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rons embody two features that are apparently contradictory, 
yet necessary for synaptic memory: stability and plasticity. 
We will also present models for explaining how neurons 
solve this dilemma. In the final section, we propose a con-
ceptual model in which a cascade of excitable dynamics with 
different time scales, i.e., Ca 2+ -induced Ca 2+  release, the 
MAPK-PKC positive feedback loop, and protein kinase M �  
(PKM � )-induced PKM �  synthesis, provides a mechanism for 
stable memory that is still amenable to modifications. 

 Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 The cerebellum is important in motor coordination, 
adaptation, and learning, as well as in language, cogni-
tion, and many other aspects of life [reviewed in  1–7 ]. It 
is thought to be a specialized organ for supervised learn-
ing (also known as associative learning, through which 
each input signal is specifically associated with a desired 
output)  [8, 9] . The main neurons and wirings in the cer-
ebellar cortex include Purkinje cells (PCs), parallel fibers 
(PFs), and climbing fibers (CFs). PCs provide the sole out-
put from the cortex, and each PC receives two types of 
excitatory inputs: one from hundreds of thousands of PFs 
and the other from a single CF. The Marr-Albus-Ito the-
ory  [10–12]  states that their neuronal circuit underlies as-
sociative learning. In the theory, PFs provide a sensori-
motor context to PCs, while CFs carry teacher signals 
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 Abstract 

 Long-term depression (LTD) at parallel fiber-Purkinje cell 
(PF-PC) synapses is thought to be the cellular correlate of 
cerebellar associative learning. The molecular processes are, 
in brief, phosphorylation of AMPA-type glutamate receptors 
(AMPARs) and their subsequent removal from the surface of 
the PF-PC synapse. In order to elucidate the fundamental 
mechanisms for cerebellar LTD and further the understand-
ing of its computational role, we have investigated its sys-
tems biology and proposed the following hypotheses, some 
of which have already been experimentally verified: (1) due 
to the mitogen-activated protein kinase (MAPK)-protein ki-
nase C (PKC) positive feedback loop, phosphorylation of 
 AMPARs is an all-or-none event; (2) the inositol 1,4,5-triphos-
phate receptor detects concurrent PF and climbing fiber 
inputs, forming the cellular basis for associative learning, 
and (3) the local concentration of nitric oxide in the PC den-
drite reflects the relevance of a given context, enabling con-
text-dependent selection of learning modules within the 
cerebellum. In this review, we first introduce theoretical 
studies on cerebellar LTD, mainly focusing on our own pub-
lished work, followed by a discussion of the effects of 
 stochasticity, localization, diffusion, and scaffolding. Neu-

 Published online: July 18, 2008  

 

 Dr. Hideaki Ogasawara 
 ATR Computational Neuroscience Laboratories 
 2-2-2, Hikaridai, Seikacho, Kyoto 619-0288 (Japan) 
 Tel. +81 774 95 2688, Fax +81 774 95 1259 
 E-Mail ogahide@atr.jp 

 © 2008 S. Karger AG, Basel
1424–862X/08/0164–0300$24.50/0 

 Accessible online at:
www.karger.com/nsg 



 Simulation Studies on Cerebellar LTD Neurosignals 2008;16:300–317 301

that modify PF-PC synapses in an associative manner. 
After a long investigation, the PF-PC synapse was ex-
perimentally demonstrated to be plastic; its transmission 
efficacy was depressed when the CF and PF were repeti-
tively and synchronously activated (cerebellar long-term 
depression or LTD)  [13] . Subsequent in vitro studies have 
revealed that LTD is regulated by [Ca 2+ ]  [14–16]  and that 
[Ca 2+ ] elevation and PF-PC LTD are most prominent 
when PF stimuli precede CF stimuli by 50–250 ms  [17, 
18]  (N.B.: In this article, [substance] stands for the con-
centration of the substance). In behaving animals, CF 
inputs are delayed  � 100 ms with respect to PF inputs 
 [3–5, 11] , due to the definite sequence of events during 
motor execution (more specifically, first, PCs receive PF 
inputs, motor commands are given and followed by a 
motion, the feedback control circuit generates feedback 
motor commands, which are finally transmitted through 
CFs to the PCs as error signals  [3] ). The similarity be-
tween the in vitro time window size and in vivo PF-CF 
delay length strongly supports the Marr-Albus-Ito theo-
ry that PF-PC plasticity is the cellular process of cerebel-
lar learning  [10–12] , although some controversies exist 
 [19, 20] .

  The molecular mechanism of PF-PC LTD involves the 
internalization of  � -amino-3-hydroxy-5-methylisoxa-
zole-4-propionic acid (AMPA)-type glutamate receptors 
(AMPARs), which occurs when activated protein kinase 
C (PKC) phosphorylates the receptor GluR2 subunit. Es-
sential molecules for LTD include mitogen-activated pro-
tein kinase (MAPK), MAPK kinase (MAPKK), MAPKK 
kinase (MAPKKK), PKC, phospholipases A2 (PLA2) and 
C (PLC), arachidonic acid (AA), inositol 1,4,5-triphos-
phate (IP 3 ), and many others [reviewed in  4, 7, 21–26 ]. 

  Postsynaptic long-term potentiation (LTP) reverses 
PF-PC LTD  [27–29] . Without such reversal mechanisms, 
LTD would eventually reach saturation, preventing the 
occurrence of further learning events. A presynaptically 
synthesized messenger nitric oxide (NO) is a crucial 
‘gatekeeper’  [30]  for cerebellar plasticity; LTD and LTP 
are induced only in the presence of NO, and its depriva-
tion prevents both LTD and LTP [ 27, 31–36,  reviewed in 
 7, 37 ]. The direction of gain change is [Ca 2+ ]-dependent, 
with a high threshold for LTD and a low threshold for 
LTP  [25, 29] . Cerebellar adaptation has also been shown 
to be NO-dependent  [38–40] . 

  The number of molecular species known to engage
in PF-PC plasticity is still increasing; Ca 2+ /calmodulin-
dependent protein kinases II (CaMKII)  [41]  and IV 
(CaMKIV)  [42, 43] ,  � 2 receptors  [44, 45] , and endocan-
nabinoid  [46]  are among the growing list. However, an 

extension of this list of implicated molecules does not 
necessarily further the fundamental understanding of 
plasticity mechanisms. As has been claimed  [47] , it is im-
portant to determine the minimal set of ‘mediators’ and 
their interactions that are essential in the memory forma-
tion processes.

