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a b s t r a c t

The inferior olive (IO) possesses synaptic glomeruli, which contain dendritic spines from neighboring
neurons and presynaptic terminals, many of which are inhibitory and GABAergic. Gap junctions between
the spines electrically couple neighboring neuronswhereas the GABAergic synaptic terminals are thought
to act to decrease the effectiveness of this coupling. Thus, the glomeruli are thought to be important for
determining the oscillatory and synchronized activity displayed by IO neurons. Indeed, the tendency
to display such activity patterns is enhanced or reduced by the local administration of the GABA-A
receptor blocker picrotoxin (PIX) or the gap junction blocker carbenoxolone (CBX), respectively. We
studied the functional roles of the glomeruli by solving the inverse problem of estimating the inhibitory
(gi) and gap-junctional conductance (gc ) using an IO network model. This model was built upon a prior
IO network model, in which the individual neurons consisted of soma and dendritic compartments,
by adding a glomerular compartment comprising electrically coupled spines that received inhibitory
synapses. The model was used in the forward mode to simulate spike data under PIX and CBX conditions
for comparison with experimental data consisting of multi-electrode recordings of complex spikes from
arrays of Purkinje cells (complex spikes are generated in a one-to-one manner by IO spikes and thus
can substitute for directly measuring IO spike activity). The spatiotemporal firing dynamics of the
experimental and simulation spike data were evaluated as feature vectors, including firing rates, local
variation, auto-correlogram, cross-correlogram, and minimal distance, and were contracted onto two-
dimensional principal component analysis (PCA) space. gc and gi were determined as the solution to the
inverse problem such that the simulation and experimental spike data were closely matched in the PCA
space. The goodness of the match was confirmed by an analysis of variance (ANOVA) of the PCA scores
between the experimental and simulation spike data. In the PIX condition, gi was found to decrease
to approximately half its control value. CBX caused an approximately 30% decrease in gc from control
levels. These results support the hypothesis that the glomeruli are control points for determining the
spatiotemporal characteristics of olivocerebellar activity and thus may shape its ability to convey signals
to the cerebellum that may be used for motor learning or motor control purposes.
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1. Introduction

The inferior olive (IO) possesses complex synaptic structures
called glomeruli. Dendritic spines of neighboring IO neurons
project into a glomerulus and are electrically coupled via gap
junctions (Llinás, Baker, & Sotelo, 1974; Llinás & Yarom, 1981;
Sotelo, Llinás, & Baker, 1974). Contacting these spines are
presynaptic terminals, about half of which are GABAergic, and, for
most IO regions, arise from cells of the deep cerebellar nuclei (DCN)
(De Zeeuw, Holstege, Ruigrok, & Voogd, 1989; Sotelo, Gotow, &
Wassef, 1986). Multichannel recording of Purkinje cell complex
spikes has elucidated the complicated spatiotemporal dynamics
of IO firing, including synchronization, oscillation, and chaotic
activity (Lang, 2002; Lang, Sugihara, Welsh, & Llinás, 1999; Llinás
& Sasaki, 1989). The glomeruli are thought to be a key structure
for determining IO dynamics. Consistent with this idea, complex
spike firing dynamics were altered in distinct ways by the local
administration of GABA blocker picrotoxin (PIX) or gap-junction
blocker carbenoxolone (CBX), respectively (Blenkinsop & Lang,
2006; Lang, 2002; Lang, Sugihara, & Llinás, 1996). In particular, PIX
increases complex spike synchrony and CBX reduces it. However,
the actions of these drugs are not limited to the glomeruli. For
example, GABAergic synapses occur at both intra- and extra-
glomerular sites (Sotelo et al., 1986).

To provide evidence that changes specifically within the
glomeruli can lead to changes in IO firing dynamics, we used
a neural network modeling approach. We started by modifying
an earlier model of the IO that consisted of electrically coupled
neurons (Schweighofer et al., 2004). In that model, the neurons
consisted of only two compartments (soma and dendrite) and the
electrical coupling occurred between dendritic compartments of
neighboring cells. To our best knowledge, there was no IO model
with spines. Thus, in the present model, we add a glomerular
compartment to each IO neuron, which consists of a dendritic
spine that receives an inhibitory synaptic conductance, and we
have the electrical coupling between IO neurons occurring only
between these spines. This new model allows us to test how the
local interactions between gap-junctional and inhibitory chemical
synaptic signals shape IO spiking patterns. Specifically, we use a
Bayesian approach to determine the gap-junctional and inhibitory
conductance values that best match simulated (SIM) spike trains
to experimentally recorded Purkinje cell complex spike activity in
control (CON), PIX, and CBX conditions (note that the one-to-one
relationship between complex spikes and IO spikes allows using
complex spikes as a proxy for IO spikes).

Our results show that the change in firing patterns between
experimental (EXP) control and PIX conditions is best simulated
by halving the inhibitory conductance in the glomerular compart-
ment, whereas the change in firing patterns from control to CBX
were bestmodeled by a 1/3 reduction in the electrical coupling be-
tween spines. These results support the hypothesis that inhibitory
synaptic activity and electrical coupling within glomeruli strongly
shape the firing properties of the olivocerebellar system.

2. Methods

In order to study the synaptic mechanisms underlying the
experimentally observed dynamics of IO activity, we used a
Bayesian approach to solve the inverse problem of simulating the
firing dynamics from a given conductance parameter set. That is,
spike train data sets were generated for step-wise variations of the
two model parameters of interest here, the inhibitory synaptic (gi)
and gap-junctional (gc) conductances. The SIM data set for each
variation of gi and gc was then compared with the EXP spike data,
and the parameters for the simulation data that best fit to the
experimental control, PIX, and CBX conditionswere selected as the

solutions to the inverse problem. Changes in the solutions across
the three conditions allowed us to infer how changes in the state
of the IO glomeruli relate to the patterns of spiking generated by
this system.

To use this approach, two issues needed to be addressed. The
firstwas the problemof how to evaluate the complicated dynamics
of the EXP data in order to be able to estimate the goodness of the
fit between the SIM and EXP data. This was resolved by using a
feature vector (FV)-principal component analysis (PCA) approach
inwhichmany FVs (i.e., quantitativemeasures of the spike activity)
were used to capture various aspects of IO activity. Next, PCA was
used to reduce the FV data to a two-dimensional PCA space, where
the distance (fitting error) between the EXP and SIM data was then
estimated.

The second difficulty was that of how to use the FV-PCA
approach given that the dynamics of IO neurons vary in time, and
from neuron to neuron. One possibility is to compare average FVs
based on analysis of the entire EXP and SIM data sets. Instead, we
used a segment-wise fitting approach that fractionated the EXP
and SIM data into spatiotemporal segments (short time segments
and small neuronal subgroups), and searched for the SIM data
of the best fit (i.e., the one with the minimum error from the
EXP one), segment by segment. The segment-wise fitting resolved
the inverse problem in a probabilistic fashion as en ensemble of
the gi and gc estimates (one for each segment). The reliability of
the segment-wise Bayesian estimates was examined by analysis
of variance (ANOVA) to test the statistical significance of the
difference between the mean PCA scores of the SIM and EXP data
segments compared to their variances. It is worth noting that the
segment-wise fitting far outperformed the conventional mean-
based fittingwith respect to error rate, where the former being two
orders of magnitude smaller than the latter.

