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Abstract

We multiplied the elbow joint angle and the shoulder joint angle of participants

aiming at targets in an experiment using a position recording system and a CRT screen.

The linear transformation in joint angles (intrinsic coordinates) involved in the experiment

corresponded to a nonlinear transformation between the hand coordinates and the screen

coordinates (extrinsic coordinates).  The present study examined whether the participants

could learn this transformation in the intrinsic coordinates or in the extrinsic coordinates,

by investigating intermanual (between-hands) transfer under an intrinsically-consistent

condition and under an extrinsically-consistent condition.  The participants learned to

adjust for the transformation in the first stage for both conditions.  In the second stage

under the intrinsically-consistent condition, the participants learned to adjust for the same

transformation in the intrinsic coordinates as that in the first stage.  Likewise, in the

second stage under the extrinsically-consistent condition, they learned to adjust for the

same transformation in the extrinsic coordinates as that in the first stage.  Positive

intermanual transfer was observed under the intrinsically-consistent condition but not

under the extrinsically-consistent condition.  Results suggest that participants can learn the

linear transformation in joint angles in the intrinsic coordinates and that the central

nervous system adaptively represents the intrinsic kinematics.
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Introduction

In everyday life, people interact continuously with objects in extra-personal space.

Reaching movements— e.g., bringing a hand to the location of an object—are

fundamental behaviors by means of which we interact with the external world.  Because of

this, the study of reaching movements has received a great deal of interest.  Recent

advances in computational models of the complex mechanisms underlying reaching

movements have provided a comprehensive account of how a purposeful act may be

planned and executed from sensory input to motor output in the central nervous system

(CNS).  Some computational studies have suggested that the motor system contains an

internal representation of the geometry of the limbs, such as muscle lengths or joint angles,

to control movement.  Whether the geometric aspects of motion (kinematics) are

adaptively represented in the CNS in intrinsic space is examined in the present study, by

an investigation of intermanual transfer in the learning of an aiming task under different

conditions.

A Hierarchical and a Non-Hierarchical Model of Visually-Guided Movements

Many computational models have been proposed for visually-guided reaching

movements.  These models can be divided into two classes depending on their approach.

One approach is to divide the problem of "control of visually-guided movements" into

several sub-processes and solve each of the sub-processes in a hierarchical manner

analogous to that used in the control of robot arms (Hollerbach, 1982; Saltzman, 1979;

Saltzman & Kelso, 1987).  The other approach is based on a non-hierarchical method that

translates a sensory stimulus directly into time-varying patterns of muscular activation

(Massone & Bizzi, 1989).



Adaptive Internal Model of Intrinsic Kinematics   -4-

To provide a comprehensive example of the hierarchical model, the upper row in

Figure 1 schematically illustrates a computational model based on the former approach,

and the lower rows in the figure show hierarchical levels of coordinate reference frames

used in the control of a robot arm.  During reaching tasks, the target position is usually

identified visually, resulting in a representation in the CNS in terms of visual space

(extrinsic space).  In the present study, Cartesian coordinates were assumed, in which the

origin is at the center of the shoulder, consistent with assumptions of previous

computational studies (Atkeson, 1989; Hollerbach, 1990).  The position information

represented in such a space, however, is not directly linked to parameters of the motor

apparatus (i.e., joint angle and torque) and must be translated into these coordinates

(intrinsic space).

The first problem is translation from extrinsic space to intrinsic space, and is

referred to as a coordinate transformation.  In the model illustrated in Figure 1, the target

location is translated into joint angle space.  The second problem is determination of a

trajectory from the current position to the target and is termed trajectory planning.  The

last problem is computation of the joint torque necessary to obtain the planned trajectory,

that is, geometric properties of motion (kinematics).  The planned trajectory must be

translated into dynamic properties of the motor apparatus related to the force required to

complete the motion (dynamics).  This is called the control problem.

-------------------------------------------

Insert Figure 1 about here

-------------------------------------------

Although the reference frames of motion mentioned above (i.e., Cartesian space,

joint angle space, and joint torque space) are often used in the control of a robot arm, it is

unlikely that these frames are used in the CNS.  Nevertheless, there are parameters that are

known to be perceived in the CNS that are functionally equivalent to these artificial
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frames.  For example, the parameters of joint angle and torque are closely related to

muscle length and tension, respectively.

