis of cerebellar learning (Ito
1989). Several types of synaptic plasticity have been
found in PCs: long-term depression (LTD) (Ito 1989),
long-term potentiation (LTP) (Sakurai 1987; Hirano
1990), and rebound potentiation (RP) (Kano et al. 1992;
Kano 1996). Cerebellar LTD is a process of a decrease in
the synaptic weights between PFs and PCs induced by
the conjunctive stimulation of PFs and CFs (Ito 1989).
LTP has been shown to be induced presynaptically by
the stimulation of PFs in the absence of CF stimulation
(Hirano 1990; Sakurai 1987). PCs also receive inputs
from inhibitory cells (ICs) in the molecular layer, in
addition to PFs (Kano et al. 1992; Kano 1996). RP is a
process of an increase in the synaptic weights between
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ICs and PCs induced by the conjunctive activation of
ICs and PCs. Computational models that replicate
learning of eye and arm movement tasks based on these
synaptic plasticity mechanism have been proposed
(Schweighofer et al. 1998; Yamamoto et al. 1998a,b).

Mean firing rates (MFRs), with analogue values, have
thus far been used as information carriers of neurons in
most theories of cerebellar motor learning (Kawato and
Gomi 1992). We have shown that cerebellar motor
learning, including an acquisition of ocular following
response (OFR) (Yamamoto et al. 1998a,b), a slow eye
movement with a short latency (Miles and Kawano
1986), and an arm movement task (Schweighofer et al.
1998), can be reproduced using MFR as the error signal
of CFs. However, real neurons transmit the signal by
spikes, which are discrete events. It is not obvious
whether learning is possible with discrete spike trains.
Even worse, CFs have been shown to fire at ultra-low
rates (around 1 Hz). We have already found experi-
mentally that, despite the ultra-low firing rates of CFs,
the temporal firing patterns of CFs carry high-frequency
information and a smooth waveform when many trials
of OFR are averaged (Kobayashi et al. 1998). However,
it remains to be demonstrated, on a theoretical basis,
how this temporal averaging is carried out and how
motor learning can be achieved by CF spikes.

To address this issue we performed a computer sim-
ulation of cerebellar learning using CF spikes — instead
of MFR — as the error signal for PCs. Four spike models
were examined in accordance with the MFR as follows:
(1) a Poisson model in which the spike interval proba-
bility follows a Poisson distribution, (2) a gamma model
in which the spike interval probability follows the
gamma distribution, (3) a max model in which a spike is
generated when an input reaches a maximum, and (4)
threshold model in which a spike is generated when the
input crosses a certain small threshold. The Poisson and
gamma models are stochastic, while the max and
threshold models are deterministicc. OFR and arm
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Fig. 1. Block diagram of the ocular following response (OFR)
control. v(¢): the visual stimulus at time 7, r(7): the retinal slip at
time #; s(¢): signal of simple spike at time 7; 6(¢): the position of eye at
time ¢; ¢(¢): signal of CF at time #; PC: Purkinje cell; PF: parallel fiber;
IC: inhibitory cell; MST: medial superior temporal area; p: Laplace
operator; WPup: synaptic weights between PF whose preferred

\
——=[Wpup]—
——>[wPdowr};

T [Wing— ]

PC
S(ty=Fezm=-

movement tasks were used to test the spike models.
Furthermore, we analyzed the statistical characteris-
tics of spikes of CFs required for efficient cerebellar
learning.

2 Methods

In this study the OFR task and the arm movement task
were used to examine whether models using CF spikes
were capable of reproducing the efficient cerebellar
motor learning.

2.1 Acquisition of the ability to control OFR
and the gain adaptation of visuo-motor transformation

The OFR is the tracking of movement of the eye evoked
by the movements of a visual scene, and is thought to be
important for the visual stabilization of gaze (Miles and
Kawano 1986). We have built a mathematical model
that reproduces OFR based on electrophysiological
experiments (Yamamoto et al. 1997). We have formu-
lated the generalized linear models which can recon-
struct well the temporal firing patterns of CFs during the
OFR of monkeys (Kobayashi et al. 1998). Based on
these results, we have shown (K. Yamamoto, Y.
Kobayashi, A. Takemura, K. Kawano, M. Kawato, in
preparation) that acquisition and adaptation of the
OFR can be reproduced by the computational model of
the OFR, including the synaptic plasticity of cerebellar
cortex (Yamamoto et al. 1998a,b). In the study reported
here, we built the computational model which repro-
duces the vertical OFR based on the previous model
(Fig. 1). In the block diagram of the OFR shown in
Fig. 1, we replaced the MFR of the CF, C(t), by the
spikes generated by the spike generation models as
below, in order to examine whether cerebellar learning
can be achieved using spikes instead of the MFR.