  To elucidate the key pathways of LTD and their com-
putational roles in cerebellar learning, we have studied 
the systems biology of PF-PC synaptic plasticity and pro-
posed the following hypotheses: (1) MAPK and PKC ac-
tivate each other, generating a positive feedback loop, and 
because of this loop, phosphorylation of AMPARs is an 
all-or-none event  [48] ; (2) the IP 3  receptor (IP 3 R) is ca-
pable of detecting conjunctive PF and CF inputs  [49] , 
which is a necessary feature for cerebellar associative 
learning; (3) NO reflects the relevance of a given context 
and enables context-dependent selection of learning 
modules in the cerebellum  [30] . In this article, we first 
review the theoretical studies on cerebellar LTD, mainly 
focusing on our own published work, followed by a dis-
cussion of the possible effects of stochasticity, localiza-
tion, diffusion, and scaffolding on synaptic transmission 
and plasticity. The brain is capable of learning new things 
while maintaining old memory. At the cellular level, this 
means that synapses must be both stable and plastic at the 
same time. How do they attain these contradictory char-
acteristics  [50] ? We will present models for explaining 
how neurons solve the ‘stability versus plasticity dilem-
ma’. In the final section, we propose a conceptual model 
in which cerebellar LTD is induced and maintained by 
successive activation of three bistable dynamics with
different time scales – Ca 2+ -induced Ca 2+  release, the 
MAPK-PKC positive feedback loop, and protein kinase 
M �  (PKM � )-induced PKM �  synthesis. This molecular 
network is predicted to make cerebellar memory stable 
for a very long period of time but still amenable to modi-
fications.

  Simulation Studies on Cerebellar LTD 

 1. The MAPK-PKC Positive Feedback Loop Is the 
Cerebellar LTD Switch 

 The mechanisms by which cells respond to transient 
and/or graded stimuli, and exhibit a switch-like behavior, 
have been drawing researchers’ interest for decades [re-
viewed in  51–56 ]. One such mechanism produces a con-
tinuous response that is more sensitive than Michaelis-
Menten kinetics to changes in the stimulus amplitude; it 



 Ogasawara   /Doi   /Kawato   

 

Neurosignals 2008;16:300–317302

is termed ‘ultrasensitivity’  [57] , and the most familiar ex-
amples are cooperative enzymes. In other cases, a cellular 
system has two stable steady states and jumps from one 
to the other, avoiding the intermediate states. This kind 
of switch is termed ‘bistability’  [54] . A bistable system 
displays different stimulus-response relationships, de-
pending on whether the system began in the ON state or 
the OFF state (hysteresis). Bistability is particularly im-
portant in neurobiology, since it has been implicated in 
the storage of cellular information.

  In the 1950s, autocatalytic enzymes were predicted to 
have multiple stable steady states  [58] . Conceptual mod-
els were proposed in the 1980s describing a biological 
switch formed by a kinase that is activated by itself or
another kinase and inactivated by a phosphatase; these 
models, however, were abstract and lacked a solid mo-
lecular background  [59, 60] . Progress in molecular bi-

ology has revealed that the MAPK cascade is very im-
portant in information processing of neurons and
other types of cells [reviewed in  56, 61–66 ]. The cascade 
consists of MAPKKK, MAPKK, and MAPK ( fig. 1 a); 
MAPKKK activates MAPKK by dual phosphorylation, 
and similarly, MAPKK activates MAPK by dual phos-
phorylation  [65] . Biochemical experiments and realistic 
simulations have shown that these ‘two-collision mecha-
nisms’ result in ultrasensitivity of the MAPK cascade 
 [67] . In theory, ultrasensitivity arises also when two op-
posing enzymes (e.g., a kinase and a phosphatase) operate 
at near-saturation levels (zero-order ultrasensitivity) [ 57 ]. 
An ultrasensitive MAPK cascade response can be con-
verted into a true all-or-none bistable response when 
there is a pathway that connects the output and input of 
the MAPK cascade and forms a positive feedback loop 
 [68–70 ; but see also  71] .
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  Fig. 1.  Signaling cascades of cerebellar 
LTD.  a  The MAPK cascade. MAPKK-P 
and MAPKK-PP denote singly and doubly 
phosphorylated MAPKK, respectively. 
MAPK-P and MAPK-PP denote singly and 
doubly phosphorylated MAPK. P’ase de-
notes phosphatase. Adapted from Huang 
and Ferrell  [67] . Copyright 1996 by the Na-
tional Academy of Sciences.  b  Schematic 
view of signaling cascades in cerebellar 
LTD. Reactions surrounded in the bold 
gray line take place inside the dendritic 
spine.  i  Dark gray area = the MAPK-PKC 
positive feedback loop  [48]  and its periph-
erals.  ii  Light gray area = PF-CF coinci-
dence detection mechanisms  [49] . Glu = 
Glutamate; PKG = cGMP-dependent pro-
tein kinase; PIP2 = phosphatidylinositol 
bisphosphate. 
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  Kuroda et al.  [48]  hypothesized that the MAPK cas-
cade and other enzymes in the PC, e.g., PLA2 and PKC, 
make a positive feedback loop, which plays a pivotal role 
in LTD. The following is a description of the feedback 
loop and the peripheral pathways that they modeled 
( fig. 1 b-i). Conjunctive PF-CF inputs result in increased 
[Ca 2+ ] and [diacylglycerol (DAG)] in PC dendritic spines. 
Ca 2+  and DAG transiently activate conventional PKC 
(cPKC), a PKC isoform that is sensitive to both Ca 2+  and 
DAG. cPKC also activates Raf, a MAPKKK, and Raf ac-
tivates MEK, a MAPKK, through dual phosphorylation. 
Similarly, MEK activates MAPK through dual phosphor-
ylation. Activated MAPK, as well as Ca 2+ , activates PLA2, 
resulting in the production of AA and subsequent activa-
tion of cPKC. In this way, the MAPK cascade, PLA2, AA, 
and cPKC form a positive feedback loop (MAPK-PKC 
positive feedback loop). Activated cPKC phosphorylates 
AMPARs, and the phosphorylated receptors are eventu-
ally removed from the postsynaptic membrane through 
endocytosis. Thus, the magnitude of LTD corresponds to 
AMPAR phosphorylation. PF firing induces presynaptic 
synthesis of NO, which diffuses across the synaptic cleft 
and activates soluble guanylyl cyclase (sGC), which, in 
turn, catalyzes the conversion of guanosine triphosphate 
to cyclic guanylyl cyclase (cGMP). cGMP activates cGMP-
dependent protein kinase, which phosphorylates G-sub-
strate. Phosphorylated G-substrate eventually inactivates 

protein phosphatase 2A (PP2A), an enzyme that dephos-
phorylates MEK and AMPARs. The Kuroda et al. model 
deals only with the initial and intermediate phases of cer-
ebellar LTD, when cPKC is essential  [72] , but does not 
consider the late phase, which is cPKC-independent  [72]  
and requires new protein synthesis  [4, 7, 21] .

  Simulations revealed that the initial phase of cerebel-
lar LTD is dependent on direct activation of cPKC by
Ca 2+  and DAG, whereas the intermediate phase is medi-
ated by activation of the MAPK-PKC positive feedback 
loop. The model also demonstrated an all-or-none prop-
erty of AMPAR phosphorylation, within a time scale of 
approximately 40 min. There was a sharp threshold level 
of input; stimuli greater than the threshold stereotypi-
cally resulted in AMPAR phosphorylation that was per-
sistent for more than half an hour, whereas stimuli small-
er than the threshold did not. This simulation result cor-
relates with recent experiments and hypotheses that 
suggest that synapses alter their strength by jumping be-
tween discrete states, rather than shifting gradually  [73–
75] .

