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Motor or perceptual learning is known to influence functional connectivity between brain

regions and induce short-term changes in the intrinsic functional networks revealed as

correlations in slow blood-oxygen-level dependent (BOLD) signal fluctuations. However,

no cause-and-effect relationship has been elucidated between a specific change

in connectivity and a long-term change in global networks. Here, we examine the

hypothesis that functional connectivity (i.e., temporal correlation between two regions) is

increased and preserved for a long time when two regions are simultaneously activated

or deactivated. Using the connectivity-neurofeedback training paradigm, subjects

successfully learned to increase the correlation of activity between the lateral parietal and

primary motor areas, regions that belong to different intrinsic networks and negatively

correlated before training under the resting conditions. Furthermore, whole-brain

hypothesis-free analysis as well as functional network analyses demonstrated that the

correlation in the resting state between these areas as well as the correlation between the

intrinsic networks that include the areas increased for at least 2 months. These findings

indicate that the connectivity-neurofeedback training can cause long-term changes in

intrinsic connectivity and that intrinsic networks can be shaped by experience-driven

modulation of regional correlation.

Keywords: functional MRI neurofeedback, intrinsic functional network, resting state functional connectivity,

long-lasting changes, default mode network

Introduction

Spatial and temporal correlations in spontaneous brain activity are generated by the underlying
connectivity of brain networks (Ringach, 2009). An increasing number of functional neu-
roimaging studies have used resting-state functional connectivity magnetic resonance imag-
ing (rs-fcMRI), which quantifies correlations in low-frequency fluctuations of spontaneous
blood oxygen level-dependent (BOLD) signals during rest (Biswal et al., 1995; Raichle et al.,
2001; Fox and Raichle, 2007). Independent component analysis (ICA) of data in thou-
sands of task-driven activation studies has demonstrated co-activation networks that were
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strikingly similar to networks estimated by spatial ICA of the
resting state fMRI (Smith et al., 2009; Laird et al., 2011). These
studies indicate that the repertoire of functional networks is
continuously and dynamically activated even during “rest” and
that the dynamics represent the brain architecture. It has been
suggested that intrinsic connectivity investigated by rs-fcMRI
reflects closely, though not exactly, the structural or anatomical
connectivity (Vincent et al., 2007; Greicius et al., 2008; Honey
et al., 2009) and that abnormality in rs-fcMRI is related to many
psychiatric and neurological disorders (Broyd et al., 2009).

An interesting aspect of functional connectivity is that expe-
riences in daily life (Fair et al., 2007) and behavioral training,
including motor learning (Albert et al., 2009; Taubert et al., 2011;
Vahdat et al., 2011) and perceptual learning (Lewis et al., 2009),
lead to changes in intrinsic connectivity (Fair et al., 2007; Lewis
et al., 2009) and functional networks. However, little is known
about a possible cause-and-effect relationship between a spe-
cific change in regional-activation correlations and a long-term
change in intrinsic networks. Here, we propose and directly test
the hypothesis that spontaneous brain activity is shaped in an
experience-driven manner, where the temporal correlation at rest
between two brain regions is increased when they are simultane-
ously activated or deactivated. In the current study, “functional
connectivity” is defined as a temporal correlation between acti-
vations in two brain regions, which is calculated from BOLD
time courses. We assume that an absolute value of correlation
reflects the strength of functional connectivity, e.g., a large nega-
tive (r ≈−1.0) or positive (r ≈+1.0) correlation means a strong
connectivity while a correlation near zero (r≈ 0.0) means a weak
connectivity.

To examine our hypothesis, we developed a straightforward
method for inducing regionally specific correlated activations
based on online fMRI neurofeedback (see reviews: Weiskopf
et al., 2003; deCharms, 2007; Sulzer et al., 2013). Previous
fMRI neurofeedback methods successfully up- or down- regu-
lated single region-of-interest (ROI) activation (deCharms et al.,
2005; Subramanian et al., 2011); furthermore, these studies were
extended to control voxel patterns of spatial activity (Shibata
et al., 2011) and multiple brain regions (Robineau et al., 2014).
These studies have proven that online neurofeedback training can
be an effective method to manipulate brain activation at various
levels. In our connectivity-neurofeedback training, the temporal
correlation of activation in two specific regions (see below) dur-
ing a motor imagery task for 14 s was calculated. Subjects were
informed of the correlation immediately after each trial as an
intermittent feedback. A monetary reward was given in propor-
tion to the increment of the correlation. Through repetition of a
few hundreds of trials over 4 days, subjects learned to increase
the correlation between the regions in a trial-and-error manner
while guided by the reward without conscious understanding of
the meaning of feedback signals (Weiskopf et al., 2004; Bray et al.,
2007; Shibata et al., 2011).

Recently, the effect of single-ROI regulation was investi-
gated on functional connectivity and networks including rs-
fcMRI (Ruiz et al., 2011; Harmelech et al., 2013; Scheinost et al.,
2013; Scharnowski et al., 2014). Furthermore, the importance
of connectivity-neurofeedback for improvement of cognitive

functions and psychiatric disorders was suggested in a review
article (Ruiz et al., 2014), and manipulation of local network
dynamics was examined through an online evaluation of hypoth-
esized connectivity models (Koush et al., 2013). These studies
suggest that neurofeedback training induces changes in func-
tional connectivity.We were specifically interested in the changes
in correlation across intrinsic networks, and thus we selected two
regions from distinct intrinsic networks.

Specifically, we selected the left primary motor cortex (lM1)
from motor/visuospatial network group (MVN) and the left lat-
eral parietal cortex (lLP) from default mode network (DMN)
(Callard and Margulies, 2014) according to a meta-analysis study
(Laird et al., 2011). A number of rs-fcMRI studies have con-
sistently shown that the DMN and some of networks related
to MVN (such as the dorsal attention network) are nega-
tively correlated (Fox et al., 2005; Fransson, 2005; Biswal et al.,
2010). The genotype of the dopamine transporter affects the
degree of the negative correlation (Gordon et al., 2012). The
existence of consistent DMN across mammalian species indi-
cates an evolutionary organization of the negative correlation
(Rilling et al., 2007; Vincent et al., 2007; Lu et al., 2012). If
our method can change this correlation, it suggests that train-
ings and experiences modify connectivity largely determined
by genetic and evolutional factors, and that the connectivity-
neurofeedback training will contribute to educations andmedical
treatments.