direction is upward and PCs; WPdown: synaptic weights between
PF whose preferred direction is downward and PCs; Wlup: synaptic
weights between IC whose preferred direction is upward and PCs;
Wildown: synaptic weights between IC whose preferred direction is
downward and PCs



Two tasks for the OFR were chosen: (1) the acqui-
sition of the ability to control OFR after birth, by ramp
trials in which the vertical visual stimuli whose velocities
were constant were given; and (2) gain adaptation for a
visuo-motor transformation using speed-step trials in
which the vertical visual stimuli whose velocities was
changed in a stepwise-manner were given (Miles and
Kawano 1986). There are two types of speed-step trials:
the step-up stimuli whose velocities were increased in a
stepwise-manner and the step-down stimuli whose
velocities were decreased in a stepwise-manner. The ramp
and speed-step stimuli for the simulation of the OFR
were reconstructed based on the stimuli used in the
previous physiological experiment (Kobayashi et al.
1998). For the simulation of the acquisition of the ability
to control the OFR, upward and downward ramp
stimuli were given 8750 times (Yamamoto et al.
1998a,b). For the gain adaptation of the visuo-motor
transformation, upward step-down and downward
step-up stimuli were given 875 times. In each trial the
gain, given by the maximum eye velocity divided by
the maximum visual velocity, was recorded. We evalu-
ated the cerebellar learning during these tasks by
the gain.

LTD, LTP and RP were modeled as three known
classes of synaptic plasticity in PCs for cerebellar
learning (Yamamoto et al. 1998a,b). When PFs and
CFs, or ICs and CFs simultaneously fire, LTD or RP
occurs at the respective synapses. When PFs or ICs fire
without CF firing, LTP or no change of synaptic efficacy
occurs at the respective synapses. The strength of the
synaptic plasticity induction was dependent on the time
interval between the stimulation of PFs or ICs, and
that of CFs. The time interval between these stimula-
tions, known as the time window, has been analyzed in
detail (Karachot et al. 1994). We have already made a
re-interpretation of their results and produced the time
window which follows a Gaussian distribution with a
mean of —100 ms and a standard deviation at 50 ms for
the simulation of OFR (Yamamoto et al. 1998a.,b). In
this study we used the same time window. That is, LTD
becomes most effective when the PF stimulation pre-
cedes the CF stimulation by 100 ms. Based on the time
window and the synaptic plasticity, we built the learning
rule by which the synaptic weights between PFs and the
PC are modified as follows.
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0:x<0

10 = {x: x>0
In this equation, w(f) denotes the synaptic transmission
efficacy at time . wy denotes the initial value of the
synaptic transmission efficacy, and was set at 0.2. The
first term denotes the forgetting factor. The second and
third terms denote the changes induced by LTD and
LTP, respectively. PF(¢) and CS(¢) denote the firing rates
of PF and the occurrence of CF spikes at time ¢,
respectively. CSq, denotes the spontaneous firing rates of
the CF (1 Hz). G(¢) is the integral kernel. G(¢' — ¢) is
given by the Gaussian distribution as described above.
nitp and npp are the coefficients of LTD and LTP,
respectively, and were set at 8.5066 x 10* and
3.7807 x 10%, respectively. 7, the time constant of the
forgetting factor was set at 4.67 x 10* according to Miles
and Kawano (1986). Synaptic weights were modified
off-line by the above equation after each trial.

Similarly, the synaptic weights between the ICs and the
CFs were modified by the above equation except that
PF(t) denotes the firing rates of ICs instead of that of PFs,
wo was set at —0.2, ngp was used instead of n; tp, and the
coefficient in the third term was set to zero because syn-
aptic weight is not affected by the IC stimulation in the
absence of that of the CF (Kano 1996).