  Previous studies  [68, 69]  have shown that the ultrasen-
sitivity of the MAPK cascade is essential for the all-or-
none property of the feedback loop the cascade consti-
tutes, which the Kuroda et al. model is in accordance 
with.  Figure 2 a plots [active Raf], [doubly phosphorylat-
ed MEK (MEK-PP)], and [doubly phosphorylated MAPK 
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  Fig. 2.  Supralinearity and bistability of the MAPK-PKC positive 
feedback loop.  a  [Active Raf], [MEK-PP], and [MAPK-PP] plotted 
against various concentrations of active PKC that were kept con-
stant throughout each simulation. [Active PP2A] was kept con-
stant at 85 n M , and total concentrations of Raf, MEK, and MAPK 
were 0.5, 0.5 and 1  �  M , respectively.  b  Phase plane analysis of the 
MAPK-PKC positive feedback loop. [Active PP2A] was kept con-
stant at 85 n M . The solid bold line indicates the steady state [active 
PKC] plotted against various concentrations of MAPK-PP that 

were kept constant throughout each simulation; likewise, the 
dashed bold line indicates the steady state [MAPK-PP] plotted 
against various [active PKC]. Filled circles and an open circle in-
dicate stable steady states and an unstable steady state, respec-
tively. Thin arrows indicate one of four directions, i.e., northeast, 
northwest, southwest, and southeast, which each point in the 
phase plane is directed towards. Schematic trajectories are super-
imposed (thick arrows). 
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(MAPK-PP)] against various concentrations of active 
PKC that were manipulated to remain constant through-
out each simulation (data was produced for this review 
article; the model script can be found at http://www.cns.
atr.jp/neuroinfo/kuroda/ and runs on simulation soft-
ware, GENESIS/Kinetikit  [76, 77] ). The cascade output, 
[MAPK-PP] describes a sigmoidal curve with a large Hill 
coefficient of 4.5 ( fig. 2 a), indicating pathway ultrasensi-
tivity. As mentioned earlier, the ultrasensitivity of the 
MAPK cascade is a result of the two-collision mecha-
nisms of MEK and MAPK  [67] . Zero-order ultrasensitiv-
ity  [57]  also seems to contribute because [active Raf] and 
[MEK-PP] are at ranges that are much lower than the con-
centrations of their substrates ( fig. 2 a).

  AMPAR phosphorylation in the Kuroda et al. model 
is not permanent because the model takes into consider-
ation the degradation of activated cPKC and recovery of 
PP2A from NO inactivation. To elucidate the dynamics 
of the MAPK-PKC positive feedback loop, these slow pro-
cesses were eliminated from the model to guarantee the 
stability of the active state, and a phase plane analysis was 
performed for this review article ( fig. 2 b). Phase plane 
profiles are curves of one dependent variable against an-
other and are used to determine whether a model has one 
or more steady states [ 78 , also refer to  79  for another 
method that is useful for analyzing positive feedback sys-
tems consisting of more than two variables]. Nullclines 
in a phase plane indicate the values of a pair of variables, 
in which one of the variables is constant; the points of in-
tersection are steady states. Two nullclines are shown in 
 figure 2 b; one is [active cPKC] against [MAPK-PP] (solid 
bold line), and the other is [MAPK-PP] against [active 
cPKC] (dashed bold line). Schematic trajectories are su-
perimposed (thick arrows). The figure indicates that the 
MAPK-PKC positive feedback loop is a bistable system, 
having two stable steady states (filled circle) and an un-
stable saddle point (open circle). It also demonstrates that 
the supralinear response of [MAPK-PP] against [active 
PKC] is critical for the bistability of the system because 
two curves would not intersect at more than two points 
if the response of MAPK-PP to active PKC followed
a more gradual kinetics, such as Michaelis-Menten ki-
netics.

  Tanaka et al.  [72, 80]  performed a series of slice ex-
periments and verified the theoretical study. First, they 
demonstrated that MAPK acts downstream of PKC; a 
PKC inhibitor prevented MAPK activation and LTD that 
were induced by an LTD-induction protocol. Second, a 
MAPK inhibitor blocked the translocation of PKC, which 
is an indication of kinase activity. These findings indicate 

the existence of essential pathways through which MAPK 
and cPKC activate each other, supporting the hypothesis 
that MAPK and cPKC form a positive feedback loop that 
is pivotal for cerebellar LTD  [48] .

  By locally photolysing caged calcium and using confo-
cal imaging  [81] , Tanaka et al. subsequently demonstrat-
ed that elevation of [Ca 2+ ] alone is sufficient for the in-
duction of cerebellar LTD, and they quantified the rela-
tionship between [Ca 2+ ] and LTD for the first time. LTD 
was induced stereotypically by [Ca 2+ ] elevations of sub-
stantial peak and duration, while small or short-term el-
evations in [Ca 2+ ] resulted in almost no LTD ( fig. 3 a). The 
sigmoidal relationship between peak [Ca 2+ ] and the 
amount of LTD (each curve in  fig. 3 a) was so supralinear 
that it could be described by the Hill equation with a large 
Hill coefficient of 5 ( fig. 3 a). Even though LTD was a su-
pralinear function of [Ca 2+ ], the all-or-none property, 
which Kuroda et al.  [48]  had predicted, was not observed. 
It should be noted that Tanaka et al. measured average 
LTD of dozens of nearby synapses, not LTD of single syn-
apses. The discrepancy between the experiments and 
simulations is reminiscent of previous experiments dem-
onstrating that individual synaptic plasticity is discrete 
and heterogeneous, while these synapses present graded 
plasticity as a whole  [75] . By modifying the Kuroda et al. 
model for a special form of LTD that was induced solely 
by Ca 2+  and incorporating heterogeneity and noise into 
the model, the authors accurately simulated experimen-
tal measurements ( fig. 3 b) and confirmed the usefulness 
of the model in prediction and explanation of future ex-
periments.

  In order to verify that the MAPK-PKC positive feed-
back loop ( fig. 1 b) is the underlying mechanism for su-
pralinearity of LTD, they examined the relationship be-
tween [Ca 2+ ] and LTD subsequent to pharmacological 
prevention of AA production  [80] . Treatment of cerebel-
lar slices with a PLA2 inhibitor resulted in a stimulus-re-
sponse curve that was much more gradual with a greatly 
reduced Hill coefficient ( fig. 3 c). This result was in agree-
ment (qualitatively and quantitatively) with the corre-
sponding simulation in which AA activation of cPKC was 
blocked ( fig. 3 d). The finding that positive feedback loop 
disruption results in the loss of supralinearity supports 
the hypothesis that the loop has a vital role in cerebellar 
LTD  [48] . In addition, the results are in accordance with 
previous experiments and theoretical studies on the dy-
namics of positive feedback loops in biological contexts 
 [53, 68, 69] .