Materials and Methods

Participants
Thirty-three healthy subjects (23 males and 10 females, aged
19–43 years) participated in this experiment. All subjects were
right-handed according to the Edinburgh inventory (Oldfield,
1971). Following a previous neurofeedback study that uses
a neurofeedback-training group and several control groups
(deCharms et al., 2005), we randomly assigned subjects to
a test group (n = 12) or one of two control groups (a
sham-feedback group: n = 12 and a tapping-imagery group:
n = 9; see below), each of which had more than eight subjects.
There was no significant difference in age [F(2, 30) = 0.34,
p = 0.72, n.s] and gender balance [F(2, 30) = 2.03, p =

0.15, n.s.] across groups. The Institutional Review Board of
Advanced Telecommunications Research Institute International
(ATR) approved this study. All subjects gave written informed
consent.

MR Image Acquisition
Images were obtained using a Siemens MAGNETOM Trio (3
Tesla) scanner. BOLD signals were measured using echo planar
imaging (EPI) sequence (volume repetition time, 2 s; echo time,
30ms; flip angle, 80◦). The entire brain was covered in 33 axial
slices (3.5-mm thickness; no gap), voxel size was 3× 3× 3.5mm,
and field of view was 192 × 192mm. T1-weighted structural
images were acquired with 1×1× 1-mm resolution. T2-weighted
structural images were acquired on each day with 1×1× 3.5-mm
resolution.
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Neurofeedback Training Protocol
Subjects in the test group received neurofeedback training to
increase temporal correlation of BOLD signals between two tar-
get ROIs: lM1 and lLP (see Figure 4A). Each subject received
training for 4 days (white boxes in Figure 1A). Subjects under-
went 5.0 blocks of training per day on average (SD: 1.32), with
each block consisting of 10 trials, for a total of 20.0 (SD: 1.73)
blocks (see below for the other groups). A trial in each block
began with a rest period of 14 s, during which the “=” sign was
presented on the screen (Figure 1B). When the sign changed
to “+,” subjects performed the tapping imagery task for 14 s
(imagery period). Subjects were instructed to imagine tapping
their thumbs with their fingers randomly as fast as possible dur-
ing the imagery period. They were instructed to produce kinetic
imagery related to tapping, rather than attempt visual imagery
of tapping fingers, and not to overtly move their hands during
the task. After the imagery period, a feedback score calculated
by the online MRI system (see below for calculation of feedback
score) was presented on the screen (feedback period). As noted
below, the score was determined from the correlation between
two regions.

Online Calculation of Feedback Score
Temporal correlations between BOLD signals were averaged
within the target ROIs during the imagery period, and a

numerical score was presented on the screen in the feedback
period (right panel of Figure 1B). The score indicated an incre-
ment of the correlation from that in the initial block on the
first day (see below). We used MATLAB (The MathWorks,
Inc.) for online processing of fMRI data. We also used realign-
ment modules of SPM8 (Wellcome Department of Cognitive
Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm). The
software ran on a computer that accessed data files in the MRI
system. Each volume of the functional image (EPI) was realigned
in real time to the first volume obtained on the first training
day. Seven volumes were obtained during an imagery period
in each trial, but the first volume was discarded and one vol-
ume from the feedback period was added. One may argue that
a one-volume shift (2 s) is not enough to fully compensate the
hemodynamic delay (4–8 s). However, in a previous fMRI neu-
rofeedback study with an intermittent feedback paradigm (Bray
et al., 2007), the first 2 s of each imagery period was eliminated
from the feedback signal computation, and participants were able
to learn to regulate their own brain activity. We followed their
approach and this enabled us to minimize the delay of feed-
back to participants. BOLD signal time courses were extracted
from the lM1 and lLP ROIs in these volumes. To remove
low-frequency trends in the BOLD signal, a high-pass tempo-
ral filter (cutoff frequency of 0.06Hz) was applied to the time
courses.

FIGURE 1 | Experimental procedures. (A) Measurement of resting state

activity and neurofeedback training. Resting state activity measurement

(pre-REST) was followed by neurofeedback training for 4 days. Resting state

activity was also measured at the end of the fourth day of training

(post-REST) and 2 months after the training (REST after 2 months).

(B) Timeline and displays for subjects in a trial during training in the

neurofeedback-training group. After a rest period while the “=” sign was

presented on the screen, subjects were instructed to produce tapping

imagery during the imagery period while the “+” sign was presented. They

received a numerical feedback score (e.g., 20) that represented an increased

correlation of activation in the left motor cortex (lM1) and the left lateral

parietal region (lLP) during the imagery period (see Materials and Methods).

(C) Displays for control groups. Subjects were also required to produce

tapping imagery. The sham-feedback group received feedback, which was

calculated from the activity of another subject. For the tapping-imagery

group, the score value was not presented to the subjects; instead, three

asterisks (***) were presented on the screen. Subjects were required to fix

their eyes to a circle at the center of the screen.
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Using the filtered time courses, the feedback score in the
imagery period of the i-th trial was calculated as:

Scorei =
(Correlationi − CorrelationInitial)

1+
∣

∣CorrelationInitial
∣

∣

× 100 (1)

Here,Correlationi represents the correlation of time courses aver-
aged within the ROIs. CorrelationInitial is the correlation averaged
over trials in the initial block of the first training day. We added
“1” in the denominator to keep the score range between −100
and +100. Thus, the score represents increments of the correla-
tion value in each trial compared to the value in the first training
block. The purpose of using initial score as a baseline was to
compensate individual differences in the initial correlation and
to keep participants motivated. For instance, if the correlation
changes from r = −0.6 to−0.2, the above score increases from 0
to 25.We note that the score was designed so that positive reward
is given in all of the following three cases: (i) a positive correlation
increases in its magnitude (e.g., from 0.2 to 0.6); (ii) a negative
correlation changes to a positive correlation (from −0.2 to 0.2);
and (iii) a negative correlation increases but stays negative, thus
decreasing in absolute value (e.g., from −0.6 to −0.2). We note
that the objective of our connectivity neurofeedback training is to
increase the correlation and not to increase the absolute value of
the correlation, which has sometimes been termed “connectivity”
elsewhere. The score was calculated immediately after the acqui-
sition of the first volume in a feedback period (2 s). Preprocessing
and score calculation were completed within 2 s. Thus, subjects
received the score within 4 s after the end of the imagery periods.