A non-hierarchical approach to modeling visually-guided reaching movements was

proposed by Massone and Bizzi (1989).  They proposed a neural network model of a

sensory-motor transformation that translates a sensory stimulus directly into time-varying

patterns of muscular activation.  Figure 2 shows a schematic diagram of their model and a

simplified architecture of the proposed network.  The input for the network is sensory

stimulation representing the target location in extrinsic space and the output is a time-

varying trajectory in muscle space (i.e., motor commands in intrinsic space).  This model

does not require intermediate representations (i.e., the target location in intrinsic space or

the trajectory in intrinsic space), which are required in the hierarchical model.

-------------------------------------------

Insert Figure 2 about here

-------------------------------------------

The classes of models underscore the current controversy in neuroscience

regarding how movement is controlled in the CNS—whether in a hierarchical or non-

hierarchical manner.  Although a hierarchical approach provides an exact and

comprehensive account of actual problems associated with motor control, several

neurophysiologists (e.g., Alexander, DeLong, & Crutcher, 1992; Kalaska & Crammond,

1992) have pointed out that such sequential and analytic approaches give implausible

accounts of how movement is controlled in the CNS.

Three problems—coordinate transformation, trajectory planning, and control—

must be solved to bring the hand from the starting position to the target for the following

reasons.  First, the coordinate system used in the visual system is different from that used

in the motor system.  Thus, a coordinate transformation is necessary to link sensory input

to motor output.  Second, it is well-known that the hand’s trajectory between any two
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points has some invariant properties—the hand’s path is roughly straight and the hand’s

speed-profiles are bell-shaped (Abend, Bizzi, & Morasso, 1982; Morasso, 1981).  These

invariant properties suggest that the trajectories are planned in the CNS according to some

optimization principles (Flash & Hogan, 1985; Uno, Kawato, & Suzuki, 1989).  Third, the

fact that the hand rapidly and smoothly moves to the target suggests that the arm is

successfully controlled taking its dynamic properties into account.  It is not clear, however,

whether these problems are sequentially — hierarchically — solved using several modules

or simultaneously — non-hierarchically — solved  using one module.

Internal Representation of Intrinsic Kinematics

The goal of the present study is to investigate whether a representation of intrinsic

kinematics is used during the control of visually-guided movements in the CNS and

whether this representation changes during the learning of an aiming task in which the

visual feedback has been altered with a transform function.  The hierarchical model of

visually-guided movements predicts that an intermediate representation of intrinsic

kinematics is formed between the computational modules (Figure 1), whereas the non-

hierarchical model does not require such a representation (Figure 2).  Thus, the presence of

a representation of intrinsic kinematics in the CNS would support the hierarchical model

rather than the non-hierarchical model of visually-guided reaching movements.

It is worth noting that the presence of such representation does not reject the

network model proposed by Massone and Bizzi (1989) because there is a possibility that

some neurons (computational elements)  in the model might come to represent the intrinsic

kinematics by chance after the training of the network.  However, the presence of such

neurons would indicate that the coordinates transformation is solved before these neurons

are activated and that the control problem is solved afterwards.  This suggests that the
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model is hierarchical.  In other words, the representation of the intrinsic kinematics makes

the model hierarchical.

Some sources of evidence supporting the idea that the CNS contains

representations of intrinsic kinematics have emerged through recent neurophysiological

studies on multi-joint behavioral tasks.  Kalaska and his co-workers showed that the

activity of the proximal-arm-related neurons in the superior parietal lobule (Brodmann

area 5) of monkeys continuously changes depending on the direction of arm movements

(Kalaska, Caminiti, & Georgopoulos, 1983), and this activity was not affected by an

external load on the arm in various directions (Kalaska, Cohen, Prud'homme, & Hyde,

1990).  The authors concluded that area 5 neurons encode movement kinematics, not

movement dynamics.  Lacquaniti, Guigon, Bianchi, Ferraina, and Caminiti (in press)

reported that an intrinsic coordinate system centered at the shoulder and defined by the

elevation and azimuth angles of the proximal arm (i.e., shoulder-joint configuration) and

by the angle of extension at the elbow, provides a better account of neural modulation in

area 5 than an extrinsic coordinate system does (Cartesian coordinate system parallel to the

laboratory frame).  These data suggest that proximal-arm-related neurons encode the

intrinsic kinematics of arm movements and that area 5 is involved in the integration of this

sensory and motor information.