Our study to estimate the synaptic conductance of the IO
circuitry from neuronal firing using IO network simulation may
be regarded as a Bayesian solution to the inverse problem in the
following sense. According to Bayes’ rule, the posterior probability
of the synaptic conductance is given as the product of the
likelihood and the prior probability of the synaptic conductance. To
obtain a value for the likelihood, the network simulation played the
role of the forward model to predict firing dynamics from a given
set of synaptic conductances. The match probability between the
SIM and EXP data in our analysis then corresponds to the likelihood
of a specific EXP data given a specific parameter set. Strictly, the
likelihood was approximated by a Gibbs distribution with a low-
temperature limit, while the energy term is the squared error
between the EXP and SIM firing patterns. Global search assumed
the prior probability to be a non-informative uniform distribution,
and a ‘‘juggling search’’ that will be introduced later utilized the
posterior probability determined by the global search as the prior
probability.

The inverse problem to estimate gc and gi from IO firing
dynamics was resolved in four steps. First, SIM spike data were
generated with step-wise variations of gi and gc by an IO network
model. Second, the complicated firing of the EXP and SIM spike
data that vary in space (from neuron to neuron) and time were
fractionated into spatiotemporal segments (short spike segments
for small groups of neurons) and evaluated in a segment-wise
fashion using firing feature vectors (FVs), and the FVs of the spike
data segments were contracted onto two-dimensional PCA space.
Thus the firing dynamics of the EXP and SIM spike data were
mapped onto the PCA space for each spatiotemporal data segment.
Third, the gc and gi for the SIM spike segments that showed the
closest match in the PCA space (i.e., the minimum PCA errors
defined as Euclidean distance) to the EXP ones were determined
as the solutions to the inverse problem. Fourth, there was an ill-
posed problem that the firing dynamics mainly depend on the
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Fig. 1. Schematic diagram illustrating IOneuronal network. A–C: Equivalent circuitmodels of themembraneper unit area that contains ionic channel conductance, excitatory
ge , and inhibitory gi synaptic conductance as well as inter-compartmental conductances gdo, god, gpd, gdp and gc for the soma, dendrite, and spine compartments. D and E:
Compartment and network model representing interneuronal connectivity. Dotted lines represent the connectivity that shows the periodic boundary conditions: a torus-
like structure. The somatic compartment contains gNa, gK, gCal, gh , and go , which are the ionic channel conductances for an inward sodium current, a delayed rectifier
outward potassium current, a low-threshold calcium current, an anomalous inward rectifier current, and the leakage current. The dendritic compartment includes ionic
channel conductances for high-threshold calcium current gCah, for calcium-activated potassium current gKca, and for leakage current gd . The model structure and parameters
essentially follow those of Schweighofer et al. (2004). A Poisson spike generator firing at a mean rate of 10 spikes/s was assumed for each synaptic input, including ge and gi .
Each cell received 260 excitatory and inhibitory Poisson synaptic inputs (soma: 10, dendrite: 80, spine: 10 multiplied by 2).

ratio of gc to gi rather than individuals (Katori, Lang, Onizuka,
Kawato, & Aihara, 2010; Onizuka, 2009). This issue was resolved
by a ‘‘juggling algorithm’’ in which thematch between the SIM and
EXP spike segments was searched under the constraint that gc and
gi remain unaffected by PIX and CBX administration, respectively.
In other words, gc and gi should agree with each other between
CON and PIX conditions and between CON and CBX conditions,
respectively.

2.1. IO neuron model

An IO neuronal model was used as the forward model to
simulate the firing dynamics of the system. The neurons of the
present model were based on those in the model of Schweighofer
et al. (2004). In this earlier model, each neuron was composed
of only two compartments: soma and dendrite. The connection
between these compartments was modeled by the crosstalk
conductances from/to the soma and to/from the dendrite (god, gdo).
In order to investigate how glomerular characteristics affect IO
activity, each neuron in the present model additionally contains
four spine compartments connected to the dendritic compartment.
As detailed below, the spine compartments contain both gap-
junctional and synaptic conductances in order to simulate the
physiological interactions that occur within the glomeruli.

The network model consisted of 3× 3 array of IO neurons, each
of which was mutually connected to its four neighboring neurons
by a gap junction from one of its spines to one of its neighbor’s
(Fig. 1(E)). Each spine compartmentwas connected to the dendritic
compartment by a crosstalk conductance from/to dendrite and
to/fromspine (gdp, gpd), andmutually connected to the neighboring
spine compartments through the gap-junctional conductance (gc).
Throughout this paper, we will use suffixes o, d, and p to denote
the somatic, dendritic, and spine compartments. Note that each
connection between two compartments is characterized by two
direction-specific conductances because conductance was defined
per membrane surface area and thus is effectively different
according to the direction of current flow (see below).

The major experimentally described conductances of IO neu-
rons are implemented in the model as they were in the earlier
cell model (Schweighofer et al., 2004). The somatic compartment

contains ionic channel conductances for the inward sodium cur-
rent (gNa), the delayed rectifier outward potassium current (gK),
the low-threshold calcium current (gCal), the anomalous inward
rectifier current (gh), and the leakage current (go) (Fig. 1(A)). The
dendritic compartment includes ionic channel conductances for
the high-threshold calcium current (gCah), the calcium-activated
potassium current (gKca), and the leakage current (gd) (Fig. 1(B)).
The spine compartment includes a conductance for a leakage cur-
rent (gp) (Fig. 1(C)). All three classes of compartment receive ex-
citatory (ge) and inhibitory (gi) synaptic conductances driven by
Poisson noise generators. All of the ionic, crosstalk, and synaptic
conductances are defined for a unit surface area of the soma, den-
drite, or spine membrane.

The electrophysiological properties of the IO model also
depended on the crosstalk conductances between the soma
and dendrite compartments (god, gdo) and between the dendrite
and spine compartments (gdp, gpd) (Fig. 1(D)). They are defined
per membrane surface area and therefore depend on neuron
morphology: the ratio of the somatic area to the total surface area
(p), and the ratio of the area of the four spines to the total surface
area (q) (see Eqs. (A.9), (A.13), (A.14) and (A.17) in the Appendix).

2.2. Synaptic inputs

The spine compartment is the major new feature of the present
version of our model, which allowed us to address the effects of
inhibitory synaptic inputs to the glomeruli where the IO neurons
are connected to each other with gc (see Eq. (A.15) in the Appendix
for the junctional current). All of the soma, dendrite, and spine
compartments receive 10, 80, and 10 excitatory and inhibitory
synapses driven by Poisson spike generators (Schweighofer et al.,
2004). The numbers of synapses are roughly proportional to the
surface areas of the three compartments.

2.3. Network structure

We simulated the dynamics of a network of electrically
coupled IO neurons whose coupling is antagonized by shunting
inhibition. Model IO neurons had tiny variations from each other
(Schweighofer et al., 2004); that is, the maximal conductance gCal
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value of the low-threshold calcium current for each neuron was
randomly drawn from a uniform distribution, with the maximum
deviation set at ±5% of the mean. The network structure is
a toroidally linked 3 × 3 grid of cells, where the cells are
connected to their four neighbors at the spine depending on their
positions in the grid (Fig. 1(E)). The network structure adopted
is for allowing spatial inhomogeneity into the model and for
mathematical simplicity.