Subjects were instructed to imagine tapping their thumbs with
their fingers randomly as fast as possible during the imagery
period, with the aim of increasing the score that reflects their
imagery performance. During the initial block of the first day, no
score was provided to the participants. They were informed that
we compute the baseline of their brain-training performance in
the first training session. The post-experiment debriefing (Sup-
plementary Text S1) indicated that all subjects performed the
mental motor imagery task during training. A standard Statis-
tical Parametric Mapping (SPM) analysis revealed activities in
motor-related areas, especially in the left supplementary motor
area (SMA) and the premotor area (PM; see Supplementary Fig-
ure S1), thus supporting the subjects’ reports. We confirmed
that subjects had no knowledge of ROIs or how the score was
calculated.

Subjects received additional monetary reward in proportion
to their total score on each day. Subjects were instructed to
increase their score by producing tapping imagery, and they were
informed that a monetary reward (up to 2000 JPY) would be
paid in proportion to their score. At the end of each block, the
averaged score within the block was presented on the screen. We
showed a negative score when the temporal correlation between
the ROIs dropped in relation to the baseline. We did not decrease
monetary reimbursement when negative scores were shown to
participants.

Control Groups
Subjects in the two control groups were trained using a simi-
lar procedure but without the proper neurofeedback information

(Figure 1C). A sham-feedback group received scores and reward,
but the scores’ time series was taken from another subject ran-
domly chosen from the neurofeedback-training group. We used
the score time-series of all subjects in the neurofeedback-training
group (n = 12) for sham-scores in the sham-feedback group
(n = 12). Each subject in the sham-feedback group saw a
time-series from one randomly selected different subject in the
neurofeedback-training group. No other subject in the sham-
group was given the same feedback time-series of that subject in
the neurofeedback-training group. As explained later, the scores
in the neurofeedback-training group increased as training pro-
ceeded. Thus, the sham-feedback control group was used to
examining whether a spurious increase in score/reward, which
does not correctly reflect the actual correlation between the two
ROIs in one’s own brain, could induce increased correlation
between the ROIs. If the sham-feedback group does not show
changes in functional connectivity, we can exclude any mecha-
nism that explains the changes in functional connectivity solely
by a combination of mental motor imagery and slowly increasing
score/reward. A tapping-imagery group (n = 9) was instructed
to perform the imagery task without the feedback score. In this
group, we examined whether the repetition of mere tapping
imagery could increase the correlation between the ROIs. Sub-
jects in the sham-feedback and tapping-imagery groups under-
went a total of 19.5 (SD 1.85) and 20.56 (SD: 1.07) blocks,
respectively.

ROI definition for Neurofeedback Training
We determined two ROIs for calculation of the feedback score.
We selected the lM1 as one of the two ROIs. This is because con-
sistent temporal changes in BOLD time courses with significant
amplitudes are necessary for calculation of a reliable temporal
correlation of the two regions during the 14-s training periods.
We followed previous neurofeedback studies (deCharms et al.,
2004; Bray et al., 2007) that successfully induced large BOLD
modulation in the lM1 by asking subjects to imagine fingermove-
ments. The lM1-ROI was defined as Brodmann area 4 accord-
ing to the anatomical map in PickAtlas (http://fmri.wfubmc.edu/
software/PickAtlas) (Lancaster et al., 1997; Maldjian et al., 2003).

As the other ROI, we selected a region in the DMN because
activity in DMN regions is expected to negatively correlate with
that in the lM1 during the motor imagery task. We found a neg-
ative correlation before the neurofeedback training during rest
as shown in the Results section. We aimed to induce a marked
change in the correlation. We adopted a region in the left lat-
eral parietal cortex (lLP) as the nearest DMN region to lM1. This
is because functional connectivity between closer regions is on
average higher than that between distant regions (Bullmore and
Sporns, 2012), and a strong negative correlation is required to
compute a reliable feedback score within a short time interval
(14 s) at least for the initial stage. Another reason for selection
of close regions is to minimize the temporal gaps between acti-
vation in the two regions. MRI cannot acquire BOLD signals
simultaneously over the entire brain but instead acquires signals
sequentially slice by slice. Thus, the longer distance between the
two regionsmay increase the greater temporal gap. Anatomically,
lLP is a part of Brodmann’s area 39 and the posterior-lateral part
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of the intraparietal-sulcus region (see Table 1 for coordinates).
Previous studies reported lLP as a part of the DMN; in par-
ticular, rs-fcMRI studies indicated anti-correlation with regions
such as the dorsal attention networks (Fox et al., 2005; Van Dijk
et al., 2010), and a meta-analysis of attention-demanding experi-
ments reported a consistent decrease in activity during task per-
formance (Shulman et al., 1997). In accordance with previous
studies of the DMN (Fox et al., 2005; Fox and Raichle, 2007),
we refer to this region as the “lateral parietal (LP).” The lLP-
ROI was defined as a sphere with a 7.5-mm radius centered at
(x, y, z) = (−45, −67, 36) in the Montreal Neurological Institute
standard brain coordinates (MNI; Montreal, Quebec, Canada)
according to a previous study on brain networks (Biswal et al.,
2010).

Because these ROIs were defined in the standard brain, we
identified corresponding voxels in the functional images of indi-
vidual subjects’ brains using a deformation module in SPM8. We
took several volumes of functional images for this purpose at the
beginning of the experiment on the first training day, and we
used the identified voxels as ROIs for calculating scores in the
subsequent training blocks.

Measurement of rs-fcMRI
For all subjects, wemeasured rs-fcMRI before (pre-REST), imme-
diately after (post-REST), and more than 2 months (REST after
2 months) after the training (gray/black boxes in Figure 1A) to
investigate the effects of training on intrinsic functional connec-
tivity at rest. Rs-fcMRI was recorded for 5min (152 volumes) in
a run with the standard protocol (Van Dijk et al., 2010). Sub-
jects were instructed to gaze at a fixation point on a screen, not
to move during the measurements, and not to recall or rehearse
what they did during neurofeedback training. The major fre-
quency of rs-fcMRI was below 0.05Hz while a 0.06-Hz high-pass
filter was applied to signals in neurofeedback training. There-
fore, the rs-fcMRI provided an index of training effect that was
independent of the feedback score (see Supplementary Figure S2

for spectrum density analysis). This indicates that the recall or
rehearsal unlikely affects rs-fcMRI (see Supplementary Text S2
for effects of rehearsal on rs-fcMRI). We did not find any sig-
nificant difference in head movements estimated by realignment
parameters among the three REST measurements (see Supple-
mentary Text S3).