2.2 Two-link arm movement

In addition to the OFR, two-link arm movement was
used in this study (Kawato et al. 1987; Miyamoto et al.
1988) (Fig. 2). A planar point-to-point arm reaching
movement with a 500-ms duration was used. The
workspace was set within an annulus whose radius was
between 30 and 90% of the arm length from the center

Table 1. Moments of the tem-

poral distribution of the error Direction Mean firing  Poisson Gamma Max Threshold
signals of CFs in the ocular rates n =30
fgg%ﬁ?%;gﬁp;ﬁegm: R)ramp  pit moment  Upward 105.9 107.5 105.9 97.8 30.8
Downward  92.0 88.1 87.1 51.7 73.9
Second moment Upward 2.75¢+3 2.81e+3 2.66e+3 0.778e+3 0.257e+3
Downward 3.8le+3 3.96e +3 3.44e+3 0.00146e+3  2.49¢+3
Third moment  Upward —-0.0153 —-0.0810 —-0.0202 0.382 —-0.951
Downward 0.156 0.211 0.287 1.23 —-0.403
Fourth moment Upward 2.00 2.07 2.03 4.96 1.95
Downward 1.66 1.64 1.84 2.68 1.56
Fifth moment Upward —-0.241 —-0.611 —-0.307 10.3 -2.90
Downward 0.634 0.841 1.27 4.78 —-0.855
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Fig. 2. Block diagram of the control of the two-link arm movement.
04/(t): the desired joint angle of the arm at time #; 0,(¢): the real joint
angle of the arm at time ¢, manipulator: the artificial two-link arm;
TjFF(t): feedforward torque generated by the inverse dynamics model
at time ¢; TjFB (1): the feedback torque at time #; 7(f): the torque for the
regulation of the manipulator at time #;, Kj: the feedback gains. Here,
K; was set at 60. w/(): synaptic weight between ith PF and PCs

of the shoulder (Nakano et al. 1999). The initial and
final hand positions were randomly selected within the
workspace. Hand trajectories have been known to be
preplanned as desired trajectories before the movement
without on-line correction (Kawato 1999). Many com-
putational models on how hand trajectories are planned
have been proposed (Kawato 1999). In this study, the
minimum hand jerk model was used for trajectory
planning (Flash and Hogan 1985). The inputs of the
desired trajectory, 04,(f), were fed to nonlinear subsys-
tems and were nonlinearly transformed into » different
PF signals, y/(#) (i=1,...,n;j=1,2) (Kawato et al.
1987; Miyamoto et al. 1988) (Fig. 2). w/(¢) denotes a
synaptic weight of the ith inputs into the jth PC. The
output signal, 7/ (r), was given by the sum of y/(z)
weighted by w/(¢) as follows:

N/ . .
TFR(6) = wiyl (1)
i=1

The feedback torque, ]}FB(t), was generated based on the
error signal given by the difference between the desired
trajectory, 04/7), and the real trajectory, 0(7) (Miyamoto
et al. 1988). The manipulator receives the torque, Ti(1),
which is the sum of 77" (¢) and T/(z), and outputs the
resulting trajectory, 0;(f) (Kawato et al. 1987; Miyamoto
et al. 1988). Since 7} ®(r) encodes the error signal of the
trajectory, TjF B(t) ‘was used as the error signal to
generate CF spikes. We assume that the synaptic weight,
j

wi(t), was changed off-line according to following

equation after each trial:

W (1) =~/ (DT (1)

i

Here, t is a time constant of changes of the synaptic
weights and was set at 9.6375 x 103. The efficiency of

responsible for the jth joint; y/(): ith PF signal responsible for the
regulation of jth joint; g;: ith nonlinear subsystem responsible for the
control of the elbow joint; i: the index of the nonlinear subsystems; j:
the index of the joint, shoulder or elbow. Nonlinear functions of the
subsystems responsible for the control of shoulder and elbow joints are
Odl 5 .(}dl Cos 0d2, “0(12 cos 0(.12, ()dg, ()dl Udz Sll’l 0d2, 0?12 sin Udz and ()dl 5
and 041 cos 042, 041, 042, 041 sin 04y and O4,, respectively

learning is evaluated by the mean square error (MSE) in
the last 100 trials as given by the difference between the
real synaptic weights and the desired synaptic weights
with which the desired trajectory is executed.

2.3 Spike generation models

To generate the spikes based on the MFR of the CF, we
built the following spike models: (1) a Poisson model in
which the spike interval probability follows a Poisson
distribution, (2) a gamma model in which the spike
interval probability follows the gamma distribution, (3)
a max model in which a spike is generated when the CF
reaches maximum, and (4) a threshold model in which a
spike is generated when the CF input crosses a certain
small threshold. In each model, the time step was 1 ms.