  Both the experiments and simulations revealed that 
the amount of required [Ca 2+ ] for LTD induction was a 
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time-dependent variable. The longer the duration of a 
Ca 2+  stimulus was, the lower the necessary [Ca 2+ ] peak 
was ( fig. 3 a, b), suggesting that the LTD induction mech-
anism integrates calcium signals over time. However, 
when the amount of LTD was plotted against the time 
integral of [Ca 2+ ], the integrated amount of required 
[Ca 2+ ] for LTD increased over time instead of being time-

independent ( fig. 3 e, f), which suggests that the time in-
tegration process in LTD is somewhat leaky. Such a leaky 
integration of [Ca 2+ ] can be described mathematically 
as 
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  Fig. 3.  Integration of [Ca 2+ ] during LTD. 
Results of experiments ( a ,  c ,  e ,  g ) and  sim-
ulations ( b ,  d ,  f ,  h ) are shown side by side. 
 a ,  b  Relationship between peak [Ca 2+ ] and 
LTD for different durations of [Ca 2+ ] ele-
vation.        c ,  d  Relationship between peak 
[Ca 2+ ] and LTD for different durations of 
[Ca 2+ ] elevation in the presence of a PLA2 
inhibitor.  e ,  f  Relationship between inte-
grated amount of [Ca 2+ ] and LTD. Data 
from the same experiments and simula-
tions shown in panels  a  and  b , respectively. 
 g ,  h  Data from panels  a  and  b  transformed 
by calculating  x  from equation 2. Smooth 
curves indicate fits of the Hill equation. 
Error bars in panels  a ,  c ,  e , and  g  indicate 
standard errors of measurement. This fig-
ure is reproduced from Tanaka et al.  [80]  
with permission from Elsevier Inc.   
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 where  a  is a scaling factor,  �  is the time constant of the 
integration, and  x  is the amount of downstream signal 
that transduces Ca 2+  into LTD. In special cases where 
[Ca 2+ ] is elevated in a ramp-like fashion as in Tanaka et 
al.  [80] , the solution of equation 1 is 

 
exp tx t ak ak t� �

�
                                                (2)

  where  k  is the rate of increasing [Ca 2+ ] (peak [Ca 2+ ] di-
vided by the uncaging duration, t). After these parame-
ters were paired to the experimental results ( a  and  �  were 
18.7%/ �  M  and 0.56 s, respectively), the amount of LTD 
was plotted against  x  in  figure 3 g and h. All the curves 
that were obtained at various durations of Ca 2+  stimuli 
overlapped each other. The loss of time-dependence seen 
in  figure 3 a, b, e, and f verifies equation 2 and supports 
the hypothesis that the signaling processes of LTD behave 
as a leaky integrator of [Ca 2+ ]. 

 2. Coincidence Detection of Cerebellar Inputs 

 PF-PC plasticity is thought to be the cellular process 
of cerebellar supervised learning  [10–12] , but what mo-
lecular mechanisms enable the synapse to associate PF 
inputs (desired trajectories and sensory feedback) with 
CF inputs (error signals  [3] ) within a certain time win-
dow? Candidate coincidence detectors include (a) volt-
age-gated calcium channels (VGCCs)  [23] , (b) AMPARs 
 [23] , (c) PKC  [23] , (d) presynaptic membrane  [82] , and (e) 
IP 3 Rs  [17, 23, 83] . The scenarios for the candidates a–d are 
as follows: (a) simultaneous activation of PFs and the CF 
depolarizes the dendrite and induces Ca 2+  influx through 
VGCCs in the spine, (b) glutamate released from PFs may 
sensitize AMPARs for phosphorylation, (c) protein tyro-
sine kinase activated by PF inputs, and [Ca 2+ ] elevated by 
CF inputs, cooperate to activate PKC, (d) repetitive firing 
of PFs activates presynaptic NMDA-type glutamate re-
ceptors and induces NO synthesis. Upon simultaneous 
CF activity, a retrograde messenger, endocannabinoid 
might enhance NO release. Unfortunately, scenarios a–c 
cannot explain the  � 100-ms PF-CF delay that is optimal 
for [Ca 2+ ] elevation and cerebellar LTD. Since there is no 
evidence that endocannabinoid enhances NO signaling, 
the presynaptic membrane (d) is not a likely candidate, 
either.

  Then, is the IP 3 R (e) a probable coincidence detector? 
IP 3 Rs are located in a calcium store of the dendritic spine, 
the endoplasmic reticulum (ER). The receptor is syner-
gistically activated by Ca 2+  and IP 3 , and releases a large 

amount of Ca 2+  from the ER in response, whereas exces-
sive [Ca 2+ ] is inhibitory to the receptor  [84, 85] . Thus, the 
open probability of the IP 3 R is a bell-shaped function of 
[Ca 2+ ]. On the one hand, PF firing activates PLC through 
the mGluR1 metabotropic glutamate receptor pathway, 
resulting in production of IP 3  (and DAG) from phospha-
tidylinositol bisphosphate ( fig. 1 b-ii). On the other hand, 
CF firing depolarizes the PC and induces influx of Ca 2+  
through VGCCs. Therefore, [IP 3 ] and [Ca 2+ ] represent PF 
and CF activities, respectively, within the physiological 
range of inputs. By sensing sequential binding of IP 3  and 
Ca 2+   [17, 23, 83] , the IP 3 R may act as a coincidence detec-
tor that associates PF inputs with CF inputs and releases 
a high amount of Ca 2+  as its output signal, leading to LTD. 
However, massive stimulation of a PF bundle alone  [86, 
87] , or uncaging either caged calcium or caged IP 3   [16, 88] , 
can also induce LTD, which raises doubts that LTD is the 
cellular basis of cerebellar associative learning  [19, 20] .