2.4. Computer simulation

We computed the electrical activity in each compartment of the
modelwith step-wise variations of the gap-junctional conductance
(gc) and the inhibitory conductance (gi). The other model
parameters including the crosstalk conductances (god, gdo, gdp, gpd,
and gc in Eqs. (A.9), (A.13)–(A.15) and (A.17)) were fixed to the
values essentially the same as those used by Schweighofer et al.
(2004); Schweighofer, Doya, and Kawato (1999), except for the
new parameters (gdp, gpd, and q), which are related to the spine
compartment and were fixed at the values shown in Table A.1
in the Appendix. The electrical activity in each compartment of
the model was simulated with interactions through a system of
ordinary differential equations (Eqs. (A.1)–(A.3)) that determines
the changes of the membrane potential within the somatic,
dendritic, and four spine compartments. Each ordinary differential
equation contains many different ionic, crosstalk, and gap-
junctional currents, and excitatory and inhibitory synaptic inputs
(from Eqs. (A.4)–(A.18)).

We simulated themembrane potential time courses of the nine
cells with step-wise changes of the two model parameters, i.e.,
inhibitory synaptic conductance gi, and coupling conductance gc
(0.025 step,with range 0–2.0mS/cm2) and generated 6561 (=81×
81) sets of 500 s long SIM spike trains. Within these spike trains
the time of each spike was defined as the time when the change in
the somatic membrane potential exceeded 40 V/s. The numerical
integration of the system of ordinary differential equations
(A.1)–(A.3) was executed by the CVODE package (part of the
SUNDIALS package) with 0.5 ms time steps. For numerically stiff
problems like the present IO network model, CVODE includes
backward differentiation formulas.

2.5. Spike train analysis

The SIM and EXP spike trains were fractionated into segments
(see Fig. 3(A) and (B)), and the firing dynamics were evaluated
for each segment using three temporal and two spatial classes of
FV. Throughout this paper we use suffixes i, j for the number of
neurons, k for time step, and l,m for the number of spikes. The
three temporal classes of FV used to characterize the temporal
firing properties of the individual neurons were as follows.

(i) Themean firing rate of the entire segment (FR), calculated by
dividing the number of spikes in a segment by the duration of the
segment.

(ii) The auto-correlogram for three delays (ACG 1, 2, 3,
corresponding to delays of 50–100, 100–150, 150–200 ms), which
was calculated as follows:

ACGx,i(τ ) =
K∑

k=1

xi(tk)xi(tk − τ), (1)

where xi (tk) represents the occurrence of spikes at the kth time
step in the ith neuron; xi (tk) = 1 if a spike is generated in time
step tk, otherwise xi (tk) = 0; and τ is the time delay.

(iii) Local variation (LV ) (Shinomoto, Miura, & Koyama, 2005),
which was calculated by

LV = 1
R − 1

R∑

r=1

3(Tr − Tr+1)
2

(Tr + Tr+1)2
, (2)

where Tr (r = 1, 2, . . . , R) is the rth inter-spike interval. LV is 1
for Poisson firing and becomes negative and positive for regular
and burst firing, respectively.

The following two spatial classes of the FV were used to
characterize the spatial firing properties of neuron pairs.

(iv) Cross-correlograms (CCG 1, 2, 3, and 4) for four delays (0–50,
50–100, 100–150, 150–200 ms) were calculated by

CCGx,i,j(τ ) =
K∑

k=1

xi(tk)xj(tk − τ). (3)

(v) The minimal distance (MD), defined as a normalized distribu-
tion of the following s (Hirata & Aihara, 2009; Katori et al., 2010)
between the lth spike of neuron i and a spike of neuron j, is defined
as follows:

si,jl = 1 − exp




−2min

m
|t il − t jm|

dj



 (i �= j), (4)

where t il is the lth spike time of the ith neuron, dj is themean inter-
spike interval (ISI) of the ith neuron, and m runs from 1 to the
total number of spikes by neuron j. If the spike train is generated
according to a totally random process, the si,jl will be uniformly
distributed between 0 and 1 (Katori et al., 2010).

To evaluate the above firing feature metrics, we need to
consider how to choose the spatiotemporal segments that specify
the periods of the spike train and the neuronal groups (neuronal
subfractions) for averaging the metrics. The appropriate segment
size, i.e., the length of the period and the number of neurons in the
segments, were determined according to the dependency of the
variation of mean firing rate on the segment size. The temporal
FVs were averaged each for the neuronal subfractions (n = 3),
and the spatial FVs (Eqs. (3) and (4)) were determined for each
neuron for combinations with all other neurons, and they were
averaged for the individual neuronal subfractions. The frequency
histogram of MD values determined for the neuronal subfractions
was constructed with the interval of 0.04 (25 bins), normalized so
that the sum of histogram values is unity, and used for the feature
vectors (MD 1–25 with 0.04 step within the interval [0, 1]). The
MD histogram exhibited an even, leftward or rightward skewed
distribution depending on whether no interaction existed, or a
positive or negative interaction existed, in ensemble neuronal
firing. The firing dynamics characterized by the 34 FVs were
contracted onto two major PCA axes (see Section 3.3) for search
of the best fit between the EXP and SIM spike segments.

2.6. Best-fit search by a juggling algorithm

The gc and gi for the SIM spike segments that showed the closest
match (the minimum PCA errors) to the EXP spike segments were
searched in the PCA space as the solution to the inverse problem
to estimate gc and gi from the firing dynamics. However, a global
search of the best fit with no constraint failed to resolve the inverse
problem, due to the ill-posed nature of the inverse problem,
because the major determinant of the IO firing dynamics was the
gc/gi ratio rather than either individual value (Katori et al., 2010;
Onizuka, 2009). This issue was resolved by a ‘‘juggling algorithm’’,
in which the match between the SIM and EXP spike segments was
searched under the constraint that gc and gi remain unchanged
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Fig. 2. Raster display of firing in experimental and simulated IO neurons. A–C compare the firing dynamics for the control (CON), picrotoxin (PIX), and carbenoxolone (CBX)
conditions between nine pairs of experimental (EXP) and simulation neurons (SIM) of the best fit found in PCA of 34 firing feature vectors. Red bars at the bottom of SIM
spike rasters of cells #9, 4, and 8 indicate the periods during which the membrane voltage traces in the spine, dendrite, and soma compartments are shown in Fig. 8.

by PIX and CBX administration, respectively. This constraint was
based the experimental facts that PIX’s action should reduce gi
but have no effect on gc , whereas the converse is true for CBX.
Therefore, the estimated distributions of gc should overlap each
other between the CON and PIX conditions, and similarly those for
gi in the CON and CBX conditions should overlap.