In this research we investigated whether a representation of intrinsic kinematics is

used in the control of reaching movements using a behavioral paradigm in which visual

feedback of the hand position of participants was altered with a transform function based

on multiplication of the shoulder-joint and elbow-joint angles by constant values during an

aiming task.  If a representation of intrinsic kinematics in the CNS is used in the control of

arm movements, then an adjustment to this transform would be learned in terms of the

intrinsic space.  However, if a representation of intrinsic kinematics is not used, then the

adjustment would not be learned or would be learned using another mechanism, perhaps in
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terms of extrinsic space.  As mentioned above, it is unlikely that joint angles are

represented in the CNS.  However, parameters that are functionally equivalent to joint

angles might be represented using information from sensory receptors within the muscles,

tendons, joints, and skin (i.e., proprioception; Rosenbaum, 1991).

Visual-Motor Learning Under Transformed Visual Feedback

Many investigators have studied the learning of motor tasks (e.g., reaching, aiming,

and drawing) under transformed visual feedback to investigate how the relation between

visual information and motor commands is learned.  In some studies, the visual feedback

was transformed using an optical device such as a prism or a mirror.  Experimental

paradigms using such devices are called prism adaptation (Held & Gottlieb, 1958) or

mirror drawing (Cook, 1933).  Other studies have used a position recording system, such

as a digitizing tablet and CRT screen controlled by a computer (Fig. 3), to process the

recorded position through a transform function before display (Cunningham, 1989;

Imamizu & Shimojo, 1995).

-------------------------------------------

Insert Figure 3 about here

-------------------------------------------

The majority of these studies have reported that participants who were initially

exposed to transformed visual feedback made large errors in the motor task and that the

errors decreased as the number of trials increased.  Some of the studies revealed important

facts concerning the nature of the adaptation to (or the adjustment to) the transformed

visual feedback:  1) adaptation to the transformed visual feedback causes subsequent

errors under normal visual feedback.  This phenomenon, called an aftereffect, can be

observed even when participants are informed of the return to normal visual feedback,

suggesting that the adaptation is not entirely under conscious control (Welch, 1978).  2)
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Milner, Corkin, and Teuber (1968) reported that a patient who had a deficit in verbal and

cognitive memory because of brain damage could learn a mirror drawing task, and that the

learning was stable for a long period.  3) Held and Hein (1958) compared two conditions

of prism adaptation: with active or passive arm movement.  The participants either swung

the arm back and forth in the frontal plane (active movement) or had it transported in the

same manner by means of a moving "cradle" to which it was strapped (passive

movement).  They found that the active movement produced adaptation, whereas the

passive movement did not.

These features of visual-motor learning under transformed visual feedback (i.e.,

some degree of independence from conscious control and cognitive memory and the

requirement of active movements during the training period) suggest that it is like other

kinds of motor learning, such as skill acquisition in the playing of sports or musical

instruments.  The advantage of experimental paradigms using transformed visual feedback

is that the learning process can be investigated using reaching or aiming tasks that have a

clear objective (i.e., to bring the hand to the exact location of an object) and is well-suited

for studying the translation of sensory input to motor output in the CNS.

Although a similar experimental paradigm of visual-motor learning under

transformed visual feedback was used in the present study, there is a critical difference

between previous research and the present study.  In previous research, the positions of the

participant's hand and objects in the visual field were altered by a transform function

expressed simply in the task-oriented extrinsic coordinates (denoted by f in Fig. 4).  For

example, in prism adaptation, the hand and object positions were “translated” and in

mirror drawing, the positions were “reflected.”  In the present study, however, a transform

function that can be expressed simply in intrinsic coordinates was used (denoted by g in

Fig. 4); a “magnification” of the joint angles.

-------------------------------------------
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Insert Figure 4 about here

-------------------------------------------

A transform function represented in extrinsic coordinates can be translated into one

that is represented in intrinsic coordinates, or vice versa; however, a transform function

that is simple (e.g., translation or reflection) in extrinsic coordinates becomes complicated

in intrinsic coordinates, and vice versa.  This is because the relationship between extrinsic

and intrinsic coordinates is complex and nonlinear.  This relation is discussed in detail at

the end of the next section.

Linear Transformation of Joint Angles

The kinematics of a two-link arm moving in a horizontal plane, as illustrated in

Figure 3, is usually expressed as follows:

p = l1 cosθ1 + l2 cos(θ1 + θ2 )

q = l1 sin θ1 + l2 sin(θ1 +θ 2 ) , (1)

where (p, q)  represents the hand position in the horizontal plane (i.e., the surface of a

board above which the hand moves) and θ1  and θ2  denote the shoulder-joint angle and

elbow-joint angle (Fig. 3) respectively.  l1  and l2  are the upper arm and forearm length

respectively.