A spike in the Poisson model was generated by the
following equation:

1: input(¢) > rand(¢)
() = {o; input(?) < rand(?

C(t) and input(z) denote the CF spikes and the MFR of
the CF at time ¢, respectively rand(f) is a random
number uniformly distributed between 0 and 1, selected
at time 7.

A spike in the gamma model was generated by the
following equation:

[ n(t=1)4+1 : input(f)m > rand(¢)
(1) { n(t—1) : input(f)m < rand(¢)



m denotes the order of the gamma model. n(f) is an
internal counter which is set randomly between 1 and m
at the beginning of a trial. Once a spike fires, n(t) is reset
to zero.

In the Poisson and gamma models, a spike was gen-
erated on-line with a 1-ms time step. We examined the
behaviour of gamma models with orders of 4, 50, 100,
and 200. Since the gamma model with order 50 showed
the best ability for cerebellar learning among these
gamma models, we used this model.

A spike in the max model was generated by first de-
tecting the time, #,, when the MFR of the CF first
reaches a maximum, and then deciding off-line whether
a spike fires or not by the following equation:

C(h) = {

C(t,) and Inputs denote the CF spikes at time ¢, and the
sum of the MFRs of the CF in each trial, respectively.

A spike in the threshold model was generated off-line
in a similar manner, except that ¢, denotes the time 3 ms
after the MFR of the CF become different from its
spontaneous rate.

All the parameters in each spike model were set so
that the total spike numbers in each model were almost
the same.

1: Inputs > rand
0: Inputs < rand

2.4 Measurement of moments of the spike array

To analyze the statistical characteristics of the spike
model, the stimulus-triggered spike histogram was
regarded as a probability distribution over a time bin
of 1 ms. Thus, the P;is given by the number the spikes at
the time ¢; divided by the total number of spikes
accumulated over all time and trials. On the other hand,
the random variable ¢; is the spike occurrence time after
stimulus onset. This set of the random variable and the
probability (¢; P;) gives a probability distribution of
spike occurrence time. We measured the moments of the
probability distribution in each spike model, and
analyzed the statistical characteristics. The first moment,
o;, and the second moment, a5, are the mean and the
variance of the firing time, respectively. The nth
moment, o, is computed by the following equation.
As with the spike models, the moments of the MFR
model are also computed with a 1-ms time step.

T
oy :ZtP,-:,u
i=1

where n denotes an integer greater than or equal to 3.
t and T denote the firing time and the duration of each
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trial, respectively. u is o4, the mean of firing time, and o
is the square root of the variance of the spike array, o,.

3 Results

3.1 Comparison of the spike models with
the MFR model in the acquisition of the ability
to control OFR after birth

We performed the computer simulation of the acquisi-
tion of the ability to control OFR after birth with ramp
stimuli 17500 times. In the MFR model, the synaptic
transmission efficacy became stable by the repetition of
the ramp trials. The OFR gain increased adaptively in
the upward and downward 10-deg/s trials, and became
almost one (Fig. 3a,f). In the Poisson and gamma
models similar results were obtained (Fig. 3b,g and
Fig. 3c,h respectively). In the max model, the OFR gain
in the upward ramp trials (after the trials) were almost
the same as those of the MFR, the Poisson, and the
gamma models (Fig. 3d). However, the OFR gain in the
downward ramp trials diverged (Fig. 3i). In the thresh-
old model, the OFR gain in the upward ramp trials did
not increase (Fig. 3e), and that in the downward ramp
trials diverged as well as in the max model (Fig. 3j).

To understand how gain is acquired by the CF spikes,
we compared the temporal distribution of the spike
array in the spikes models with the firing rates of the
MFR model. In the upward ramp trials of the MFR
model, firing rates increased during the period between
50 ms and 200 ms after the onset of the ramp trials
(Fig. 3k). As well as in the MFR model, in the Poisson
and gamma models spike arrays were observed during
the period between 50 ms and 200 ms after the onset
(Fig. 3LLm). In the max model, although the firing time
of spikes were relatively clustered, the spike array was
observed during the period (Fig. 3n). The spikes during
the period between 50 ms and 200 ms led to the changes
of the synaptic transmission efficacies between PFs and
ICs, and PCs by the induction of LTD and RP,
respectively, indicating that the changes of the synaptic
transmission efficacy are responsible for the acquisition
of the OFR gain. In contrast, in the threshold model no
spike was observed during the period between 50 ms and
200 ms, due to the immediate response of spikes after
the onset of the ramp trials (Fig. 30). The absence of
spikes during this period led to the induction of LTP but
not to LTD or RP, resulting in the failure of the
acquisition of the OFR gain.