The juggling algorithm consisted of four steps. First, a global
search with no constraint was conducted to find gi and gc for
CON spike segments sampled in both PIX and CBX experiments.
Second, a constrained search was conducted to find the partner
gi that paired with the ensemble gc for the CON spike segments
determined by the global search. Third, a similar constrained
search was conducted to find the partner gc paired with the
ensemble gi for the CON and PIX spike segments in the PIX
experiments, determined by the second step search. Fourth,
another constrained search was conducted to find the partner gi
paired with the ensemble gc for the CON and PIX spike segments
in the PIX experiments, determined by the third step search. The
loop of steps 2–4 was repeated until the ensemble of gc for PIX
experiments matched with that for CON experiments and so was
repeated until the ensemble of gi for CBX experiments matched
with that of CON experiments.

3. Results

3.1. Multiple spike trains from experiments

Complex spike (CS) trains (500 s long) were sampled from
previously reported experiments in which recordings were
obtained from 136 Purkinje cells (PCs) during CON and PIX
conditions (n = 5 experiments), and from 35 PCs during CON and
CBX conditions (n = 2, Blenkinsop & Lang, 2006; Lang, 2002; Lang
et al., 1996, see Table 1). Fig. 2 illustrates the CS spike trains of nine
representative PCs (#1–9) in the CON (for the PIX experiment), PIX,
and CBX conditions (upper rasters labeled EXP of Fig. 2(A)–(C)).

Table 1
Experimental data of animals, neurons, and references 500 s long spike data were
collected from experimental data and divided into segments of 25 or 50 s. The
number of animals, recorded cell numbers, and the original references, fromwhich
data were collected, are shown.

Animal no. EXP condition Cell Original reference

1 CBX 22 Blenkinsop and Lang (2006)2 CBX 13

3 PIX 16

Lang et al. (1996) and Lang (2002)
4 PIX 25
5 PIX 42
6 PIX 32
7 PIX 21

The CS activity became much more frequent (50% increase) and
oscillatory in the PIX than the CON condition and vice versa (50%
decrease in firing frequency) in the CBX condition. Notice also
that the firing dynamics significantly fluctuate: dense at certain
times and sparse at others. It is important to note that while PC
CS activity was recorded in these experiments, CSs bear a one-to-
one relationship to IO neuronal spikes, and thus exactly reflect the
firing of IO neurons, which allows them to be used as proxies for
IO spike trains, and thus we will use the terms CS and IO spike
interchangeably.

3.2. Quantitative analysis of multiple spike trains

We fractionized an entire spike train into time segments, and
also split the entire IO unit ensemble into neuronal subsets,
and estimated the firing feature metrics for each spatiotemporal
segment. With an increase in segment size, the metrics became
more reliable, but lost their spatiotemporal resolution. So, to
choose an appropriate segment size we plotted the variance of
the mean spike rate normalized by its square mean as a function
of segment duration for the entire neuronal ensemble (Fig. 3(A)).
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A B

Fig. 3. Relation between variance of firing rates and segmentation of spike train. A and B: for segment length and size of neuronal grouping. Ordinate plots variance of the
mean spike rate normalized by the square mean for the six control, four PIX, and two CBX experiments (black, red, and green lines). The abscissa is the size of the spike train
segment and the size of neuronal grouping. The same color conventions to represent the three experimental conditions are used in subsequent figures. Green, red, and black
arrows indicate the size selected for the segmentation of the spike train.

A B C

D E

Fig. 4. Three representative feature vectors for three experimental conditions. A–C: auto- and cross-correlogram andminimal distance determined for one spike segment of
cell EXP #1 and SIM #1 (solid and dotted lines) in Fig. 2. Feature vectors (FVs) were selected and estimated at the 3, 4, and 25 sampling points in A–C (shown by tick marks).
D and E compare the means and SD of the five representative FVs determined for the entire spike segments for the seven control, five PIX, and two CBX experiments and
corresponding simulation data. The ordinate of D is scaled so that the control is 1. We note that LVs in the three experimental conditions are all less than 1, which indicates
regular spiking.

The normalized variance rapidly decreased for the CBX spike
data (green trace) at duration of around 20–25 s, and gradually
decreased for the PIX and CON data (red and dark traces) for
durations of 20–50 s. Therefore, we selected 25 and 50 s as the
segment duration for the CBX (green arrow) and for the PIX
and CON (red and dark arrow) data, respectively. Likewise, the
normalized variances of the mean spike rate determined for the
selected segment duration for PIX, CBX, and CON conditions all
decreased with an increase of the size of the neuronal subset
(Fig. 3(B)). The rate of this decrease was rapid until subsets had
three or more neurons; thus, we selected three neurons as the
standard neuronal segment size for PIX, CBX, and CON conditions
(dark arrow in Fig. 3(B)).

The IO firing dynamics that varied from cell to cell and from
time to time (see Fig. 2) were evaluated by a total of 34 feature
vectors (FVs), including the five temporal ones, that is, the firing
rate (FR), three submetrics of the auto-correlogram (ACG 1–3
measure at three characteristic delays, 50–100, 100–150, and
150–200 ms), the local variation (LV ), and 29 spatial ones, that

is, four submetrics of the cross-correlograms measured at four
characteristic delays (CCG 1–4, at 0–50, 50–100, 100–150, and
150–200 ms), and 25 submetrics of the minimal distance (MD
1–25). The MD metrics exhibit even, leftward and rightward
skewed distribution ranging from0 to 1, in caseswhen no, positive,
and negative interaction exists in the firing of the neuronal
ensemble, respectively. Therefore, the MD was measured at many
sampling points to capture precise patterns of spatial interaction.

FVs were determined for a total of 440 segments including the
five sets of the CON and PIX experiments (10 segments each for
5, 8, 14, 10, and 7 subneuronal ensembles of IO units sampled in
five CON and five PIX experiments) and a total of 220 segments
including the two sets of CON and CBX experiments (20 segments
each for 7 and 4 subneuronal ensembles sampled in two CON and
two CBX experiments).

Fig. 4 shows four FVs, including the ACG (A), CCG (B), and MD
(C) for a representative IO unit (#1 in Fig. 2) for PIX, CBX, and
CON conditions, and illustrates how three submetrics of the ACG
(ACG 1, 2, 3) and four of the CCG (CCG 1, 2, 3, 4) and 25 of the
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Fig. 5. Scores of three- and two-condition PCAs and contributions of major vectors to first PCA axis. A, C, D: Three-condition PCA for (CON, PIX, and CBX in A) and two
two-condition PCAs (CON and PIX in C and CON and CBX in D); each symbol represents PCA score of individual spike segments. B: contributions of selected major 14 feature
vectors (FR, LV, ACG1–3, CCG1–4, MD1–5) to the first PCA axis. The mean and SD were computed for all PIX, CON, and CBX spike segments.