Figure 5 illustrates the linear transformation of joint angles used in the present

study.  P p, q( )  represents the hand position in the horizontal plane (i.e., surface of the

board above which the hand moves), while X x, y( )  represents the cursor position on the

CRT screen.  The cursor position was determined so that a mapping in joint angles is

represented as

θ1
* = 1.25( θ1 − h1 ) + h1

θ2
* = 0.5( θ2 − h2 ) + h2 , (2)
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where (h1, h2 )  is a fixed point for this mapping.  θ1
*
 and θ2

*
 denote the shoulder-joint

angle and elbow-joint angles of a transformed arm configuration (not visible in the display

shown to participants) shown in the top portion of Figure 5; that is,

x = l1 cosθ1
* + l2 cos(θ1

* + θ2
* )

y = l1 sin θ1
* + l2 sin(θ1

* + θ2
*) . (3)

Thus, Equation 3 represents the magnification of the shoulder-joint angle and

minimization of the elbow-joint angle.

-------------------------------------------

Insert Figure 5 about here

-------------------------------------------

It should be noted that this linear transform of intrinsic coordinates corresponds to

a nonlinear transform function of extrinsic coordinates.  The relation between the hand

position P p, q( )  and the cursor position X x, y( )  on the CRT screen was obtained by

rearranging Equations (1), (2), and (3) so as to eliminate the intrinsic parameters (i.e., θ1 ,

θ2 , θ1
*
 and θ2

*
), that is,

X = ϕ(P) . (4)

The introduced transform function ϕ  is nonlinear and highly complex.  Figure 6A

illustrates the effect of the transform ϕ  on hand position P p, q( )  in the map of the screen

coordinates X x, y( ) .  As a participant moves a hand along the straight grid lines (the

bottom of Fig. 6A), the cursor trajectories on the CRT screen become curved (the top of

Fig. 6A).

-------------------------------------------

Insert Figure 6 about here
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-------------------------------------------

Testing Whether Participants Learn to Adjust for the Transform in terms of the Intrinsic

Space

Because the purpose of the present study was to determine whether a model

corresponding to the artificial transformation of joint angles is represented in the CNS in

terms of the internal kinematics, it was critical that participants learn to adjust for the

transformation either in terms of joint angles (i.e., intrinsic coordinates) or in terms of

hand and screen coordinates (i.e., extrinsic coordinates).  If there is a representation of the

intrinsic kinematics in the CNS and this representation is adaptive, then the participants

should learn to adjust for the transformation in terms of the intrinsic coordinates.

Alternatively, if there is no internal representation of the intrinsic kinematics or if the

representation is not plastic, the participants should learn the nonlinear and complicated

mapping of ϕ  using the hand p − q  coordinates and the screen x − y  coordinates.

We examined whether participants learned to adjust for a transformation of joint

angles in intrinsic coordinates or in extrinsic coordinates using two experimental

conditions, i.e., an extrinsically-consistent condition and an intrinsically-consistent

condition.  Each of the conditions consisted of two successive stages of learning.  The

participants executed an aiming task using different arms in the two stages.  The joint

angles were transformed by Equation 2 in the first stage for both conditions.

Under the extrinsically-consistent condition (Figures 6A and 6B) in the second

stage, the participants executed the aiming task under the same mapping between the

screen coordinates and the hand coordinates as that in the first stage using their other arm

(compare the top of Figure 6A to that of Figure 6B).  Although the mapping in the second

stage was the same in the extrinsic coordinates as that in the first stage, it was quite

different in the intrinsic coordinates (in terms of joint angles) because the arm used by the

participants in the first stage was different from the arm used in the second stage.
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The bottom of Figure 6B illustrates the meaning of the transformation used in the

second stage under the extrinsically-consistent condition in the intrinsic coordinates.

When the hand and the elbow are located in the horizontal plane at the level of the

shoulder, the other geometrically possible arm configuration appears, whose forearm

length, upper arm length and positions of the shoulder and hand are the same as those of

the original configuration, as indicated by the broken lines in the figure; in general,

however, it is biologically impossible because of the limitations of the joint angles.  The

transformation in the second stage corresponded to that of the joint angles ( ρ1  and ρ2   in

the figure) of the biologically impossible arm configuration instead of the actual arm

configuration.

Under the intrinsically-consistent condition, the participants executed the aiming

task under a different mapping between the screen and the hand coordinates in the second

stage from that in the first stage.  The mapping in the second stage was symmetric to that

in the first stage with respect to the y-axis (compare the top of Figure 6A to that of Figure

6C).  However, the two mappings corresponded to the same transformation of joint angles

in the intrinsic coordinates, because the arm used by the participants in the first stage was

different from the arm used in the second stage (compare the bottom of Figure 6A to that

of Figure 6C).