In the downward ramp trials, the firing rates de-
creased during the period between 50 ms and 200 ms in
the MFR model (Fig. 3p). Similarly, the decrease of the
spike arrays was observed during this period in the
Poisson and the gamma models (Fig. 3q,r). The decrease
of the spike arrays led to the changes of the synaptic
transmission efficacy between PF and PCs by the in-
duction of LTP, indicating that the changes of synaptic
transmission efficacy are responsible for the acquisition
of the OFR gain. In the max and the threshold models,
the decrease of the spike arrays was also observed during
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Fig. 3a—t. The changes of the gain in the OFR ramp trials and
the accumulated CF spikes over all ramp trials in each model. a—j
the changes of the gain in the OFR ramp trials: a—e the changes of the
gain in the upward 10-deg/s trials; f—j the changes of the gain in the
downward 10-deg/s trials; a,f the mean firing rate (MFR) model; b,g
the Poisson model; ¢,h the gamma model; d,i the max model; e,j the

this period (Fig. 3s,t). However, the numbers of spikes
during this period were much less than in the MFR, the
Poisson, and the gamma models, so that LTP became
too strong, resulting in the divergence of the eye move-
ment by the strong increase of the OFR gain.

To analyze the statistical characteristics of the tem-
poral distribution of spike arrays that are required for
the efficient cerebellar learning, we measured the mo-
ments of the temporal distribution of spikes in each
spike model. In the upward ramp trials, the OFR un-
derwent adaptation in the MFR, the Poisson, the gam-
ma, and the max models, whereas the OFR did not in
the threshold model. The first moment of the spike array
in the threshold model was different from those in others
(Table 1). In the downward ramp trials, the OFR un-
derwent adaptation in the MFR, the Poisson, and the
gamma models, whereas the OFR did not in the max
and the threshold models. The first moment of the spike
array of the max model differed from those of the MFR,
the Poisson, and the gamma models. In the threshold
model, the second and the higher moments differed from

threshold model. k—t the accumulated CF spikes over all ramp trials in
each model; k—o the accumulated CF spikes over all upward ramp
trials; p—t the accumulated CF spikes over all downward ramp trials;
k,p the MFR model; l,q the Poisson model; m,r the gamma model; n,s
the max model; o,t the threshold model

those of the MFR, the Poisson, and the gamma models.
These results suggest that at least the first and second
moments of the spike array of CFs should be the same as
those in the MFR models for the acquisition of the
ability to control the OFR.

3.2 Comparison of the spike models with the MFR model
in a gain adaptation for a visuo-motor transformation

In the MFR, the Poisson, and the gamma models, the
OFR underwent adaptation in both of the upward and
downward trials. Using these three models, we next
performed the simulation of the gain adaptation for a
visuo-motor transformation using upward and down-
ward speed-step trials repeated 1750 times. In the MFR
model, the gain increased adaptively in the downward
step-up trials (Fig. 4a). In the upward step-down trials,
the gain decreased adaptively (Fig. 4d). In the Poisson
model, the gains adaptively increased and decreased in
the step-up and step-down trials, respectively (Fig. 4b,e).
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In the gamma model, the gain increased adaptively in
the step-up trials (Fig. 4c). However, the gain did not
decrease in the step-down trials (Fig. 4f).

We next analyzed the temporal distribution of the
spike arrays and the synaptic plasticity induced by the
spike arrays. In the MFR model, the firing rates kept
decreasing during 300 ms after the onset of the step-up
trials (Fig. 4g). The decrease in firing rates during the first
150 ms induced LTP but did not affect the OFR because
the LTD had already balanced with the diminishing effect
in the previous ramp trials, and thereby synaptic trans-
mission efficacy did not largely change. However, the
decrease in firing rates lasted further during the last
150 ms, leading to the changes of the synaptic transmis-
sion efficacy by the induction of LTP (Fig. 4g). The
changes of the synaptic transmission efficacy resulted in
the gain adaptation of the OFR. In the Poisson and the
gamma models as well, the decrease of the numbers of
spikes during the last 150 ms led to the induction of LTP
and thereby the gain increased adaptively (Fig. 4h,i). In
the step-down trials, the firing rates increased during the
first 150 ms in the MFR, resulting in the induction of
LTD, but this LTD did not affect the OFR because LTD
had already balanced with the forgetting factor in the
previous ramp trials. The decrease in firing rates during
the last 150 ms led to the changes of the synaptic trans-
mission efficacy by the induction of LTP (Fig. 4j), re-
sulting in the adaptive decrease of the OFR gain. In the
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Poisson model, the decrease in the numbers of spikes
during the last 150 ms led to the induction of LTP and
thereby the gain decreased adaptively (Fig. 4k). In con-
trast, in the gamma model, the numbers of the spikes
during the last 150 ms did not decrease (Fig. 41), so that
the synaptic transmission efficacy did not change largely
because of the absence of LTD or RP, resulting in the
failure of the adaptation of the OFR gain.