MD were evaluated. Fig. 4(D) shows the five representative FVs
averaged for 660 CON (for 440 PIX and 220 CBX experiments), 220
CBX, and 440 PIX spike segments each for 55 (44 and 11 for PIX
and CBX experiments), 11, and 44 IO unit ensembles, respectively.
Four (FR, ACG 3, CCG 1, and MD 1) of the five FVs increased in the
PIX and decreased in the CON condition, and vice versa for the CBX
condition, whereas LV showed the opposite change, being lower
in the PIX and higher in the CBX condition. The changes in the
FVs elucidate the firing dynamics, which became more frequent,
oscillatory, and regular in the individual IO neurons and more
synchronous across the IO neuronal ensemble under the PIX than
the CON condition, and showed the opposite changes under the
CBX condition. Fig. 4(E) shows that the SIM spike data fitted to the
EXP ones in the PCA space (see Fig. 6(A) and (B)) rather closely
reproduced the changes in FVs for EXP spike data in CON, PIX,
and CBX conditions. A relatively low error rate, determined as the
difference between the FVs for the EXP and SIM data normalized
by the EXP ((SIM–EXP)/EXP), for each FV (0.36 ± 0.24, 0.45 ±
0.44, 0.60 ± 0.43, 0.23 ± 0.15, 0.42 ± 0.33 for FR, ACG 3, CCG 1,
LV, and MD 1) also confirmed the goodness of the fit between FVs
of the EXP and SIM spike train segments.

3.3. Principal component analysis (PCA) of firing feature vectors

We conducted PCA to obtain a simpler measure of the firing
dynamics evaluated by the 34 FVs for CON, PIX, and CBX conditions.
The calculation of the ‘‘variance accounted for’’ (VAF) indicated
that the first two orthogonal components explained a major part
(VAF = 0.62) of the firing dynamics (first and second components,
0.51 and 0.11, respectively). The EXP spike segments for the CON,
PIX, and CBX conditions formed three clusters along the first PCA

Table 2
ANOVA for firing dynamics of experimental and simulation spike trains under
three experimental conditions A–C. The mean and standard deviation of the first
principal component scores are shown for PCA for three and two experimental
conditions.

(A) ANOVA for CON, PIX, and CBX conditions (first component).

CON PIX CBX

EXP −2.43 ± 1.03 4.19 ± 3.44 −4.63 ± 1.03
T(PIX, CBX–CON) −38.97

(p = 5.71E−154)
20.52
(p = 3.13E−46)

F(SIM–EXP) 4.49E−04 (p = 0.98)

(B) ANOVA for CON and PIX conditions (first component).

CON PIX

EXP −3.30 ± 0.87 3.30± 3.44
SIM −3.30 ± 0.87 3.30± 3.44
F(PIX–CON) 3043.8 (p < 0.0001)
F(SIM–EXP) 1.33E−04 (p = 0.99)

(C) ANOVA for CON and CBX conditions (first component).

CON CBX

EXP 1.96 ± 2.67 −1.96± 1.97
SIM 1.93 ± 2.65 −1.96± 1.97
F(CBX–CON) 613.28 (p = 4.76E−103)
F(SIM–EXP) 0.0082 (p = 0.92)

axis, with significant overlap between the CON and CBX clusters
(Fig. 5(A)). An ANOVA for the three-condition PCA scores also
indicated that the separations between the three clusters were
extremely significant. (Table 2(A).)

Fig. 5(B) shows the contribution, defined as the product
between the FV values and the coefficients of the FVs for the 14
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A B

Fig. 6. PCA errors between experimental and simulation spike segments. A and B correspond to Fig. 5(C) and (D). Each symbol here represents an SIM spike segment. The
bar represents PCA error and therefore the end of the bar represents the PCA score of the corresponding SIM spike segments.

major FVs to the first PCA component. The major contributors to
the PCA scores, such as FR, ACG 3, CCG 1, and MD 1, were positive
except for LV, which was negative, and were largest for PIX and
smallest for CBX, and vice versa for LV. This finding is consistent
with the locations of EXP spike segment clusters for CON (middle),
PIX (rightmost), and CBX (leftmost) conditions in Fig. 5(A), and
also the changes of the FVs for those conditions in Fig. 4(D). All of
these findings consistently indicate that IO firing becomes higher,
more regular, oscillatory, and synchronous across the IO neuronal
ensemble under the PIX than the CON condition, and vice versa
under the CBX condition.

ANOVA for the three-condition PCA (Table 2(A)) indicated a
close match between EXP and SIM spike segments (p = 0.98), and
a marked separation of CON, PIX, and CBX clusters (p < 10−40).
However, we considered that the global search of the match in the
three-condition PCA space was insufficient for two reasons. First,
visual inspection indicated a significant overlap between CON and
CBX spike segments (see Fig. 5(A)). Therefore the PCA space should
be optimized for better separation of CON and CBX data clusters.
Second, the match in the PCA space failed to give correct estimates
of the inhibitory conductance (gi) and gap-junctional conductance
(gc) due to the ill-posed nature of the inverse problem that the
firing dynamics depend on the ratio of gi to gc rather than the
individual values.

This problem was resolved by conducting two separate two-
condition PCAs each for CON and PIX, and for CON and CBX
clusters, and a juggling search for the best fit between EXP and SIM
spike segments across the two PCA spaces (see Model parameter
estimation). The 34 FVs for the CON and PIX spike segments were
ranked by t-values of the t-test, and the top 25 FVs were used for
two-condition PCA. Fig. 5(C) shows the results of two-condition
PCA, indicating that the separations between the PIX and CON
clusters are significantly improved. The two-condition PCA with
the 25 FVs also produced a significant improvement of separation
between the CBX and CON clusters (Fig. 5(D)).

3.4. Model parameter estimation

We generated SIM spike data of the same number and the same
length of the spike segments for the CON, PIX, and CBX conditions
(see Method). We mapped them onto the two PCA spaces for EXP
spike data for CON–PIX and CON–CBX conditions, respectively,
and conducted a global search for the best fit with the minimal
PCA error between the SIM and EXP spike segments evaluated in
the two-dimensional axes of PCA. Global search of the best fit in
the two-condition PCA for CON and PIX, and that for CON and
CBX spike segments both failed to give estimates of gi that match
between CON and CBX conditions, and so did those of gcbetween

CON and PIX conditions, respectively. This is the requirement from
the neuroscience studies that PIX depresses gi but not gc , and
vice versa for CBX. The mismatch of gi and gc between the two
control conditions was due to the fact that IO firing dynamics
depend on the shunting conductance determined by a ratio of gc
to gi rather than the individual values. We resolved this problem
by conducting a juggling search for the best fit in the two PCA
spaces. That is, PIX · gcs and CBX · gis were jointly estimated in
combination with PIX · gis and CBX · gcs while assuming that the
PIX · gcs overlap with CON · gcs and so CBX · gi with CON · gi
(Method2.6).We continued the juggling search until the difference
of mean gi and gc became statistically insignificant between the
two CON conditions (p > 0.5) by a t-test. Fig. 6(A) and (B) show
the results after the juggling searches (number of iteration = 3)
between the CON–PIX and CON–CBX spaces, where the PCA errors
were plotted as bars extending from the symbols representing
the PCA scores of the SIM spike segments. Generally, the errors
were almost invisibly small, except for a relatively few plots of the
CON–PIX and CON–CBX spaces (those in the upper-right quadrant
of Fig. 6(A) and in the central part of Fig. 6(B)). The average error
rate of the PCA scores estimated as (SIM–EXP)/EXP for SIM spike
segments was all very low for CON, PIX, and CBX conditions (0.02,
0.025, and 0.02). Visual comparison of the raw EXP and SIM spike
data for the three conditions also revealed a fine match (see upper
and lower spike segments in Fig. 2(A)–(C)). Although the individual
SIM spikeswere not those exactly corresponding to the EXP spikes,
they finely reproduced the spatiotemporal features of firing such
as the frequency, oscillation, burstiness, and synchrony under the
three EXP conditions. The five major FVs (FR, ACG3, CCG1, LV, and
MD1) for representatives of SIM spikes were in general fine match
with the FVs for those of EXP spikes (see solid and dotted traces in
Fig. 4(A)–(C), see also D and E). The error rates of the FVs were also
rather low.