Whole Brain Analysis of rs-fcMRI
We first conducted a whole-brain and hypothesis-free analysis of
the degree of connectivity (Buckner et al., 2009; Hampson et al.,
2012; Scheinost et al., 2012, 2013), which was defined for each
voxel as the number of voxels to which the voxel was connected
with a correlation coefficient r above or below a threshold. Pre-
processing of rs-fcMRI and calculation of the degree of connec-
tivity followed a previous study (Scheinost et al., 2012). Previous
studies on positive connectivity used a threshold of r > 0.25
(Buckner et al., 2009; Hampson et al., 2012). These studies exam-
ined functional connectivities with positive correlations and set
a positive threshold value (r > 0.25). By contrast, we aimed to
change normally negative correlation toward zero or positive cor-
relation. Therefore, we changed the sign of the threshold and the
direction of the inequality sign (r < −0.25) to investigate regions
where negative correlation changed toward zero or positive val-
ues. We examined statistically significant decreases in degree of
connectivity between pre-REST and post-REST. Let us illustrate
the relationship between the change of degree of connectivity and
the change of correlation between lM1 and lLP when the correla-
tion between two voxels in lM1 and lLP changed from−0.4 to 0.3
by the neurofeedback training. This connection is counted with
the threshold of r < −0.25 (−0.4 < −0.25) before neurofeed-
back training, but it is not counted after training (0.3 > −0.25),
and thus the degrees of connectivity of lM1 and lLP decrease
by 1. If there exist 300 voxel pairs between lM1 and lLP whose
correlations increase across the threshold −0.25 (e.g., from −0.3
to 0.1, from −0.4 to −0.2), then the degree of connectivity of
lM1 and lLP decrease by 300. In summary, if the change in the

TABLE 1 | Sixteen regions of interest for analysis of resting state fMRI.

Network Label Anatomical region Brodmann area/MNI coordinates Averaged volume in individual space (mm3)

Motor/visuospatial network lM1 Left primary motor cortex Area 4 3307

rM1 Right primary motor cortex Area 4 3906

lSMA Left supplementary motor area Area 6 13,302

rSMA Right supplementary motor area Area 6 14,662

lIPS Left intra-parietal sulcus (−25, −57, 46) 1475

rIPS Right intra-parietal sulcus (25, −57, 46) 1489

lFEF Left frontal eye field (−25, −13, 50) 1566

rFEF Right frontal eye field (25, −13, 50) 1607

Default-mode network lLP Left lateral parietal region (−45, −67, 36) 1533

rLP Right lateral parietal region (45, −67, 36) 1608

PCC Posterior cingulate cortex (−5, −49, 40) 1533

MPF Medial prefrontal cortex (−1, 47, −4) 1418

Control (visual and auditory networks) lV1 Left primary visual cortex Area 17 1575

rV1 Right primary visual cortex Area 17 1701

lA1 Left auditory cortex Areas 41 and 42 2014

rA1 Right auditory cortex Areas 41 and 42 2043
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degree of connectivity is a decrease, the result is in accordance
with our prediction that a negative correlation between lM1 and
lLP increases (e.g., from −0.4 to −0.2 or 0.1). First, we applied
a threshold for P < 0.05 corrected for multiple comparisons at
cluster level to the connectivity map, as well as a liberal thresh-
old of P < 0.005 without correction, averaged across subjects
separately for the three groups.

ROI-Based Network Analysis of rs-fcMRI
As we noted in the Introduction section, we adopted the defi-
nition of intrinsic networks in Laird et al. (2011) and investi-
gated the changes in correlations between the MVN and DMN.
Our network analysis was based on the correlation between ROIs
from the two networks (Figure 4A and Table 1), including the
target ROIs (M1 and LP). We included the SMA, which is related
to a motor-imagery task (Grezes and Decety, 2001), in the ROIs
of the MVN. Other regions in the MVN and DMN were deter-
mined according to a previous study on brain networks (Biswal
et al., 2010). This study examined reproducibility of networks
in rs-fcMRI across 1414 volunteers collected at 35 centers. One
of the examined features was a negative correlation between the
DMN and a group of regions named “task-positive” network (Fox
et al., 2005) in a ROI-based correlation analysis. The ROIs for the
DMN were located in the lateral parietal region (LP), the pos-
terior cingulate cortex (PCC) and the medial prefrontal cortex
(MPFC). We used these ROIs for the DMN. The ROIs for the
task-positive network were located in the intra-parietal sulcus
(IPS), the frontal eye field (FEF), and the middle temporal region
(MT) (see Supporting Information of the study Biswal et al.,
2010). We used the IPS- and FEF-ROIs since they are included
in the MVN. As control networks besides the MVN and DMN,
we defined ROIs in the visual and audition/speech networks.
Because the previous study (Biswal et al., 2010) determined ROIs
as spherical regions whose center was defined in MMN coordi-
nates (Table 1), we followed these definitions. The other regions
were anatomically defined according to the Brodmann area
map in PickAtlas.

Concretely, data were analyzed using SPM8. The first two vol-
umes of images in each run were discarded to allow for T1 equi-
libration. Functional images were temporally realigned to correct
for the sequence of slice acquisition and then spatially aligned
to the first remaining volume in a run with a six-parameter
rigid-body transformation. Data were smoothed spatially with a
Gaussian kernel of 6mm full-width at half-maximum. To remove
several sources of spurious variance unlikely to reflect spatially
specific functional correlations, we applied regression analysis
to the extracted time courses using explanatory variables: six
realignment parameters, averaged signal over gray matter, white
matter, and cerebrospinal fluid. We averaged the resultant resid-
ual time courses within each ROI. After these preprocessing steps,
we calculated Fisher’s z-transformed Pearson correlation coeffi-
cients (r) between the averaged time courses and then produced
correlation matrices of all ROI pairs (Figure 4B).