Therefore, we can predict the two simplest results depending on whether the

participants learn to adjust for the transformation of the joint angles in extrinsic

coordinates, i.e., the nonlinear mapping between the hand coordinates and the screen

coordinates, or in intrinsic coordinates in the first stage.  On the one hand, if the

participants learn to adjust for the transformation in extrinsic coordinates in the first stage,

then a larger positive intermanual transfer of the learning effect would be observed under

the extrinsically-consistent condition than under the intrinsically-consistent condition,

because the participants would learn the same mapping under the extrinsically-consistent
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condition while they would learn mappings that differed under the intrinsically-consistent

condition (Fig. 7A).  On the other hand, if the participants learn to adjust for the

transformation in intrinsic coordinates in the first stages, then a larger positive intermanual

transfer would be observed under the intrinsically-consistent condition than under the

extrinsically-consistent condition, because they would learn the same intrinsic

transformation under the intrinsically-consistent condition while they would learn

transformations that differed under the extrinsically-consistent condition (Fig. 7B).

The relation between the transformation in the first stage and that in the second

stage under the extrinsically-consistent condition is clear in terms of the intrinsic

kinematics when they are represented as transformations of joint angles.  The

transformation in the first stage is represented as Equation 2 while that in the second stage

is represented as

θ1
* = 1.25θ1 + (1−1.25)π − h1 + 2 ⋅1.25arctan

l2 sinθ2

l1 + l2 cosθ2

 

 
 

 

 
 

−2arctan
l2 sin(0.5θ2 + h2)

l1 + l2 cos(0.5θ2 + h2 )

 
 
 

 
 
 

θ2
* = 0.5θ2 + h2 (5)

using the joint angles of the real arm configuration (θ1 , θ2 ) instead of ρ1  and ρ2  (for the

full account of the difference in the intrinsic coordinates, see Appendix A).

------------------------------------------

Insert Figure 7 about here

-------------------------------------------

Methods

Participants
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Eight undergraduate students (six women and two men, ranging in age from 17 to

23 years) volunteered to participate.  All participants were naive as to the purpose of this

experiment and self-reported to be right-handed.  They were paid for their participation

and were treated in accordance with the "Ethical Principles of Psychologists and Code of

Conduct" (American Psychological Association, 1992).

Apparatus

The participants were seated in a dentist's chair (Nagashima SN-OP) facing a 33-

inch CRT screen controlled by a computer (TOSHIBA J3100ZX with a 33 MHz main

processor; Fig. 3).  The distance between the participants’ forehead and the screen was

approximately 1.0 m.  The participants wore a custom molded cast that immobilized the

wrist and a shoulder harness attached to the chair so that the shoulder position was fixed.

They moved the arm above a large board (1 m long, 2 m wide, 2 cm thickness) placed

horizontally in front of them.  The height of the chair was adjusted so that the participants’

shoulders were approximately at the level of the board.  The participants gripped a vertical

rod (10 cm long, 2 cm in diameter) in their palm.  One end of the rod was firmly attached

to the center of a small light-weight board (10 cm long and wide, 0.5 cm thickness) so that

it always stood vertically on the large horizontal board.  The participants were instructed to

move the rod so that the underside of the small board attached to the rod slid over the top

surface of the large board.  The large board was covered with a sheet of Teflon to reduce

friction.  A marker (an infrared light emitting diode) of the position recording system

(Northern Digital OPTOTRAK) was attached to the top of the hand-held rod.  Its position

was sampled at 100 Hz and stored in the computer.  The position of the marker was

displayed as a movable cursor, i.e., a filled circle 0.9 mm in diameter.  The ratio of the

marker movement on the board to the cursor movement was approximately 1:1 in all

directions when the visual feedback was not altered. 1  A shield was placed above the
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board and the participants’ hand to eliminate direct vision of the hand and arm.  The room

was almost completely dark.

Tasks

Each trial followed a 4-s preparatory phase:  a target (a filled circle 5 mm in

diameter) and a starting zone (an open circle 5 mm in diameter) appeared on the screen,

and the participant moved the cursor into the starting zone.  All participants could obtain

the target easily within the 4-s interval even under transformed visual feedback.  After the

end of the preparatory phase, two successive auditory cues (i.e., clicks) were generated by

the computer to signal the beginning and the end of each trial.  The time interval between

the first cue and the second cue was 900 ms.  The participants were required to move the

cursor as close to the target as possible within this time limit.  They were instructed to

freeze the movement for a moment after the second cue, and then to move the cursor to the

target at any speed.  The hand trajectory was analyzed after the onset of the first auditory

cue and before the participants momentarily froze the movement.