The performance of the juggling search between the two PCA
spaces was also confirmed by ANOVA. The difference in the first
principal component scores was highly significant between the
CON and PIX spike segments (Table 2(B)) or between those of the
CON and CBX conditions (Table 2(C)), but insignificant between the
SIM and EXP ones. The error rates of SIM with EXP spike segment
in the two-condition PCA spaces were two orders of magnitude
smaller than those for the conventional mean-based match (2.09,
1.88, and2.34 for CON, PIX, andCBX conditions) thatminimized the
PCA errors for the mean of the entire spike segment for the entire
neuronal ensemble.

Fig. 7(A) and (B) plot the frequency histograms of gis and
gcs estimated as those for the spike segments of the best fit
with the EXP spike segments, determined by the juggling search.
The gi values for the CON and CBX conditions showed a rather
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Fig. 7. Estimates of inhibitory and gap junction conductance. A and B: frequency histograms of gi and gc determined by a juggling search. Each histogram is normalized
for the subpopulation of CON, PIX, or CBX spike segments (n = 660, 440, and 220). C and D, the mean and SD of inhibitory and gap-junctional conductances for the three
experimental conditions. The triple asterisk indicates statistical significance p < 0.05.

wide distribution around 1 mS/cm2 overlapping each other, while
those for the PIX condition showed a rather sharp distribution
around 0.3 mS/cm2. Conversely, the gc values for the CON and PIX
conditions exhibited a sharp and overlapped distribution around
1.5 mS/cm2, while those for the CBX condition showed a wide
distribution extending over the entire range of simulation. Fig. 7(C)
and (D) show the mean and SD for gi and gc for the three EXP
conditions. gi was reduced under the PIX condition to roughly a
half (0.51 ± 0.41 mS/cm2) of that for the CON condition (1.10 ±
0.36 mS/cm2) and remained unchanged for the CBX condition
(1.11 ± 0.34 mS/cm2). Likewise gc was decreased under CBX
condition to roughly two-thirds (0.75 ± 0.51 mS/cm2) of that for
the CON condition (1.16±0.44mS/cm2) and remained unchanged
under the PIX condition (1.16 ± 0.44 mS/cm2).

3.5. Robustness analysis

The firing dynamics of the IO network model may depend
on a number of parameters such as the excitatory synaptic
conductance ge, besides the critical parameters gi and gc whose
effects on IO firing were systematically studied in the present
study. To show the robustness of the present results, we conducted
simulations in which parameter ge was 10% larger or smaller than
the standard ones. ANOVA of scores of the SIM spike segments
in the two-condition PCA for CON–PIX and for CON–CBX revealed
no significant difference across a ±10% change of ge from the
baseline (p = 0.99 and 0.96). Therefore, the firing dynamics did
not change significantly across the three conditions, and the gi and
gc estimates were robust for the changes in ge.

3.6. Voltage-trace reconstruction

Fig. 8 illustrates voltage traces for parts of raster plots shown
in Fig. 2 (see red bars shown at the bottom of spike rasters). There
were full-sized narrow spikes in the soma segment and small-sized
spikes in the dendrite and spine compartments that represented
Na spikes initiated in the soma and electronically transmitted to
the dendrite and spines in most of the spike segments under all of
the CON, PIX, and CBX conditions (Fig. 8(A)–(I)). In rather rare cases
(17, 14, and 16 spikes each for 3600 spike segments under CON,
PIX, and CBX conditions), we found a full-sized broad spike in the
spine and dendrite compartments and a smaller one in the soma
compartment that represented Ca spikes initiated in the dendrite
and transmitted to the soma and spines, and a few Na spikes
initiated in the soma following the Ca spike (Fig. 8(J)–(L)). There
was a tendency that the baseline negativemembrane potentialwas
deepest, modest, and shallowest for CBX, CON, and PIX conditions
across the spine, dendrite, and soma compartments (p < 10−100

by ANOVA for 400 spike segments). Correspondingly, the baseline
noise estimated as RMS was largest, modest, and smallest for CBX,
CON, and PIX conditions (p < 10−100). The baseline was most
oscillatory in the PIX condition and most quiescent in the CBX
condition. All of these findings are consistent with those for FVs
of EXP and SIM spike segments (see Fig. 4(D) and (E)).

4. Discussion

The spatiotemporal dynamics of IO firing have been studied by
multi-channel recording as the climbing fiber responses (complex
spikes) in cerebellar Purkinje cells under pharmacological suppres-
sion of the cerebellar nuclear inhibition by PIX and gap-junctional
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Fig. 8. Voltage trace for spike segments. A, B and C: traces of membrane potential in the spine, dendrite, and soma compartments of cell #9 for a part of the SIM spike train
under the CON condition (a red bar) shown in Fig. 2. D–F, G–J, and J–L: similar traces to A–C under PIX, CBX, and CON conditions for cells #4, 8, and 1, respectively.

connectivity by CBX (Blenkinsop & Lang, 2006; Lang, 2002; Lang
et al., 1996). IO firing became more frequent and regular in the in-
dividual neurons andmore synchronized across the neurons under
the PIX application and vice versa under the CBX application. It was
previously hypothesized that these changes were in large part due
to modulation of the effective coupling conductance between IO
neurons. Specifically, PIX, by acting as a GABA-A receptor antago-
nist, increased the effective conductance between IO neurons by
reducing the shunting inhibition that occurs when GABA binds to
its receptors. Moreover, CBX decreased the effective conductance
by directly causing a decrement of the gap-junctional conductance.

Our study aimed to test these hypotheses by resolving the
inverse problem to estimate the synaptic conductance from the
neuronal firing, using an IO network model as the forward model
for Bayesian inference. The network model generated spike data
for step-wise variations of the model parameters, gi and gc , and
the solutions were found as those giving the SIM spike data
that was best fitted to the EXP spike data. There were three
difficulties in this approach. The first problem was how to find
the match of the simulation spike data with the EXP ones that
convey complicated firing dynamics, varying in space (fromneuron
to neuron) and time. We resolved this issue by fractionating the
spike data into spatiotemporal segments (short spike segments
for small neuronal ensembles) and searching for the match for
every segment. The segment-wise fitting is expected to increase
the degrees of freedom for fitting. In fact, we found that the error
rate of the segment-wise fitting in the PCA space was two orders
of magnitude smaller compared with that for the conventional
mean-based fitting. The second difficulty was how to evaluate
the complicated dynamics of IO firing and compare between EXP
and SIM spike data. This problem was resolved by evaluating
the spatiotemporal dynamics of IO firing by a multitude of firing

feature metrics, contracting them onto the two-dimensional PCA
space and finding the match as the pairs of EXP and SIM spike
segments that convey the minimum distance in the PCA space.
The third difficulty was the ill-posed nature of the inverse problem
due to the fact that IO firing depends on the shunting conductance
defined by a ratio of gc to gi rather than the individual values. This
problem was resolved by a juggling search where the best fit was
found under the constraint that gc remains unchanged between
CON and PIX conditions and so does gi between CON and CBX
conditions.