Bootstrapping Method for Analysis of Network
Correlation
To investigate changes across subjects in correlations between
networks, we adopted the bootstrappingmethod used in previous

studies of resting-state fMRI (Efron and Tibshirani, 1986; Bellec
et al., 2010) and analyzed the effect of training and its influ-
ence on combinations of networks under rest. The z-transformed
correlation value during pre-REST was first subtracted from the
value during post-REST for each region pair. We subtracted
Fisher’s z-transformed correlation matrix values before the train-
ing (pre-REST) from that immediately (Figure 5A: post-REST)
or 2 months (Figure 5B: REST after 2 months) after the training
of individual subjects and calculated within-group averages. To
examine the differences in the training effect among six types of
network pairs (MVN-MVN, MVN-DMN, DMN-DMN, MVN-
control, DMN-control, and control-control), we divided the sub-
tracted and then averaged correlation matrix into six network
pairs corresponding to the types, and then we investigated which
network pairs exhibited a significant number of region pairs in
which the correlation values increased by more than the summa-
tion of mean and standard deviation across all region pairs and
subject groups (colored cells in Figures 5A,B). Specifically, we
computed confidence intervals (CI) for the number of colored
cells for each network pair using a bootstrapping technique, as
follows. We created 3000 resampled matrices by randomly sam-
pling cells in the threematrices corresponding to the three subject
groups, each of which was obtained by averaging the subtracted
matrices within the subject group. Based on these matrices, we
estimated the distribution of the numbers of colored cells for each
network pair and calculated the (100 − α)% CI corresponding
to a significance level at α (two-sided). To address the problem
of multiple comparisons using Bonferroni correction, the upper
range of the CI was raised from (100− α)% to (100− α/(6×3))%
while taking into account the number of comparisons (i.e., num-
ber of network pairs × subject groups = 6 × 3). We determined
which network pairs exhibited a larger number of colored cells
than the corrected (100− α)% CI.

Results

Changes in Score during Training
Figure 2 shows the change in feedback score, representing the
increment of the correlation, averaged across blocks and subjects

FIGURE 2 | Change in feedback score during neurofeedback training.

Neurofeedback scores averaged across subjects as a function of training days

(error bars: standard errors). Broken lines indicate score values averaged

across days for subject groups. Right asterisks indicate results of post-hoc

t-tests on the averaged scores (see main text). P-values were corrected using

the Bonferroni method.
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as a function of training day. For comparison, we calculated the
score from individual BOLD signals for the two control groups,
although this score was not presented to the control groups.
We applied a One-Way ANOVA to scores averaged across sub-
jects separately for each day and found a significant effect of
group [F(2, 9) = 13.8, P = 0.0018]. Post-hoc t-tests indicated
that the score of the neurofeedback training group is signif-
icantly higher than that of the sham-feedback group [t(6) =

4.25, P = 0.0054; P < 0.02 after Bonferroni correction for
two comparisons] or the tapping-imagery group [t(6) = 3.04,
P = 0.023; P < 0.05 after correction]. Note that the score
represents the increment in the correlation compared to the ini-
tial block on day 1. Consequently, these results indicate that
only the neurofeedback-training group exhibited a training effect
averaged across the days, thus successfully increasing the correla-
tion between the two areas by neurofeedback training.

Changes in whole-Brain Connectivity
Our whole-brain connectivity analysis found clusters with signif-
icant decreases in degree of connectivity only in the neurofeed-
back group but no clusters in the two control groups (Figure 3:
P < 0.05 corrected for multiple comparisons at cluster level
[cluster size > 186 voxels]). These clusters were found in the
lLP and the posterior cingulate cortex (PCC). A decrease in the
degree of connectivity means a decrease in the number of vox-
els to which each voxel in these clusters was connected with
highly negative correlation (r < −0.25, see Materials and Meth-
ods). See section Whole Brain Analysis of rs-fcMRI for a detailed
explanation on the consistent relationships between a decrease
in the degree of connectivity and an increase in correlation. For
instance, the change in correlation from r = −0.3 before the

training to −0.1 or 0.2 after the training decreases the degree
of connectivity. Such change in correlation was in accordance
with our objective of applying connectivity-neurofeedback, i.e.,
to increase the correlation from negative toward zero or pos-
itive correlation. Changes in the degree of connectivity were
found only in the neurofeedback group, which was the only
one among the three groups to show the effect of neurofeed-
back training; this suggests a causal link between neurofeedback
training and rs-fcMRI changes. We examined the robustness of
these results with respect to the threshold setting for correlation
values: the clusters in LP and PCC were consistently found at
threshold ranges of −0.3 ≤ r ≤ −0.1 only in the neurofeed-
back training group, while no significant cluster could be found
at a threshold of r < −0.25 in either the sham-feedback or the
tapping-imagery group (several clusters appeared at much lower
threshold than−0.25 in the sham-feedback [a cluster at r < −0.2
and three clusters at r < −0.1] and tapping-imagery [no cluster
at r < −0.2 and three clusters at r < −0.1] groups). We applied a
quite liberal threshold of P < 0.005 without correction for mul-
tiple comparisons to the above data. The decrease in connectivity
was observed in the left SMA, lM1, the posterior cingulate cortex
(PCC), lLP, the auditory cortex and other areas (see Supplemen-
tary Figure S3). Clusters having more than five voxels are listed in
Supplementary Table S1 for the three subject-groups.

Training Effect in Intrinsic Networks
We conducted a ROI-based correlation analysis between the
MVN and DMN using 16 ROIs (Figure 4A and Table 1). Note
that these ROIs were not specifically located at regions where
a significant change in degree of connectivity was identified in
the neurofeedback-training group but were the target ROIs (M1

FIGURE 3 | Regions of the brain where degree of negative

connectivity decreased from pre-REST to post-REST in

neurofeedback training (A), sham-feedback (B), and

tapping-imagery (C) groups. We followed the methods of previous

studies (Scheinost et al., 2012, 2013) for preprocessing of rs-fcMRI and

computing degree of connectivity maps (Scheinost et al., 2012, 2013)

except that we counted for each voxel the number of voxels to which

it was correlated with r < −0.25 (see text). The difference in degree of

connectivity between pre-REST and post-REST was examined

voxel-by-voxel by using a paired t-test separately for the three subject

groups. Regions with a significant decrease in degree of connectivity

(red blobs) were identified by a cluster larger than 186 voxels (P < 0.05

corrected for multiple comparisons across the gray matter). Such

regions were found only in the neurofeedback-training group. We used

the AlphaSim program in Analysis of Functional Neuroimages (AFNI:

http://afni.nimh.nih.gov/afni) for calculation of the cluster-level threshold.

Note that functional images were smoothed spatially with a Gaussian

kernel of 10mm full-width at half-maximum in the preprocessing. x, y,

and z indicate slice levels in NMI coordinates. LP, Lateral parietal region;

PPC, Posterior parietal cortex.
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FIGURE 4 | Regions of interest (ROIs) and their functional connectivity.