The test area was determined for each participant considering the physical

constraints of the arm configurations as follows:  the far border of the test area was a semi-

circle centered at the shoulder and with a diameter equal to 85% of each participant's arm

length to ensure comfortable and stable arm movements (Fig. 8A).  The near border was a

straight line 30% of the arm length in front of the shoulder so that the body trunk would

not be an obstacle to hand and arm movements.  The targets and starting zones were

pseudo-randomly located in the test area under the following constraints:  1) the distance

between the center of the target and that of the starting zone was less than 65% and more

than 32% of each participant's arm length and 2) those positions resulting in cursor

positions outside the border of the CRT screen after the transform were excluded.  Most

locations in the right and the left corners of the test area were excluded for this reason.



Adaptive Internal Model of Intrinsic Kinematics   -17-

Figures 8B and C show the pairs of targets and starting positions in one of the trial blocks

in the screen coordinates and in the hand coordinates, respectively.

------------------------------------------

Insert Figure 8 about here

-------------------------------------------

While the participant was executing the aiming task, the visual feedback (the

cursor position) was altered by a real-time transform function using a microcomputer

operation as follows.  First, the joint angles (θ1 , θ2 ) were calculated from the position of

the marker (p, q) attached to the participant's hand according to the inverse kinematics:

θ 2 = arccos
p 2 + q2 − l1

2 − l2
2

2l1l2

 

 
 

 

 
 

θ1 = arctan
q
p

 
  

 
  − arctan

l1 sin θ2

l1 + l2 cosθ 2

 

 
 

 

 
 . (6)

Thus, the joint angles were not directly measured, but estimated from the marker position

(p, q) and the length of each participant's upper arm (l1 ) and forearm (l2 ).  Second, the

joint angles were transformed according to Equation 2.  Third, the cursor position (x, y)

corresponding to the transformed joint angles (θ1
*
, θ2

*
) was calculated according to

Equation 3.  It is difficult to measure the precise length of time required for the computer

to complete this operation, but it is estimated to be less than 10 ms, and the participants

did not detect a substantial time difference between their hand movement and the cursor

movement.

As indicated by Equation 2, deviations of joint angles from constant values

(h1, h2 )  were multiplied by 1.25 or 0.5.  These constant values were determined for each

participant so that the hand position (p, q) corresponding to the constant joint angles

(h1, h2 )  was at approximately the center of the test area, that is, p was 0.0 (straight ahead

of the shoulder position), and q was 64% of the arm length.  The average of h1  was
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37.69˚, ranging from 36.72˚ to 40.54˚, that of h2  was 100.08˚, ranging from 100.00˚ to

100.15˚, and that of q was 40.74 cm, ranging from 38.57 cm to 43.07 cm.

The above procedure for the cursor alteration is for the transformation of the joint

angles in the first stage when the participants used one arm, and it generates the mapping

between the hand and the screen coordinates shown in Figure 6A.  The transformation in

the second stage under the extrinsically-consistent condition when the participants used

their other arm is generated by a similar procedure but we use ρ1  and ρ2  (the shoulder-

joint angle and the elbow-joint angle of the other arm configuration whose forearm length,

upper arm length and positions of the shoulder and hand are the same as those of the actual

configuration: Fig. 6B) instead of θ1  and θ2 , respectively, after calculation of joint angles

from the position of the marker.  We calculate ρ1  and ρ2  using the relations:

ρ1 = π − 2arctan
l2 sinθ2

l1 + l2 cosθ2

 

 
 

 

 
 − θ1

ρ2 = θ2 . (7)

(for a full account of these relations, see Appendix A).

Procedure and Experimental Design

At the beginning of the experiment, the length of the upper arm ( l1 ) and forearm

(l2 ) of each participant were measured.  The upper arm length was measured from the

shoulder (the tip of the acromial process) to the elbow (the lateral condyle of the humerus),

and the forearm length was measured from the elbow to the center of the marker attached

to the top end of the rod held in the participant's hand.  The average of l1  was 30.6 cm,

ranging from 29.4 cm to 32.3 cm, while that of l2  was 32.8 cm, ranging from 31.2 cm to

35.5 cm.  The transformation of the visual feedback and determination of the positions of
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the targets and starting zones were modified according to the arm length of each

participant.

After measurement of the arm length, the participants were instructed about the

procedure of the task as follows (scripts have been translated to English from Japanese for

this report):

A movable cursor represented by a small filled circle, a target represented by a filled

circle, and a starting zone represented by an open circle will appear on the screen.