We measured the moments of the temporal distribu-
tion of the spike arrays in each model that are required
for the efficient cerebellar learning in the speed-step tri-
als. In the step-up trials, the OFR underwent adaptation
in all of the models tested. However, in the step-down
trials, the OFR underwent adaptation in the MFR and
the Poisson models, whereas the OFR did not in the
gamma model. In the step-down trials, the third moment
in the gamma model was different from those in others
(Table 2). These results suggest that the temporal dis-
tribution of the spike arrays should encode the third
moment of the temporal distribution of the error signal
in the step-down trials.

3.3 Comparison of the spike models with the M FR model
in the point-to-point reaching two-link arm movement

We performed the simulation of the point-to-point
reaching arm movement 200 000 times using the MFR,
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Table 2. Moments of the temporal distribution of the error signals
of CFs in the OFR speed-step trials in each model

Speed-step Mean firing Poisson Gamma
rates
First moment  Step-down 133.0 146.3 121.9
Step-up 129.4 139.2 143.0
Second moment Step-down 5.94e+3 6.42¢+3 523e¢+3
Step-up 7.42e+3 8.07¢+3 8.8le+3
Third moment  Step-down  0.420 0.277 0.194
Step-up 0.258 0.262 0.173
Fourth moment Step-down  2.28 2.04 2.09
Step-up 1.94 1.97 1.79
Fifth moment  Step-down  2.08 1.11 1.57
Step-up 1.27 1.08 0.502

the Poisson, the max, and the threshold models. We
evaluated the learning in an arm movement task by the
MSEs between the desired and the actual synaptic
weights of each joint in the last 100 trials. Repetition of
the point-to-point reaching arm movement task ren-
dered the MSEs stable after the 200 000 trials. After
5000 trials, the MSE of the synaptic weights of the PFs
and PCs responsible for the control of the shoulder joint
in the MFR, Poisson, max, and threshold models were
0.0484, 0.0531, 0.0548, and 0.0629, respectively. The
MSE of the synaptic weights responsible for the control
of the elbow joint in the MFR, Poisson, max, and
threshold models were 0.0218, 0.0245, 0.0251, and
0.0452, respectively. MSEs in the Poisson and the max
model, as well as in the MFR model, rapidly decreased,
whereas the MSEs slowly decreased in the threshold
model. After the 200 000 trials, when the MSEs in each
model became very small and converged, the MSEs of
the synaptic weights of the PFs and PCs responsible for
the control of the shoulder joint in the MFR, Poisson,
max, and threshold models were 0.0061, 0.0041, 0.3175,
and 0.0197, respectively. The MSEs of the synaptic
weights responsible for the control of the elbow joint in
the MFR, Poisson, max, and threshold models were
0.0020, 0.0023, 0.1658, and 0.0242, respectively. In the
max model, although the MSEs decreased rapidly at the
beginning of the trials, the MSEs did not become small
or converge. The MSEs in the threshold model did not
become small or converge either. Thus, the MFR and
the Poisson models enabled the efficient cerebellar
learning in the arm movement task, whereas the max
and the threshold models did not.