(A) ROIs from which BOLD signal time courses were extracted. Circles

indicate center positions of ROIs projected on the cortical surface. Orange,

cyan and magenta circles correspond to ROIs in the motor/visuospatial

network (MVN), the default mode network (DMN), and the control regions,

respectively. The double-sided arrow indicates ROIs used for calculation of the

feedback score in the neurofeedback training. This figure was created with

multi_color software (http://www.cns.atr.jp/multi_color). (B) The z-transformed

correlation matrix of all ROI pairs from a subject in the neurofeedback training

group before (left-lower triangle area) and immediately after (right-upper

rectangle area) training. Color bar indicates z-transformed correlation value.

Red rectangles indicate region pairs between MVN and DMN. r, right; l, left.

See Table 1 for abbreviations of region names.

and LP), regions related to motor-imagery (SMA), or those from
previous studies on brain networks (see Materials and Methods).
We calculated, separately for each of the 16 ROIs, the ratio of
the number of voxels at which the degree of connectivity signif-
icantly changed (P < 0.005 uncorrected in group-level statis-
tics, see above) across subjects to the number of voxels included
in the ROI used for the network analysis. Ratios of significant-
voxels averaged across 16 ROIs were 0.8% (SD: 2.1) for the
neurofeedback-training group, 1.3% (4.8) for the sham-feedback
group, and 0.6% (1.8) for the tapping-imagery group. We applied
a One-Way ANOVA to the ratios but could not identify a signif-
icant effect of subject group [F(2, 45) = 0.23, P = 0.79]. Thus,
the results of the degree-of-connectivity analysis did not bias our
selection of 16 ROIs for a particular group.

The temporal correlations between BOLD signal time courses
averaged within each ROI were computed. Figure 4B shows
z-transformed correlation matrices calculated from a representa-
tive subject in the neurofeedback-training group. The cell color
indicates the z-transformed correlation value in each pair of
regions. Before the training (pre-REST; lower-left triangle area),

negative values (blue) were found in many region pairs between
MVN and DMN (red rectangle), confirming the negative correla-
tion. However, these values increased immediately after training
(post-REST; upper-right triangle area; yellow/red).

To investigate consistent changes across subjects, we first sub-
tracted the z-transformed correlation value during pre-REST
from the value during post-REST for each region pair. The col-
ors in Figure 5A indicate the subtracted values averaged across
subjects separately for the groups. To indicate pairs of regions
in which correlation markedly increased, cells (region pairs) in
Figure 5A are colored if their values are higher than the summa-
tion of mean value and standard deviation (mean+ SD:−0.02+
0.09) across all region pairs and subject groups. We exam-
ined which network pairs in the correlation matrix exhibited
a significantly larger number of colored cells (compared to the
number generated by a random process) when the matrix was
partitioned into six areas according to the type of network combi-
nation (MVN-MVN, MVN-DMN, DMN-DMN, MVN-control,
DMN-control, and control-control; gray or red border lines in
Figure 5). The bootstrap sampling approach (see Materials and
Methods for bootstrapping method) was used to estimate the
probability of the number of colored cells, if they were gener-
ated by a random process, while it took into account the total
number of cells (region pairs) in each network pair. The analysis
revealed that only the network pair of the MVN and DMN in the
neurofeedback-training group exhibited a significant number of
colored cells (P = 0.0003, computed using bootstrap samples;
P < 0.01 corrected by the Bonferroni method across six net-
work pairs and three experimental groups). This finding suggests
that the neurofeedback training significantly increased the corre-
lation in intrinsic activity only between the MVN and DMN, and
only for the neurofeedback-training group. Note that 16 ROIs
are small representations of the brain’s functional networks, so
to verify our conclusions we increased the number of ROIs from
16 to 33 to cover a broader range of regions in the cerebral cortex
and found similar results to those in Figure 5 (see Supplementary
Table S2 and Supplementary Figure S5A).

Furthermore, highly similar patterns were found in matrices
obtained by the subtraction of correlations in pre-REST from
those in REST after 2 months (Figure 5B), suggesting that the
training effect was stably maintained for 2 months. It should be
noted that the increase in correlation value was not restricted to
the region pair used for neurofeedback (lM1—lLP) but was also
found in the other region pairs between the MVN and DMN. In
an additional, more extensive network analysis, we applied the
same analyses to a larger number of ROIs and obtained similar
results (Supplementary Figure S5B).

Regarding the control groups, no significant increase in cor-
relation for any combination of network types was found, either
in post-REST (middle and right panels of Figure 5A) or REST
after 2 months (those of Figure 5B). Consequently, a significant
increase in correlation between the networks was found only in
the neurofeedback-training group.

Changes in Correlation-Values
Figure 5C indicates an increase in the z-transformed correlation
from pre- to post-training between the MVN and DMN, which
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FIGURE 5 | Increase in correlation from pre- to post-training. (A)

Increase from pre-REST to post-REST. Yellow/red cells indicate ROI pairs

whose correlation markedly increased (i.e., the increase was greater than the

mean + SD [−0.02 + 0.09] across all pairs and groups). A red rectangle

indicates a network pair having a significantly larger number of yellow/red

cells than that generated by a random process according to a bootstrap

sampling approach (P = 0.0001; P < 0.01 after the Bonferroni correction).

(B) Increase from pre-REST to “REST after 2 months.” Colored cells indicate

that the increase is greater than the mean + SD (0.00+ 0.07). Color bars

indicate increments from pre- to post-training. (C) Increase in correlation

averaged across subjects and region pairs between the MVN and DMN (error

bars: standard errors). Filled bars indicate the increase from pre-REST to

post-REST, and open bars indicate the increase from pre-REST to REST

after 2 months. Asterisks indicate results of post-hoc comparisons on the

averaged increase (see main text). (D) Z-transformed correlation in pre- and

post-training for the neurofeedback training group. BOLD signal time courses

were averaged within individual ROIs: lM1, lLP, sensorimotor network (SMN)