Move the cursor into the starting zone, and wait until the computer generates the first

auditory cue.  After hearing the first cue, please move the cursor as close to the

target as possible.  Your time limit is 900 ms.  At the end of this limit, the computer

will generate the second cue.  You must immediately freeze your movement for a

moment.  Then, you can move the cursor to the target at any speed you like.

The participants performed sixteen practice trials under normal conditions (i.e., the

mapping between the hand coordinates and the screen coordinates was the identity map):

x = p ,     y = q . (8)

The experimenter instructed them to remember the time interval of 900 ms during this

practice period.

Following the practice trials, the transformation was described to the participants

as follows:

The cursor position on the screen will be transformed as if your shoulder-joint angle

is multiplied by 1.25 and your elbow-joint angle is multiplied by 0.5 after the

beginning of the next trial.  It may be difficult to move the cursor to the target, but

you will find that the task will become easier with practice.
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The participants were not allowed to experience any trials under transformed visual

feedback for practice.

Then, each participant began to learn the aiming task under transformed visual

feedback according to the learning schedules shown in Table I.  As described earlier, the

participants were randomly divided into extrinsically-consistent and intrinsically-

consistent groups.  All of the participants learned the aiming task using one arm in the first

stage while the cursor position was altered according to Equation 2 (Fig. 6A).  The

participants changed the performing arm in the second stage.  The rules on how to alter the

cursor position in the second stage was different between the two groups.  The cursor

position on the screen was altered so that the mapping between the screen coordinates and

the hand coordinates would be identical to that in the first stage in the extrinsically-

consistent group (Fig. 6B), whereas it was altered so that the transformation of joint angles

would be identical to that in the first stage in the intrinsically-consistent group (Fig. 6C).

Furthermore, the participants of each group were divided into subgroups: the participants

of one subgroup used the right (i.e., preferred) arm in the first stage and the left (i.e., non-

preferred) arm in the second stage, while those of the other subgroup used the left arm in

the first stage and the right arm in the second stage.

------------------------------------------

Insert Table I about here

-------------------------------------------

The test area in the second stage was shifted to the left or right direction so that the

center of the test area was directly in front of the shoulder point under both conditions.

The shift in the position of the test area may have had some effect on the initial

performance of the participants in the second stage, and may have impeded the

generalization of the learning effect to the performance in the second stage.  The effect

was assumed to be minimal because Bedford (1989) reported that respondents wearing
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prism spectacles can easily generalize the effect of learning when aiming targets are

shifted in the left or right direction.

Each of the stages consisted of 12 trial blocks and lasted about 3 h.  Each trial

block consisted of 50 trials of the aiming task and lasted about 12 min.  A 3 min rest

period was allowed between blocks, and a 30 min rest period was allowed between the

stages.

The experiment described above takes from seven to eight hours including the

measurement of arm lengths and rest time, and was conducted within a single day for each

participant.  The participant was required to return on an additional day within one week

after the experiment to execute 14 trial blocks of the aiming task under normal conditions.

They used the right arm in seven trial blocks and the left arm in the remaining seven trial

blocks, successively.  The data obtained on the second day was used in a linear regression

analysis of the aiming error.

Data analysis

The position of the marker attached to the hand-held rod was sampled at 100 Hz

and stored in the computer.  Although the position recording system was carefully adjusted

before the experiment, it did not detect the position of the marker in some trials.  Such

trials were called missing trials, and were not included in the analysis described below.

The maximum number of missing trials for each stage (600 trials) was eight for any

participant.

Aiming error.  After the end of the experiment, the end point of the first ballistic

movement 2 in each trial of the aiming task was determined using the curvature methods

developed by Pollick and Ishimura (1996).  Figure 9 illustrates how the end point of the

first ballistic movement was detected.  The end point of the ballistic movement was
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defined as the point where the movement was corrected for the first time.  At that point,

the tangential velocity is close to zero and the curvature increases markedly.  The

tangential velocity is defined as ˙ p 2 + ˙ q 2 , where ˙ p  and ˙ q  are the instantaneous

velocities in the p- and q-coordinates.  Figures 9A and B show a typical trajectory in one

trial.  The curvature (C) at each point in the trajectory was calculated using the equation