  To understand the spike-timing detection mechanism 
of cerebellar LTD, Doi et al.  [49]  developed a kinetic mod-
el of Ca 2+  within a PC dendritic spine. As shown in  fig-
ure 1 b-ii, the model consists mainly of mGluR1s, Gq pro-
tein, PLC in the postsynaptic density (PSD), IP 3 Rs in the 
ER, and VGCCs in the cytoplasmic membrane. The mo-
lecular pathway (as briefly mentioned in the previous 
paragraph) and parameter values were based on an ex-
tensive review of the biological literature. The simula-
tions demonstrated that the supralinear Ca 2+  response to 
conjunctive PF-CF inputs is a regenerative process that is 
driven by the IP 3 R. More specifically, [Ca 2+ ] elevation 
opens IP 3 Rs, and outflow of Ca 2+  from the ER results in 
additional [Ca 2+ ] elevation (Ca 2+  ] IP 3 Rs ] Ca 2+ ), thereby 
producing a positive feedback loop. In theory, [Ca 2+ ] el-
evation may enhance the activity of PLC for IP 3  produc-
tion, and IP 3  elevation may open IP 3 Rs to release Ca 2+  
from the ER, creating another positive feedback loop
(Ca 2+  ] PLC ] IP 3  ] IP 3 Rs ] Ca 2+ ). However, simulations 
have demonstrated that this hypothetical pathway does 
not form a working positive feedback loop in the PC den-
dritic spine and denied the role of PLC in the supralinear-
ity of Ca 2+  influx. The Ca 2+  response was largest when CF 
input followed PF input within an interval of 0–300 ms, 
which is consistent with experiments  [17, 18]  and the as-
sociative nature of cerebellar learning  [3–5, 11] . The time 
scale difference between a rapid electrical reaction (Ca 2+  
influx by depolarization) and a slow biochemical reac-
tion (IP 3  production by the metabotropic pathway) is 
critical for this spike-timing detection mechanism. Fi-
nally, there is a sharp threshold level of [Ca 2+ ] for Ca 2+ -
induced Ca 2+  release, and the threshold is regulated by 
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[IP 3 ]. In line with previous experiments  [17] , simulations 
demonstrated that a CF input within 300 ms after a PF 
input induced a Ca 2+  transient, which easily reached the 
threshold of [Ca 2+ ] for regenerative Ca 2+  release, because 
the threshold level was already lowered by the PF-mGluR1 
pathway product, IP 3 . In contrast, when a CF input oc-
curred either before or too late after PF inputs, the CF-
mediated elevation of [Ca 2+ ] failed to reach the threshold, 
because the threshold had already returned to a higher 
level as [IP 3 ] decreased. The IP 3 -dependent Ca 2+  thresh-
old is capable of explaining not only conjunctive LTD, but 
also LTD in non-physiological conditions. Even at the 
baseline [IP 3 ], where the Ca 2+  threshold for regenerative 
Ca 2+  release was highest, an excessive increase in [Ca 2+ ] 
could reach the threshold and induce LTD, as seen after 
massive activation of a PF bundle  [86, 87]  or Ca 2+  uncag-
ing  [16] . Similarly, an extremely high [IP 3 ], typically seen 
upon IP 3  uncaging  [88] , would result in LTD without re-
quiring an increase in [Ca 2+ ] because the baseline [Ca 2+ ] 
is already greater than the IP 3 -regulated Ca 2+  threshold. 
The descriptive power of the Ca 2+  kinetics model indi-
cates that the model captures the essence of the molecular 
mechanisms of cerebellar LTD.

  Hernjak et al.  [89]  simulated the Ca 2+  kinetics of PC 
dendrites and spines with realistic parameters, similarly 
to Doi et al. This study was unique in that they considered 
one- or two-dimensional diffusion and localization of 
molecules in addition to biochemical processes. They 
showed that high density and low sensitivity of the IP 3 R 
in the PC  [90]  are critical for generating and localizing 
Ca 2+  spikes in a single dendritic spine. They also demon-
strated that Ca 2+  was compartmentalized in spines by 
their narrow neck, as predicted previously  [91–93] , where-
as IP 3  freely diffused into the dendrite and neighboring 
spines.

  3. The Role of NO in Context-Dependent Learning 

 Recent studies have shown that a set of neurons that 
process a certain routine, such as use of scissors, are mod-
ularly organized in the cerebellum. Modules can be 
switched according to a given context of behavior  [94–
96] , so that animals can adapt to multiple environments. 
Little is known, however, about the biological mecha-
nisms for context-dependent switching.

  Ogasawara et al.  [30]  hypothesized that NO was cru-
cial in context-dependent selection of learning modules 
because neighboring PF activity, which reflects the con-
text of behavior, determines local [NO]. They combined 

established simulation models of electrophysiology, cal-
cium dynamics ( fig. 1 b-ii), and intracellular signaling 
cascades ( fig. 1 b-i)  [48, 49, 97] , and further characterized 
the role of NO in cerebellar learning. The simulation re-
sults revealed that LTD was regulated by NO, whose con-
centration depended on surrounding PF activity. When 
PF activity in the vicinity was low, conjunctively stimu-
lated PF-PC synapses were incapable of undergoing LTD, 
because of insufficient NO concentration. When PF ac-
tivity was excessive, LTD spread to neighboring synapses 
where [NO] was high and [Ca 2+ ] was relatively low, and 
synaptic specificity was lost. LTD occurred in a synapse-
specific manner only with moderate levels of nearby PF 
activity. Based on these results, the authors predicted that 
any movement made in any context was encoded by a 
small percentage of PFs because otherwise LTD would 
not occur at all or would be unspecific. Another hypoth-
esis was that NO enables context-dependent selection of 
appropriate learning modules. An animal experiment 
was suggested to verify their hypotheses. For the detailed 
procedures, refer to the original paper  [30] .

  Stochasticity, Localization, Diffusion, and 

Scaffolding 

 Mass-action kinetics is often a good approximation of 
biochemical reactions in relatively simple cells, such as 
 Xenopus  oocytes and undifferentiated culture cells  [67, 
68, 98] ; however, it might not correctly describe the sig-
naling pathways of the neuron for several reasons. First, 
the spine of an excitatory synapse, a key unit of neuronal 
information processing, is very small ( � 1  � m or less in 
diameter)  [99–101]  and contains only a limited number 
of each molecular species. For instance, the number of 
AMPARs in a PF-PC synapse is as small as 4–73  [102] . In 
such cases, stochastic fluctuations come into play, and 
mass-action kinetics, described in continuous equations, 
is no longer applicable. Second, molecules are not mixed 
well in the spine. For instance, some receptors, enzymes, 
and scaffold proteins are elaborately arranged in the PSD 
to form a ‘signaling machine’  [103–105] . In particular, 
VGCCs, mGluRs, and PKC in the plasma membrane, and 
IP 3 Rs in the ER, are tied together by PSD proteins  [106, 
107] , which suggests that the entire machinery for coin-
cidence detection of PF-CF inputs  [49]  is organized into 
a single huge protein complex. Calcium ions form a 
nanodomain or microdomain around a calcium channel, 
affecting only adjacent calcium effectors and localizing 
their signals  [108, 109] , whereas diffusion of the effec-
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tors is important in information decoding of calcium 
spikes  [110] . Finally, there are a variety of scaffolding pro-
teins in the spine  [105, 111, 112] , and they might affect 
important properties of signaling cascades, such as sen-
sitivity, specificity, and supralinearity  [56, 63, 66, 113–
115] .

  Some studies have addressed synaptic signaling and 
plasticity in conjunction with stochasticity, localization, 
and/or diffusion. CaMKII autophosphorylation is (con-
troversially  [116] ) regarded as one of the candidates for 
long-term memory trace  [117] . Its stability is likely to be 
limited by stochastic fluctuations, because there is an av-
erage of only 30 CaMKII holoenzymes per PSD  [118] . 
Miller et al.  [119]  conducted Monte Carlo simulations 
 [120]  in order to elucidate factors that control switch sta-
bility, and to determine the functional relationship be-
tween stability and the number of molecules involved. 
The simulation demonstrated that the interplay between 
CaMKII and protein phosphatase I can form a bistable 
switch, whose stability depends exponentially on the 
number of enzyme molecules; the less the number of 
molecules, the more likely the switch is spontaneously 
turned on or off by stochastic fluctuations. The authors 
concluded that the number of CaMKII molecules found 
in the PSD ( � 30  [118] ) is sufficient for the switch to po-
tentially retain information for life.