Our method to resolve the inverse problem may be equivalent
to Bayesian estimation of the model parameters using simulation
as the forward model. The global and juggling search algorithms
may roughly correspond to Bayesian estimation of CON · gc, CON ·
gi and PIX · gi, CBX · gc with no prior information and with
the prior information that PIX · gc = CON · gc and CBX ·
gi = CON · gi, respectively. One of our future studies is to
utilize a more general method to approximate the likelihood
distribution, which determines the firing pattern probability from
a given set of parameter values. One possible way is to use
a finite temperature in the Gibbs distribution rather than zero
temperature, corresponding to the present method in picking
up only the closest parameter. Function approximation of the
likelihood or non-parametric approach is another possibility for
Bayesian estimation.

Visual inspection of representative EXP and SIM spike segment
pairs, statistical analysis of all EXP–SIM data by ANOVA, and error
rate analysis all indicated a fine match between EXP and SIM spike
data and substantiated the reliability of our analysis. The voltage
traces for SIM spikes demonstrated the membrane events in the
soma consistent with the findings of FVs for the SIM spikes, such
as the deepest andmost noisy baselinemembrane potential for the
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CBX condition, and themost oscillatory and least noisy baseline for
the PIX condition. Our IO networkmodel introduced all the known
neuronal and network structures, such as soma, dendrite, spines
with gap junctions, and the excitatory and inhibitory synaptic
inputs impinging on these neuronal structures. The inhibitory
synapses and dendritic spines containing gap junctions were not
modeled in previous theoretical IO studies. The precision of our
model to reproduce the IO circuitry to the subcellular level, and the
findings that are consistent across different levels of observation
including voltage traces, raw firing patterns, FVs of the firing,
and the PCA transform for the three experimental conditions,
strengthens the conclusion of our analysis.

Our analysis indicates that gi and gc were reduced to roughly
50% and 70% of their control values under the PIX and CBX
conditions, respectively. It is significant that gi and gc are
almost equal under the CON conditions (1.10 ± 0.36 and
1.16 ± 0.44 mS/cm2), which is optimal for them to act in
changing effective conductance for the interneuronal crosstalk.
Correspondingly, the effective coupling conductance evaluated by
utilizing the formula of Katori et al. (2010) and Onizuka (2009)
increased by 110% under the PIX condition compared with the
CON condition, and decreased by 34% under the CBX condition
compared with the CON condition. The results indicated that
the inhibition opposed to the gap-junctional coupling is a very
effective device to control the IO neuronal crosstalk. The decrease
of gi increases the effective coupling conductance, allowing greater
interneuronal crosstalk, and consequently the IO firing becomes
more frequent, regular, oscillatory, and synchronous. This is
exactly what is shown by the changes in the major FVs of the
EXP data of IO firing: an increase in FR, ACG3, CCG1, and MD1,
and a decrease in LV in Fig. 4(D). This would also be the case if
the Purkinje cells were more active and the DCN cells became
suppressed and exerted weaker inhibition on the IO neurons and
induced the same changes as for the PIX case.

These findings are consistent with the view that the DCN
inhibition of IO neurons may work as a decoupling device (Best
& Regehr, 2009; Lang et al., 1996; Llinás & Sasaki, 1989) and
the role of the DCN on complex spike firing patterns (De Zeeuw
et al., 2011). In addition, our findings are also consistent with the
hypothesis that the closed-loop circuit across PC, DCN, IO, and
back to PC optimizes the degrees of freedom of the cerebellar
learning system (roughly the number of independent variables
in the learning system) as detailed below (Kawato, Kuroda, &
Schweighofer, 2011). That is, in the early phase of motor learning,
when motor acts are clumsy and far from the desired ones and the
executed movement trajectories are perturbed, the motor plans
and commands need to be grossly modulated. Conversely, in the
late phase of the learning, when the motor acts become skillful
and themovement trajectories are smooth and close to the desired
ones, the motor plans and commands need to be finely tuned. The
neural events to meet these motor-learning requirements would
bemassivemossy- and climbing-fiber inputs to the PCs in the early
phase of the motor learning, and small mossy- and climbing-fiber
inputs in the late phase. The PC–DCN–IO circuits through which
PCs inhibit DCN and DCN inhibit IO may act as machinery for the
neural events to satisfy the motor-learning requirements. If PCs
are more active in the early phase of the motor learning due to
massive mossy-fiber inputs to be learned by the PCs, DCN become
less active, and the IO neurons become active and send stronger
error signals to the PCs. The opposite may be the case in the late
phase of learning.

High effective coupling across the IO neurons due to low
inhibition during the early learning phase would reduce the
dimension and increase the amplitude of the error signals for
rough and fast motor learning, and vice versa during the late
phase for fine and slow learning. The mosaic structures of the

cerebellar system where the IO–PC–CN loop is topographically
organized (micro-complex in Ito, 1984 and Marshall & Lang, 2009)
may help the dimensional control of motor learning. If many PCs
fire synchronously and change their firings in the early phase of
learning, as instructed by the massive IO error signals of small
number of degrees of freedom, PC learning would be fast but
coarse. Conversely in the late phase of learning, the PCs and IO
neuronal firing become less synchronized and may even become
chaotic (Schweighofer et al., 2004), expanding the degrees of
freedom for fine but slow PC learning.
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Appendix

The membrane potential of the soma, dendrite, and spine
compartments (Vo, Vd and Vp) was calculated as follows.

soma: Cm
dVo

dt
= −

∑
(INa + IK

+ ICal + Ih + Ilo + Ido + Isynapse), (A.1)

dendrite: Cm
dVd

dt
= −

∑
(

ICah + IKCa + Iod + Ild

+
4∑

i=1

[Ipd]i + Isynapse

)

, (A.2)

spine: Cm
d[Vp]i
dt

= −
∑

(IC + Ilp + Idp + Isynapse). (A.3)

Soma compartment
The structures of the soma compartment exactly followed

those of Schweighofer et al. (2004). The change of somatic
membrane potential Vo, which is proportional to the sum of INa, IK,
ICal, Ih, Ilo, Ido, and Isynapse that consists of Ie and Ii, is as follows:

Cm
dVo

dt
= −

∑
(INa + IK + ICal + Ih + Ilo + Ido + Isynapse),

where Cm is the membrane capacitance 1 µF/cm2, and INa, IK, ICal,
Ih, Ilo, and Isynapse are the currents across ionic conductances
gNa, gK, gCal, gh, go, ge, and gi. The parameter values used in the
simulation are summarized in Table A.1.

INa is given by theHodgkin–Huxley-type inward sodiumcurrent
as

INa = gNam∞(Vo − ENa) (A.4)

m∞(Vo) = αm(Vo)

αm(Vo) + βm(Vo)
,

αm(Vo) = 0.1(Vo + 41)
1 − exp [−(Vo + 41)/10]

,
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Table A.1
List of parameters used for simulation and references.