We measured the moments of the temporal distribu-
tion of the spike arrays in each model in the arm
movement task (Table 3). In comparing the moments of
the spike arrays encoding the positive error signal of the
shoulder in each model, the first moment in the thresh-
old model differed from those in the MFR and the
Poisson models. The third moment in the max model,
but not the first and second moments, largely differ from
those in the MFR and the Poisson models (Table 3).
Similar results were obtained in the spike arrays en-
coding the negative error signal of the shoulder and the

Table 3. Moments of the temporal distribution of the positive er-
ror signals of CFs responsible for the control of the shoulder joint
in the two-link arm movement

Mean firing Poisson Max Threshold
rates
First moment 298.3 306.0 321.5 12.3
Second moment 1.70e +3 1.57¢e+3 2.18¢+3 1.76e+3
Third moment -0.240 -0.274 —0.0464 5.76
Fourth moment 1.92 1.92 1.39 37.98
Fifth moment -1.25 -1.25 -0.158  267.7

error signal of the elbow. Therefore, it is likely that the
temporal distribution of the spike arrays should encode
at least the third moment of the temporal distribution of
the error signal in the arm movement task.

4 Discussion

In this study we examined whether cerebellar learning
can be achieved using the spikes by which neurons
transmit the signal, instead of using the conventional
MFR. In the ramp trials and the step-down trials, the
OFR underwent adaptation in the Poisson and the
gamma models, in addition to the MFR. In contrast,
cerebellar learning was achieved in the step-down trials
and in the two-link arm movement only in the Poisson
model. These results indicate that cerebellar learning can
be achieved using the spikes of the error signals of CFs
instead of the MFR.

What kind of statistical characteristics of spikes are
important for efficient cerebellar learning? In the upward
ramp trials the OFR underwent adaptation in the
Poisson, the gamma, and the max models, but not in the
threshold model. The failure in the threshold model is
due to the different changes of the synaptic transmission
efficacy in the threshold model from those in others:
LTD and RP occurred in the Poisson, the gamma, and
the max models, whereas LTP occurred in the threshold
model. This difference comes from the distinct temporal
distributions between the threshold model and the other
models. The first moment of the temporal distribution of
the spike array in the threshold model was largely dif-
ferent from those in other models. Thus, it is likely that
the temporal distribution of the spike array should en-
code the first moment of the error signal in the upward
ramp trials. In addition, the second and third moments
of the temporal distribution of the spike array in the
threshold model also differed from those in the MFR,
the Poisson, and the gamma models. In the max model,
although the first moment of the temporal distribution
of the spike array did not largely differ from those in the
MFR, the Poisson, and the gamma models, the second
and higher moments were largely different. The reason
why the cerebellar learning can be achieved in the max
model despite the fact that the second and higher mo-
ments were largely different from those in the other
models, is due to the time window used in the OFR
trials. Without the time window, the eye movement had
to diverge in the max model because LTD and RP would



occur too strongly by the direct effect of the spikes to-
gether with the inputs from the PFs. Since the time
window used here followed a Gaussian distribution with
a mean of —100 ms and a standard deviation of 50 ms,
the effect of the spikes became relatively weak and,
consequently, the OFR underwent adaptation.

In the downward ramp trials, learning was successful
in the Poisson and the gamma models, whereas the
learning could not be achieved in the max and the
threshold models. The changes of the synaptic trans-
mission efficacy in all of the models were the same: they
were induced by LTP. However, since no or very few
spikes fired in the max and the threshold models during
the period between 50 ms and 200 ms, LTP was induced
too strongly and, as a consequence, the eye movements
diverged. In the max model, the first and higher mo-
ments of the temporal distribution of the spike array
were different from those in the other models. In the
threshold model, the second and higher moments were
different. These results suggest that the temporal distri-
bution of the spike array have to encode at least the first
and second moments of the error signal for efficient
cerebellar learning.

Among the simulation of the speed-step trials of the
OFR, learning could be achieved in all the models in the
step-up trials. However, in the step-down trials, learning
was successful in the MFR and the Poisson models,
whereas learning could not be achieved in the gamma
model. In the step-down trials, LTD and RP were in-
duced in the MFR and the Poisson models. However,
synaptic plasticity was not induced in the gamma model.
In both step-up and step-down trials, the first and sec-
ond moments of the temporal distribution of the spike
arrays were almost the same among the models, but the
third moment of the temporal distribution of the spike
array in the gamma model was different from those in
the other models. Why then, in the gamma model, could
learning be achieved in the step-up trials and but not in
the step-down trials? In the step-up trials, firing rates
kept decreasing during the first 300 ms after the onset.
In contrast, in the step-down trials, the firing rates in-
creased during the first 150 ms and decreased during the
last 150 ms. Since the firing time of the spikes tends to be
delayed by the waiting time in the gamma model, the
temporal distribution of the spike array becomes rela-
tively right-shifted compared to the MFR and the
Poisson models. Therefore, the number of the spikes in
the gamma model did not decrease during the last
150 ms in the step-down trials, due to the effect of the
right-shifted temporal distribution of the spike array,
resulting in the failure of the decreased gain adaptation.
This right-shift of the temporal distribution of the spike
array appears as the difference in the third moment be-
tween the gamma models and the other models. There-
fore, in the case of the stimulus in which the firing rates
of the error signal fluctuates across the spontaneous
firing rates such as in the step-down trials, the temporal
distribution of the gamma model becomes right-shifted
due to the effect of the waiting time, resulting in the
failure of cerebellar learning. This result also suggest
that the temporal distribution of the spike array should
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encode the third moment of the temporal distribution of
the error signals in the step-down trials.