  Santamaria et al.  [121]  combined optical experiments 
and computer simulations in order to characterize mo-
lecular diffusion along PC dendrites. By locally photolys-
ing a caged diffusion marker, fluorescein dextran (FD), 
and using confocal imaging  [81] , they visualized diffu-
sion of FD within dendrites and demonstrated that dif-
fusion was remarkably slower in spiny dendrites than in 
smooth dendrites. In spiny dendrites, the mean-square 
displacement of FD molecules did not increase linearly 
with time, but instead increased hyperbolically; in other 
words, diffusion appeared to gradually slow down. It was 
in contrast with normal diffusion observed in smooth 
dendrites. This retardation, known as ‘anomalous’ diffu-
sion  [122] , in spiny dendrites may play an important role 
in neuronal computation by affecting the spatial and 
temporal distribution of signaling molecules. To under-
stand its mechanisms, the authors modeled the realistic 
three-dimensional (3D) structure of PC dendrites with or 
without spines. Simulations revealed that dendritic spines 
act as traps for molecules, slowing down the diffusion 
process. While Santamaria et al.’s model successfully ex-
plained why diffusion was anomalous in spiny dendrites, 
more abstract and lower-dimensional models of a den-
drite  [89]  (mentioned in a previous section) underesti-

mated the effects of spines on diffusion and failed to 
point at its anomalousness. This contrast may suggest the 
importance and advantage of realistic 3D simulation.

  Neurotransmitters are released from the active zone of 
the presynaptic neuron, diffuse across the synaptic cleft, 
and bind to receptors at the opposing PSD. In some neu-
rons, the transmitters are also released from sites outside 
the active zone and activate extrasynaptic receptors (ec-
topic release). To explore the significance of ectopic neu-
rotransmission in the chick ciliary ganglion, Coggan et 
al.  [123]  simulated release of transmitter molecules as 
well as their diffusion and receptor binding by using a 
realistic 3D model. After exhaustive simulations, they 
concluded that most release was ectopic because other-
wise the results would be inconsistent with experimental 
data.

  Stochasticity, diffusion, and localization are very im-
portant factors in synaptic signaling and plasticity; how-
ever, the simulation of these factors is a huge computation 
load  [124–126] . Nevertheless, Brownian motion of thou-
sands of neurotransmitter molecules could be simulated 
exactly  [123] . Other studies  [127, 128]  compromised be-
tween simulation speed and stochastic accuracy and uti-
lized a method that dynamically chose between deter-
ministic and stochastic calculations, depending on the 
number of molecules and propensity of forward reactions 
 [129] .

  Conceptual Models of Long-Term Memory 

 The late phase of PF-PC LTD requires protein synthe-
sis  [4, 7, 21] , but once consolidated, cerebellar memory is 
no longer protein synthesis-dependent  [130] . Consolidat-
ed memories might be transferred from the cerebellar 
cortices to the deep cerebellar nuclei, as suggested by 
some animal studies on adaptation of vestibulo-ocular 
and optokinetic reflexes  [131, 132] . But what is the final 
form of memory traces in the cerebellum whether they 
reside in the cortices or the nuclei?

  1. Threshold Cascade Models 

 Retention of information requires stability of synaps-
es, and new learning requires plasticity. Neurons need to 
solve the dilemma between stability and plasticity  [50] , 
but the question is ‘how?’ Fusi et al.  [133]  suggested a con-
ceptual cascade model, in which synapses are binary and 
have two levels of strength: weak and strong, both of 
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which are associated with their own cascade of multiple 
states. Whenever the conditions to reinforce the strength 
(i.e., applying an LTP induction protocol to a strong syn-
apse and an LTD induction protocol to a weak synapse) 
are met, the state progresses further along the cascade, 
one step with each certain probability. Whenever the 
conditions to reverse synaptic strength (i.e., applying the 
LTD induction protocol to a strong synapse and the LTP 
induction protocol to a weak synapse) are met, the state 
jumps to the first step of the other cascade with another 
probability. The probability of transition depends on the 
depth of the current state within its cascade. The deeper 
the state is in the cascade, the more stable it is, and a tran-
sition is less likely to be made. The authors performed 
numerical simulations and demonstrated that (1) the 
plasticity and stability level that animals and humans 
possess is only possible with synapses whose states are 
linked by metaplastic transitions, and (2) the cascade 
model outperforms other similar models.

  The Fusi et al. model provides an elegant theoretical 
solution for the stability versus plasticity dilemma; how-
ever, it unfortunately lacks a solid biological background. 
Taking into account the fact that bistability is ubiquitous 
in cellular systems  [53, 54] , Kawato  [134]  proposed a cas-
cade of excitable and bistable dynamics ( fig. 4 ). In his 
model, the fastest bistable system is activated by repeti-
tive stimuli. The activated system then stimulates slower 
bistable dynamics that are more stable and require larger 
inputs for activation. In this way, activity is transmitted 
from one system to another slower one. Such a cascade of 
multiple bistable systems will form long-term memory 
that is stable, still open to modifications, and robust to 
noise.

  This model is applicable to at least the first two steps 
of cerebellar LTD, i.e., Ca 2+ -induced Ca 2+  release and the 
MAPK-PKC positive feedback loop ( fig. 1 b). Ca 2+ -in-
duced Ca 2+  release is a positive feedback loop, which is 

activated by conjunctive PF-CF stimuli, resulting in a su-
pralinear Ca 2+  release  [49]  ( fig. 1 b-ii). The ON state lasts 
only 1 s, because IP 3 Rs are inactivated by a high concen-
tration of Ca 2+ . The MAPK-PKC positive feedback loop 
is activated by repetitive inputs from the previous feed-
back loop, Ca 2+ -induced Ca 2+  release, and remains in the 
ON state for about 1 h  [48, 72, 80]  ( fig. 1 b-i).

  2. Bidirectional Long-Term Memory Model 

 It is widely believed that memory is maintained in 
spine structures for extended periods in the brain [re-
viewed in  101, 112, 135–138 ], which might not be the case 
at least in the cerebellum and hippocampus. Sdrulla and 
Linden  [139]  demonstrated a surprising dissociation be-
tween LTD and spine morphology; chemically or synap-
tically evoked LTD in cerebellar slices was not associated 
with shrinkage or loss of dendritic spines. Manipulation 
that evoked significant spine retraction was not associ-
ated with LTD, either. A very similar ‘double dissociation’ 
between LTD and spine morphology was recently report-
ed in the hippocampus  [140] . In addition, spine struc-
tures can change very rapidly in a protein synthesis-inde-
pendent manner  [141] , while, in contrast, long-term 
memory requires protein synthesis  [4, 7, 21] . These find-
ings suggest that long-term memory is retained by a 
mechanism other than spine morphology, and PKM �  is 
probably the most likely candidate.