Parameter Value Ref. no.

gNa 70.0 mS/cm2 Schweighofer et al. (1999)
gK 18.0 mS/cm2 Schweighofer et al. (1999)
gCal 2.0 mS/cm2 Schweighofer et al. (2004)
gh 0.15 mS/cm2 Schweighofer et al. (2004)
gs 0.015mS/cm2 Schweighofer et al. (1999)
gCah 4.0 mS/cm2 Schweighofer et al. (1999)
gKCa 35.0 mS/cm2 Schweighofer et al. (1999)
gd 0.015mS/cm2 Schweighofer et al. (1999)
gp 0.015mS/cm2 Schweighofer et al. (1999)
ge 0.03 mS/cm2 Schweighofer et al. (2004)
Gsoma,dendrite/S 0.13 mS/cm2 Schweighofer et al. (1999)
Gdendrite,spine/S 0.1 mS/cm2 gsd = 0.1–3 (Schweighofer et al., 1999),

gdp ≤ gsd
ENa 55 mV Schweighofer et al. (1999)
EK −75 mV Schweighofer et al. (1999)
ECa 120 mV Schweighofer et al. (1999)
Eh −43 mV Schweighofer et al. (1999)
El 10 mV Schweighofer et al. (1999)

p 0.14 The ratio of the somatic area to total
surface area: 0.1–0.4 (Manor et al., 1997)q 0.05

βm(Vo) = 9.0 exp [−(Vo + 66)/20] ,

h∞(Vo) = αh(Vo)

αh(Vo) + βh(Vo)
,

τh(Vo) = 170
αh(Vo) + βh(Vo)

,

αh(Vo) = 5.0 exp [−(Vo + 60)/15] ,

βh(Vo) = Vo + 50
1 − exp [−(Vo + 50)/10]

.

The outward delayed rectifier potassium current IK is described by

IK = gKn4(Vo − EK), (A.5)

n∞(Vo) = αh(Vo)

αh(Vo) + βh(Vo)
,

τn(Vo) = 5
αh(Vo) + βh(Vo)

,

αn(Vo) = Vo + 41
1 − exp [−(Vo + 41)/10]

,

βm(Vo) = 12.5 exp [−(Vo + 51)/80] .

The low-threshold calcium inward current ICal is described by

ICal = gCalk3l (Vo − ECa) , (A.6)

k∞(Vo) = 1
1 + exp [−(Vo + 61)/4.2]

, τk(Vo) = 1.0,

l∞(Vo) = 1
1 + exp [(Vo + 85.5)/8.5]

,

τl(Vo) = 20 exp [(Vo + 160)/30]
1 + exp [(Vo + 84)/7.3]

+ 35.

The anomalous inward rectifier current Ih is described by

Ih = ghq(Vo − Eh), (A.7)

q∞(Vo) = 1
1 + exp [(Vo + 75)/5.5]

,

τq(Vo) = 1
exp[−0.086Vo − 14.6] + exp[0.07Vo − 1.87] .

The leakage current Ilo is described by

Ilo = go(Vo − El). (A.8)

The current Ido flowing from the dendritic compartment to the
somatic compartment is given by

Ido = gdo(Vo − Vd) =
(
Gsoma,dendrite/p · s

)
(Vo − Vd). (A.9)

Here,Gsoma,dendrite is the actual soma–dendritic inter-compartmen-
tal conductance in mS. s is the total surface area of a single neuron.
The value of Gsoma,dendrite/s is given in Table A.1.

Dendritic compartment
The structure of the dendritic compartment was the same as

Schweighofer’s model except that the gap junction was moved to
the spine compartment, and itsmembrane potential (Vd) obeys the
following differential equation:

Cm
dVd

dt
= −

∑
(

ICah + IKCa + Iod + Ild +
4∑

i=1

[Ipd]i + Isynapse

)

.

The high-threshold inward calcium current ICah through gCah is
given by

ICah = gCahr2(Vd − ECa), (A.10)

r∞(Vd) = αr(Vd)

αr(Vd) + βr(Vd)
, τk(Vd) = 1

αr(Vd) + βr(Vd)
,

αr(Vd) = 1.6
1 + exp [−(Vd − 5)/13.9]

,

βr(Vd) = 0.02(Vd + 8.5)
exp [(Vd + 8.5)/5] − 1

.

The outward calcium-dependent potassium current IKCa through
gKCa is given by

IKCa = gKCas(Vd − EK), (A.11)

s∞([Ca2+]) = αs([Ca2+])
αs([Ca2+]) + βs([Ca2+]) ,

τs([Ca2+]) = 1
αs([Ca2+]) + βs([Ca2+]) ,

αs([Ca2+]) = min(0.00002[Ca2+], 0.01), βs(Vd) = 0.015,
ds
dt

= s∞([Ca2+] − s)
τs([Ca2+]) ,

d[Ca2+]
dt

= ICah − 0.02[Ca2+].

The leakage current Ild through gd is given by

Ild = gd(Vd − El). (A.12)

The inter-compartmental current flowing from the somatic
compartment to the dendritic compartment Iod is given by

Iod = god(Vd − Eo)

=
[
Gsoma,dendrite/(1 − p − q) · s

]
(Vd − Vo), (A.13)

where p is the ratio of the somatic area to the total surface area and
q is the ratio of the total of the four spine surface area to the total
surface area. The inter-compartmental current flowing from the ith
(i = 1, 2, 3, 4) spine compartment to the dendritic compartment
Ipd is given by

[Ipd]i = gpd(Vd − [Vp]i)
=

[
Gdendrite,spine/(1 − p − q) · s

]
(Vd − [Vp]i)

(i = 1, 2, 3, 4). (A.14)
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Spine compartment
The spine compartment is added in our IO neuronmodel. In the

spine compartment, the IO neurons lie next to each other and are
coupled by IC as follows:

Cm
d[Vp]i
dt

= −
∑

(IC + Ilp + Idp + Isynapse).

The current flowing into other cells through electrical coupling IC
is given by

[IC ]i = gc([Vp]i − Vp_next). (A.15)

The leakage current Ilp is described by

[Ilp]i = gp([Vp]i − Vl). (A.16)

The inter-compartmental current flowing from one of the spine
compartments to the dendritic compartment Idp is given by

[Idp]i = gdp([Vp]i − Vd)

=
[
Gdendrite,spine/0.25q · s

]
([Vp]i − Vd). (A.17)

Synaptic inputs
All of the soma, dendritic, and spine compartments receive the

excitatory and inhibitory synaptic inputs driven by the Poisson
spike generators of the mean firing rate 10 Hz (Schweighofer
et al., 2004), The number of excitatory and inhibitory synapses is
10, 80, and 10 for the soma, dendrite, and spine compartments,
respectively, driven by Poisson process spike generators defined
as

Isyn(t) =
∑

l

gsyn(t − tl)(V − Esyn)

gsyn(t) =
{
0
gsynm · t · e1−t/tpeak ,

(A.18)

where tl is the time of the lth spike time, Esyn = −10 or
−75 mV, and gsyn = ge or gi for the inhibitory and excitatory
synapses, respectively. The hyperpolarizing constant current of
Schweighofer’s model was replaced by the inhibitory synaptic
inputs in our model.
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