In the point-to-point reaching arm movement task,
learning could be achieved in the MFR and the Poisson
models, but not in the max and the threshold models. At
the early stages of the trials, the MSEs rapidly decreased
in the Poisson and the max model. However, in the later
stages of the trials when the MSEs in all the models
converged, the MSEs in the MFR and the Poisson
models were very small, whereas the MSEs in the max
and the threshold models were relatively high. In the
max model, since a spike fires when the maximal value of
the input of the error signal is given, LTD occurred too
strongly compared to in the MFR and the Poisson
models and, as a consequence, the MSEs became rela-
tively large. In comparing with the moments in each
spike models, the first, third, and higher moments of the
temporal distribution of the spike array in the threshold
were different from those in the MFR and the Poisson
models. In the max model, although the first and second
moments were not largely different, the third moment
was largely different. Thus, it is likely that the temporal
distribution of the spike array should encode at least the
first, second, and third moments of the temporal distri-
bution of the error signals in the step-down trials.
Moreover, since the firing rates of the error signals
fluctuates across the spontaneous firing rates in the arm
movement task as well as in the step-down trials in the
OFR, it seems important that the temporal distribution
of the spike array encodes the third moment of the
temporal distribution of the error signals.

Taken together with the results of the OFR and the
arm movement task, it seems important that the tem-
poral distribution of the spike array encodes the first and
second moments — but not the third moment — of the
temporal distribution of the error signals in the trials in
which the firing rates of the error signals constantly in-
crease or decrease, such as in the ramp trials and the
step-up trials in the OFR. In contrast, in the trials in
which the firing rates of the error signals fluctuates
across spontaneous rates, the third moment of the
temporal distribution of the spike array seems important
for efficient cerebellar learning. In conclusion, it is likely
that the temporal distribution of the spike array should
encode at least the first, second, and third moments of
the temporal distribution of the error signals for cere-
bellar learning. Among the spike models tested here,
only the Poisson model can satisfy the statistical char-
acteristics required for efficient cerebellar learning.

The Poisson and the gamma models share the similar
characteristics because a spike fires randomly in an in-
put-dependent manner. In contrast, in the max and
threshold models, a spike fires totally in an input-de-
pendent manner. Thus, the former two models can be
regarded as stochastic, while the latter two models are
deterministic. In this study, on a theoretical basis we
demonstrated that efficient cerebellar learning can be
achieved only when a spike fires in a stochastic manner.
Does the temporal distribution of the spikes of CFs
share the similar characteristics as the Poisson model? It
has been shown that the spikes of CFs fire randomly in
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behaving animals at rest (Keating and Thach 1995).
Furthermore, we have already found that the spikes of
CFs also fire randomly during the OFR in Monkeys
(Kobayashi et al. 1998). These observations are consis-
tent with our results. The inferior olive neurons, the
source of the CF inputs to cerebellar PCs, have been
shown to have extensive electrical coupling with each
other through gap junctions (De Zeeuw et al. 1995).
Based on this finding, we computationally simulated
small networks of electrically coupled inferior olive
neurons, combined with non-linear ionic currents
(Schweighofer et al., 1999; N. Schweighofer, K. Doya,
J. Chiron, H. Fukai, M. Kawato, in preparation). We
found that the electrical coupling, together with the non-
linear ionic currents, resulted in the irregular and sto-
chastic firing of CFs. This stochastic characteristic of CF
firing enhanced the input-output mutual information,
and thereby efficient cerebellar learning can be achieved
despite the ultra-low firing rates of CFs. Taken together,
efficient cerebellar learning requires stochastic firing of
CF spikes in an input-dependent manner.
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