  PKC isoforms are classified into three groups that dif-
fer in cofactor requirements: cPKCs, novel PKCs (nPKCs), 
and atypical PKCs (aPKCs). cPKCs require Ca 2+  and DAG 
for activation; nPKCs are Ca 2+ -independent and are acti-
vated by DAG alone; aPKCs are Ca 2+ - and DAG-indepen-
dent [reviewed in  142–144 ]. PKM �  is a persistently active 
enzyme, consisting of the catalytic domain of an aPKC 
isoform, PKC � . It is expressed in a brain-specific manner 
in various regions, including the hippocampus and cer-
ebellar cortex  [145, 146] . A series of experiments per-
formed mainly by Sacktor’s group demonstrates accumu-
lating evidence that PKM �  plays a pivotal role in long-
term maintenance of memory. A procedure to induce 
hippocampal LTP first triggers transient activation of 
several PKC isoforms and translation of PKM � ; subse-
quently, PKM �  protein increases and replaces PKCs in 30 
min, and retains its activity for weeks  [145, 147–150] . On 
the other hand, a procedure to induce hippocampal LTD 
reduces PKM �  expression  [151] . Injection of a PKM �  in-
hibitor, ZIP  [152] , to the hippocampus reverses LTP main-
tenance in vivo and produces persistent loss of 1-day-old 
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  Fig. 4.  Threshold cascade model. See text for explanation.                                                                         
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spatial information  [153] . More surprisingly, an injection 
of ZIP to the rat neocortex, which is regarded as the long-
term repository of memory, erases associative memories 
as old as 1 month  [154] . During hippocampal LTP, vari-
ous kinases, such as CaMKII, MAPK, PKC, and preexist-
ing PKM � , regulate new synthesis of PKM �   [155] ; PKM �  
is likely to be locally translated in synaptodendritic do-
mains  [156–161] . These findings strongly suggest that 
PKM �  is the (semi-)permanent form of a memory trace. 
Moreover, its importance to long-term memory is evolu-
tionarily conserved from flies to rodents  [149, 162] . PKM �  

is also expressed in the cerebellar cortex  [145, 146] . Since 
cerebellar plasticity is regarded as the mirror image of 
hippocampal plasticity, and shares much of its signaling 
cascade  [4, 7, 23, 25, 163] , PKM �  activity is likely to be 
central to cerebellar LTD, as it is to hippocampal LTP.

  We propose a conceptual model that explains the sta-
bility and plasticity of cerebellar memory, postulating 
that PKM �  activity is the persistent memory trace ( fig. 5 ). 
The model will also provide insight into hippocampal 
plasticity, which has much in common with cerebellar 
plasticity; however, it should be noted that [Ca 2+ ] eleva-
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  Fig. 5.  Bidirectional long-term memory model. See text for expla-
nation.    a  A schematic diagram of long-term memory. Sharp and 
blunt arrows indicate excitatory and inhibitory pathways, respec-
tively.  b  The PKM                       �  positive feedback loop.    c  The cascade model 
                                   [134]  representation of the bidirectional long-term memory mod-
el.  d–  i  Various states of memory (red bold lines and black thin 

lines indicate active and inactive pathways, respectively; red bold 
text and black thin text indicate active or increased molecules and 
inactive or decreased molecules, respectively):  d  the basal state,
 e  LTP,  f  the initial,  g  intermediate, and  h  late to post-consolidation 
phases of LTD, and  i  the late phase of LTD disrupted by applica-
tion of a protein synthesis inhibitor, such as anisomycin (ANI).   
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tion and protein kinase activity induce opposite effects in 
the cerebellum and hippocampus; high [Ca 2+ ] and active 
protein kinases result in LTD in the cerebellum and LTP 
in the hippocampus, while low [Ca 2+ ] and inactive ki-
nases result in LTP in the cerebellum and LTD in the hip-
pocampus  [25] .

  a. Pathways 
 PF firing induces NO synthesis. NO transiently en-

hances exocytosis of GluR2 through S-nitrosylation of 
 N -ethylmaleimide-sensitive factor  [164–167]  ( fig. 5 a ar-
row 1). NO inactivates PKM �  at the same time ( fig. 5 a ar-
row 2). This pathway is hypothetical, but there is a good 
reason to assume its existence; LTD is reversed by [NO] 
elevation which little [Ca 2+ ] increase accompanies  [27, 28, 
164] . Although NO enhances AMPAR exocytosis, that 
would not be enough for LTD reversal if the activity to 
maintain LTD, PKM �  activity in this model, were not 
turned off at the same time. PKM �  inactivation might be 
mediated through nitration of PKM �  or its activator, 
phosphoinositide-dependent protein kinase-1  [155] .

  NO also inhibits PP2A in an sGC-dependent manner 
( fig. 5 a arrow 3) and reverses PP2A inhibition ( fig. 5 a ar-
row 4), allowing for activation of the MAPK-PKC positive 
feedback loop  [4, 23, 168, 169] . Conjunctive firing of the 
PF and CF stimulates IP 3 Rs, resulting in Ca 2+ -induced 
Ca 2+  release ( fig. 5 a loop a). Ca 2+  activates cPKC and 
PLA2 ( fig. 1 b, 5a arrow 5), triggering activation of the 
MAPK-PKC positive feedback loop ( fig. 5 a loop b)  [4, 23, 
72, 80, 142, 144] . The active forms of MAPK and PKC in-
duce expression of PKM �   [155]  ( fig. 5 a arrow 6).

  We postulate a positive feedback loop that activates 
PKM �  translation in a PKM � -dependent manner ( fig. 5 a 
loop c, 5b) because PKM �  activity is maintained for a sur-
prisingly long period, much longer than the protein turn-
over timescale  [147, 155] . The feedback loop consists
of PKM � , actin polymerization, and local synthesis of 
PKM � , of which the latter two are PKM � -dependent. 
Since a single effector, PKM � , acts on two steps, i.e., actin 
polymerization and translation of itself, this results in 
‘multistep ultrasensitivity’  [57] . As Ferrell  [53]  mentioned, 
the combination of supralinearity and a positive feedback 
loop can produce bistability and all-or-none responses. 
This part of the model is based on the following experi-
ments: (1) PKM �  mRNA is present in spiny dendrites 
 [161] ; (2) expression of PKM �  during hippocampal LTP 
induction is very rapid, and this kinase is likely to be syn-
thesized locally on demand  [145, 147, 148] ; (3) PKC activa-
tion results in actin polymerization in the neuron  [170] , 
and PKC �  facilitates actin polymerization in various 

types of cells  [171–174] ; (4) F-actin levels linearly regulate 
protein synthesis capacity of living cells  [175] , and (5) 
PKC and MAPK induce expression of PKM �   [147, 148, 
161] .

  In the active state of the PKM �  positive feedback loop, 
endocytosis of AMPARs exceeds exocytosis, resulting in 
a depressed PF-PC synapse, whereas the inactive state of 
the feedback loop corresponds to a non-depressed syn-
apse. As mentioned earlier, it should be noted that PKC 
activity (and presumably PKM activity as well) lead to the 
opposite effects in the cerebellum and hippocampus. In 
the PC, the Ser880 phosphorylation of GluR2 subunits by 
PKC results in endocytosis of AMPARs and reduction of 
transmission efficacy  [4, 176, 177] , while in the hippo-
campus, Ser818 phosphorylation of GluR1 subunits by 
PKC promotes synaptic incorporation of GluR1 and po-
tentiation of synaptic transmission  [178] .