and DMN. Correlations were calculated using the averaged time courses

between lM1 and lLP (left), SMN and DMN (middle), and MVN and DMN

(right). They were averaged across subjects during the three resting state

activity measurements (error bars: standard errors). Asterisks indicate the

results of one-sample t-tests that examined whether the z-transformed

correlation is significantly smaller than zero after P-values were corrected for

three comparisons using the Bonferroni method (see main text).
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were averaged across subjects and shown separately for the three
subject groups. A Two-Way ANOVA (subject group x measure-
ment [Post—Pre or 2 m—Pre]) identified a significant effect of
subject group [F(2, 60) = 5.32, P = 0.007] but no significant
effect of measurement [F(1, 60) = 0.02, P = 0.88] or interaction
[F(2, 60) = 0.12, P = 0.89]. This suggests significant differences
in the increase across the groups. Post-hoc comparisons found a
significant difference between neurofeedback-training and sham-
feedback groups (P = 0.011; P < 0.03 after correction for two
comparisons), and neurofeedback-training vs. tapping-imagery
(P = 0.010; P < 0.03 after correction). However, there was
no significant difference in sham-feedback and tapping-imagery
(P = 1.00, n.s.). We applied a One-Way ANOVA to correlations
between M1 and LP during the pre-REST (i.e., before neurofeed-
back training) across the three subject groups but did not find a
significant difference [F(2, 30) = 2.39, P = 0.11, n.s.]. Because
of non-significant difference in correlation before the training,
the significant difference in the correlation increase found across
the three groups was caused by the difference in the training
conditions.

The above subtraction of correlation values in the pre-training
from those in the post-training indicated a significant increase in
correlation between the MVN and DMN in the neurofeedback
group. To investigate changes in correlation at different levels of
regional sizes, we further calculated correlation values by chang-
ing pairs of ROIs and networks: lM1—lLP, sensorimotor network
(Laird et al., 2011) (SMN including M1)—DMN, and VMN—
DMN.We applied a Three-Way ANOVA (group×measurement
[Pre, Post or 2m] × ROI pair) to the z-transformed correla-
tion values before subtraction, and found a significant effect of
the group [F(2, 270) = 3.59, P = 0.029]. Therefore, we applied
Two-Way ANOVA (measurement × ROI pair) to the correla-
tion values separately for the three groups, and found a significant
effect of measurement only for the neurofeedback-training group
[F(2, 99) = 6.56, P = 0.002; P < 0.01 after correction for three
comparisons, see Supplementary Table S3 for other effects and
groups].

Figure 5D shows correlation values averaged across sub-
jects of the neurofeedback-training group separately for pairs
of ROIs. We applied one-sample t-tests to examine whether
z-transformed correlation is significantly smaller than zero. Con-
sequently, for the lM1-lLP connectivity (left panel), the correla-
tion was significantly negative in the pre-REST (t(11) = −5.18,
P < 0.001 [P < 0.01 corrected for three comparisons]) but not in
the post-REST (t(11) = −1.89, P = 0.26 [n.s.]) or the REST after
2 months (t(11) = −1.81, P = 0.29 [n.s.]). For the SMN-DMN
connectivity (middle), the correlation was significantly negative
in the pre-REST (t(11) = −9.73, P < 0.001 [P < 0.01]) and
the post-REST (t(11) = −3.47, P = 0.02 [P < 0.05]) but not
in the REST after 2 months (t(11) = −2.45, P = 0.10 [n.s.]).
For the MVN-DMN connectivity (right), the correlation was sig-
nificantly negative in the pre-REST (t(11) = −8.83, P < 0.001
[P < 0.01]) and the post-REST (t(11) = −3.26, P = 0.02
[P < 0.05]) but not in the REST after 2 months (t(11) = −2.40,
P = 0.11 [n.s.]). Therefore, the negative correlation in the pre-
REST consistently increased from negative toward zero after the
neurofeedback training for all three ROI and network pairs.

Discussion

We hypothesized that positively correlated activations of two
regions evoked by repeated experiences induces a long-term
increase in their functional connectivity, which is the tem-
poral correlation values within intrinsic networks. To directly
examine this hypothesis, we induced an experimentally trace-
able change in the correlation between specific networks, the
MVN and DMN, by evoking correlated activation between
two specific regions based on the connectivity-neurofeedback
training (Fukuda et al., 2011). The training led to a sig-
nificant increase in correlation between the two networks
under rest, and this increase was preserved for more than 2
months. Consistent and significant changes in the feedback
score, changes in degree of connectivity from pre- to post-
training, and changes in network connectivity revealed by the
ROI-based analysis from pre- to post-training were all iden-
tified only in the neurofeedback-training group. This suggests
a causal link between neurofeedback training and rs-fcMRI
changes.

Instruction to Subjects
We instructed subjects to perform a mental imagery task during
the training session. This instruction, however, is unlikely directly
related to modulation of temporal correlation between lM1 and
lLP because a meta-analysis of more than 3000 experiments indi-
cated that lM1 and lLP do not co-activate under known tasks
includingmotor imagery tasks (Toro et al., 2008). There is no task
strategy known to be efficient for increasing correlation between
M1 and LP, so we chose the reinforcement-leaning method, in
which the desired response is reinforced by reward during a trial-
and-error search without an effective instruction of strategies.
This method has been adopted in previous fMRI neurofeedback
experiments (Bray et al., 2007; Shibata et al., 2011). However,
the motor imagery should have certainly contributed to consis-
tent temporal changes in BOLD time courses in M1 (deCharms
et al., 2004; Bray et al., 2007) as well as in LP at the initial stage of
learning.

Control Groups and Decrease in Network
Correlation
There was no significant change in score during training
or rs-fcMRI in the sham-feedback group. This indicates that
the spurious increase in score/reward, which does not cor-
rectly reflect the actual correlation between the two ROIs in
one’s own brain, even combined with mental motor imagery,
cannot induce increases in correlation between the ROIs or
changes in the intrinsic network. No significant change in the
tapping-imagery group suggests that the repetition of tapping
imagery cannot change correlation between the ROIs or the
network.

We could not identify a consistent decrease from pre-REST
to either post-REST or REST after 2 months (see Supplementary
Figures S4, S6). This suggests that the long-lasting increase was
not due to daily fluctuations in rs-fcMRI but to the effect of the
connectivity-neurofeedback training.
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Change in Functional Connectivity during
Neurofeedback Training
We used a neurofeedback training method to induce co-
modulation between two specific regions. However, these two
regions also exhibit connectivity with many other regions. There-
fore, many regions may have been simultaneously modulated,
and the correlations among various regions may have increased
simultaneously during training. To examine this possibility, we
investigated the change in correlated activity during neurofeed-
back training in regions other than the lM1 and lLP.

Supplementary Figure S7 shows changes in patterns of cor-
relation during the imagery period from day 1 to day 4 follow-
ing the conventions of Figure 5. The bootstrap sampling method
(see legend of Supplementary Figure S7 for details) revealed that
only the network pair of MVN and DMN contained a signifi-
cant number of colored cells (P = 0.0017; P < 0.05, corrected
by Bonferroni method across six network pairs). This suggests
that a significant increase in correlation was restricted to the net-
work pair in which the correlation was manipulated. Moreover,
the most prominent increase was found in region pairs between
motor regions (M1 and SMA) and the DMN (blue rectangle in
Supplementary Figure S7). No significant increment in correla-
tion was found for any network combination in either of the
control groups. Thus, an effect of experimental manipulation
during training on connectivity was found only in the neuro-
feedback training group, and this effect was restricted to the cor-
relation between the MVN and DMN, most prominently in the
correlation between motor regions and the DMN.

Correlations among BOLD-signal time series are known to be
vulnerable to the artifact, such as scanner-dependent drift and
head movement (Power et al., 2012). We applied motion realign-
ment and temporal filtering but could not remove motion effect
explicitly during online feedback computation (e.g., correct sig-
nal using realign parameters). Thus, we cannot completely reject
such an artifact during training in the current design. However,
we confirmed that the functional connectivity changes induced
by training in the independent resting-state data remained while
head movement effects were removed, suggesting changes in
functional connectivity is not a mere reflection of a movement-
related artifact. It is critical to improve online motion correction
algorithms and artifact removal techniques (e.g., Zaitsev et al.,
2006; Koush et al., 2012) for future studies.

Increase in Negative Correlation
Our results do not exclude the possibility that changes in other
regions may mediate or facilitate changes in correlation between
target regions because we calculated correlation in BOLD time
courses between two regions during the training. Furthermore,
there should be a number of pathways between the two regions.
These complicate the relationships between “correlation” and
“connectivity,” especially for the change in negative correlation.
When the correlation increases for example from r = −0.5 to
r = −0.1, (1) the strength of inhibitory connection may be weak-
ened at some connections, and/or (2) an excitatory connection
may emerge and increase at other connections. The current rs-
fcMRI method cannot discriminate these different neural mech-
anisms, and in the future we need to utilize higher temporal
resolution techniques and/or depend on animal models.

Extension of fMRI-Based Neurofeedback
Therapeutics
Analyses of rs-fcMRI in large-scale brain networks have found
abnormality with many psychiatric and neurological disorders
(for reviews: Fox and Raichle, 2007; Broyd et al., 2009). Spe-
cific abnormal connectivity between limited brain regions has
been identified in many psychiatric disorders, for instance, the
connectivity between orbitofrontal cortex and ventral striatum
in obsessive-compulsive disorder (OCD) (Harrison et al., 2009)
and connectivity between left dorsolateral prefrontal cortex and
subgenual cingulate in major depressive disorder (Fox et al.,
2012).Many clinical studies have demonstrated that various types
of treatments normalized pathological functional connectivity.
Such treatments include pharmacotherapy [depressive disorder
(Anand et al., 2005), schizophrenia (Abbott et al., 2013a), atten-
tion deficit/hyperactivity disorder (Wong and Stevens, 2012),
and Alzheimer’s disease (Goveas et al., 2011)], repetitive tran-
scranial magnetic stimulation (depressive disorder, Liston et al.,
2014), electroconvulsive therapy (depressive disorder, Perrin
et al., 2012), deep brain stimulation (OCD, Figee et al., 2013),
and ROI-based fMRI neurofeedback training (OCD, Scheinost
et al., 2013). Moreover, some of these studies indicate that the
magnitude of change in connectivity is significantly correlated
with curing effect (Figee et al., 2013; Scheinost et al., 2013; Lis-
ton et al., 2014). FMRI neurofeedback equipped with high spa-
tial resolution has the potential for direct normalization of the
functional connectivity between specific regions and may pro-
vide entirely new therapeutic methods for psychiatric disorders.
Recently, fMRI neurofeedback training (Scheinost et al., 2013) on
regulation of activity in a single ROI in the orbitofrontal cortex,
for subclinical contamination anxiety, was found to normalize
the functional connectivity of that ROI. Furthermore, changes in
resting-state global connectivity of the orbitofrontal ROI mea-
sured by degree of connectivity were correlated with the alle-
viation of anxiety. However, no existing treatment, including
fMRI neurofeedback, can selectively change specified functional
connectivity between two selected brain areas, which is essen-
tial for selective and effective therapeutic treatment of psychi-
atric disorders. Here, as a proof of concept, we demonstrated
that fMRI “connectivity” neurofeedback training could change
functional connectivity, as revealed by a correlation in rs-fcMRI
between two selected regions, and that the effect of training
could be preserved for a long time, which is crucial for clinical
applications.

DMN has been frequently found in aberrant connectivity
in many psychiatric disorders (for reviews: Fox and Raichle,
2007; Broyd et al., 2009). It has been shown that the negative
correlation between parts of DMN and the dorsolateral pre-
frontal cortex is stronger in patients with major depressive dis-
order than healthy controls, and that electroconvulsive therapy
reduces this correlation (Perrin et al., 2012; Abbott et al., 2013b).
Our method can be applied to therapeutics for major depres-
sive disorder by weakening the negative correlation. By con-
trast, the negative correlation between the DMN and regions
in the task-positive network is known to have positive effects
on cognitive functions: for instance, strength of the negative
correlation is positively correlated with performance in work-
ing memory (Hampson et al., 2010; Keller et al., 2015) or
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small variability in reaction time in a conflict task (Kelly et al.,
2008). Thus, weakening the negative correlation may cause neg-
ative effects on higher order cognitive functions. In our current
study, the effect of neurofeedback training was found on corre-
lation between the DMN and MVN but not between the DMN
and the executive network (Supplementary Figure S5), which
is the most likely related to higher order functions. However,
when considering the long-term effects and potential ability to
change connectivity determined by genetic and evolutional fac-
tors, as we mentioned in the introduction part, future studies
need careful experimental deigns from an ethical perspective if
the connectivity includes the DMN regions. For instance, an
experiment should include monitoring cognitive functions and
behavioral variables, which could be influenced by the train-
ing, and the training should be terminated if aversive effects are
identified.
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