  Central to the model are three positive feedback loops, 
i.e., Ca 2+ -induced Ca 2+  release, the MAPK-PKC positive 
feedback loop, and PKM � -induced PKM �  expression. 
Their decay time constants are  ! 1 s, tens of minutes, and 
weeks or longer, respectively. Importantly, these bistable 
dynamics of different time scales are connected in a cas-
cade. When stimuli activate the quickest dynamics ( fig. 5 a 
loop a) repetitively, activity is transmitted from the quick-
est, to the intermediate ( fig. 5 a loop b), and thereafter to 
the slowest and most stable dynamics ( fig. 5 a loop c). As 
a consequence, long-term stability and plasticity of mem-
ory is established. In this sense, this model is a more con-
crete representation of the cascade model of excitable dy-
namics ( fig. 4 , 5c)  [134] .

  b. Various States of Memory in the Model and 
Corresponding Experiments 
 In the basal state, PP2A is active and inhibits the 

MAPK-PKC positive feedback loop ( fig. 5 d).

  i. LTP Induction 
 Postsynaptic LTP is induced in an NO-dependent 

manner by PF stimulation at 1 Hz, which increases [NO], 
but [Ca 2+ ] only slightly  [27, 33] . When a calcium chelate 
was infused to the PC, LTD-inducing stimuli resulted in 
LTP instead  [29] . More surprisingly, LTP was induced in 
cerebellar slices just by applying an NO donor alone  [164] . 
The model corresponds well to these experimental find-
ings ( fig. 5 e). In the model, NO, whose synthesis is trig-
gered by PF spikes, transiently facilitates exocytosis of 
AMPARs. Meanwhile, NO liberates the MAPK-PKC
positive feedback loop from PP2A inhibition, but the loop 
is not activated because of the lack of Ca 2+  inputs. PKM � , 
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if present, is inactivated by NO. As a consequence, the 
synapse is potentiated.

  By the way, NO donors, such as nitroglycerin, are pre-
scribed for the treatment of ischemic heart disease  [179, 
180] . However, these drugs do not usually cause ataxia or 
amnesia by disturbing synapses. This may appear to con-
tradict our model, but it can be explained by the fact that 
systemic administration of an NO donor does not in-
crease [NO] in neurons sufficiently to activate their intra-
cellular signaling cascades, even at a dose that consider-
ably affects hemodynamics  [181] .

  ii. Induction and Maintenance of LTD 
 The model explains the sequence of events during 

LTD induction and maintenance ( fig. 5 f–h). When [Ca 2+ ] 
and [NO] are increased by conjunctive PF-CF activity, 
NO releases the MAPK-PKC positive feedback loop from 
PP2A inhibition, and Ca 2+  activates cPKC, which then 
phosphorylates and internalizes AMPARs ( fig. 5 f). In the 
intermediate phase ( fig. 5 g), the activated MAPK-PKC 
positive feedback loop maintains PKC activity and endo-
cytosis. During, and subsequent to, the late phase ( fig. 5 h), 
newly synthesized PKM �  maintains AMPAR phosphory-
lation and endocytosis for a long period of time. This 
time course corresponds to Tanaka et al.’s experimental 
findings  [72] . They showed that cerebellar LTD was re-
duced or abolished by a cPKC inhibitor, bisindolylma-
leimide I (BIM), when applied within 30 min of induc-
tion. In contrast, BIM application at a later time point did 
not affect the LTD time course, which suggests that cPKC 
is vital for LTD in the initial and intermediate phases, but 
not in the late phase. Late-phase LTD maintenance must 
be BIM-insensitive, and PKM �  is one of such PKC iso-
forms  [182] .

  iii. Disruption of Late Phase LTD by Application of a 
Protein Synthesis Inhibitor 
 The model predicts that a protein synthesis inhibitor, 

such as anisomycin, disrupts late phase LTD by prevent-
ing expression of PKM �  ( fig. 5 i), whereas it does not affect 
the initial and intermediate phases. Once PKM �  is suf-
ficiently expressed (post-consolidation phase), only min-
imal synthesis of PKM �  is required in order to compen-
sate for its degradation and maintain LTD. During this 
period, transient application of a protein synthesis inhib-
itor will fail to switch off the PKM �  positive feedback 
loop, as long as the level of remaining PKM �  is above the 
threshold for maintaining loop activity. These predic-
tions correspond to in vitro and in vivo experiments. 
LTD induced in the presence of a protein synthesis in-

hibitor is transient and vanishes within an hour  [183] . In 
eyeblink conditioning, a protein synthesis inhibitor pre-
vents ongoing consolidation of new memory, but does not 
affect consolidated memory  [130] .

  iv. Reactivation of Memory 
 It has been demonstrated in the cerebellum  [130] , as 

well as in the hippocampus and amygdala  [184–186] , that 
consolidated memory of conditioning training becomes 
labile following its retrieval. In order for reactivated 
memory to be maintained, it must be reconsolidated 
through a protein synthesis-dependent pathway. The 
model can also explain this retrieval-induced deconsoli-
dation of memory. Reactivation sessions, which are very 
similar to the training sessions, will result in increased 
[NO] and [Ca 2+ ] in the synapses that receive task-related 
inputs and store the conditioning memory ( fig. 5 f). NO 
inactivates the memory trace, PKM � , but at the same 
time the MAPK-PKC positive feedback loop is activated 
by Ca 2+  and NO ( fig. 5 f, g). The typical steps of LTD in-
duction are repeated, and this leads to new PKM �  synthe-
sis ( fig. 5 f ] g ] h). As a result, the memory is maintained, 
despite NO inactivation of preexisting PKM � . However, 
when a protein synthesis inhibitor is administered dur-
ing retrieval sessions, the drug will block translation of 
PKM �  ( fig. 5 i). Inactivation of preexisting PKM �  and 
 inhibition of new PKM �  synthesis will shut down the
PKM �  loop activity and result in memory disruption. In 
contrast, co-administration of a protein synthesis inhib-
itor and a NOS inhibitor will not destroy memory, as pre-
dicted earlier  [30] . It is because [NO] is kept at such a low 
level that existing PKM �  will not be inactivated during 
the retrieval sessions.

  c. Experiments to Verify the Model 
 First of all, it is necessary to determine whether PKM �  

maintains long-term memory in the cerebellum. If so, it 
should also be examined whether PKM �  expression per-
sists in the cerebellar cortex or shifts to the deep cerebel-
lar nucleus, as experimentally suggested  [187] . Second, 
according to the model, ZIP, a selective inhibitor of PKC �  
and PKM �   [152] , will abolish late phase LTD and associa-
tive memory, whereas overexpression of PKM �  will result 
in LTD. The model predicts that cerebellar postsynaptic 
LTP is protein synthesis-independent, in contrast to LTD 
 [4, 21, 23] , since LTP corresponds to PKM �  downregula-
tion ( fig. 5 e). This could probably be tested in vivo as well 
as in vitro. In mice, cerebellar LTD and LTP have been 
shown to be cellular correlates of an increase and de-
crease in vestibulo-ocular reflex (VOR) gain, respective-
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