C =
˙ p ̇  ̇ q + ˙ ̇ p ̇  q 

( ˙ p 2 + ˙ q 2 )3 / 2 , (9)

where ˙ ̇ p  and ˙ ̇ q  are the accelerations at that point.  The velocity was computed by a fifth-

order central difference based on the interpolation polynomial and is defined as

˙ p i =
p i−2 − 8 pi−1 + 8p i+1 − pi+2

12∆t
, (10)

where ˙ p i  is the i-th data value (position of the p-coordinate of the marker), and ∆t  is the

time interval between data values.  ∆t  was 10 ms because the position was sampled at

100 Hz in this experiment.  The acceleration was computed using a similar method and is

defined as

˙ ̇ p i =
2 ˙ p i−2 − ˙ p i−1 − 2 ˙ p i−1 − ˙ p i+1 + 2 ˙ p i+2

7(∆t)2 . (11)

The velocity and acceleration of the q coordinates were computed in the same manner as

those of the p coordinates.  In Figure 9C, the velocity and the curvature are plotted as

functions of time from the onset of the first auditory cue signalling the beginning of the

trial.  The end point of the first ballistic movement was defined as the point at which the

curvature exceeded 0.1 mm-1 for the first time after the velocity was maximum.  The

distance between the center of the target and the end point of the first ballistic movement
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was called the aiming error and used as an indicator of learning and the difficulty of the

aiming task.  The aiming error is expected to decrease with learning and increase with task

difficulty.

------------------------------------------

Insert Figure 9 about here

-------------------------------------------

The effect of distortion caused by the transformation on the aiming error.  The

aiming error may be affected by factors other than learning and the difficulty of the task.

For example, the aiming error increases as the average velocity of the movement increases,

according to Schmidt's law (Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979).  In the

current experiment, the distance between the target and the starting zone was randomly

determined for each trial, whereas the movement time was relatively constant, because the

participants were required to move the cursor to the target within 900 ms.  Thus, the

average velocity of the ballistic movement was markedly different from trial to trial.

To exclude the effect of velocity, a linear model of the aiming error was assumed

(E):

E = aV + b
L
T

+ K (12)

and the values of a, b, and K were estimated using linear regression analysis.  Here, L is

the distance between the center of the starting zone and that of the target, and T is the

movement time (i.e., from the onset of the movement to the time when the first ballistic

movement terminates) in each trial.  The onset of the movement was detected using a

method similar to that used for detecting the end point of the first ballistic movement.

This was defined as the point where the curvature last dropped below 0.1 mm-1 before the
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velocity reached maximum (Fig. 9C).  Note that L/T equals the average velocity, and the

second and third terms on the right side of the equation correspond to Schmidt's law (K is

the constant error).  The first term on the right side is specific to this experiment.  V

represents the magnitude of distortion caused by the transform (Fig. 10), and is defined as

the subtraction of one vector,   
r 
S , from the other vector,   

r 
G .    

r 
G  represents the

displacement from the target on the hand plane to that on the screen, while   
r 
S  represents

the displacement from the starting zone on the hand plane to that on the screen.  It is

assumed that distortion affects the aiming error (i.e., the error becomes larger as the

degree of distortion (V) becomes larger) before learning of the aiming task.  After

learning, however, the error is small, and may become somewhat independent of the

degree of distortion.  Thus, the value of a reflects learning and the difficulty of the aiming

task independent of the average velocity.  The values of b and K were estimated using

linear regression analysis of the aiming error when the participants aimed at the targets

under normal conditions (data obtained on the second day).

-------------------------------------------

Insert Figure 10 about here

-------------------------------------------

A simple method to investigate the effect of intermanual transfer of learning is to

investigate the significant difference between the aiming error in the last block of the first

stage and that in the first block of the last stage.  However, we compared the values of a

estimated for each of these blocks because the aiming error was possibly affected by the

factors described above.

Results

Trajectories and Velocity Profiles
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Figures 11A and D show the trajectories of the hand coordinates of one participant

(K.S.) in the first and the last blocks, respectively, of the first stage under the extrinsically-

consistent condition.  Figure 11G shows the trajectories in the first block of the second-

stage under the extrinsically-consistent condition in the same manner as those in Figures

11A and D.  Figures 11B, E and H show the tangential velocity profiles of the movements

recorded in the three blocks illustrated in Figures 11A, D and G.  Although one block

consisted of 50 trials, only every other (25) trajectory and velocity profile are shown for

clarity.  The terminal points of these trajectories and velocity profiles correspond to the

end of the first ballistic movement.  Therefore, neither trajectories nor velocity profiles of

movements occurring after the end of the ballistic movement are shown.  The trajectories

are approximately straight, and the velocity profiles are single-peaked and bell-shaped.

These kinematic features coincide with those of ballistic and pre-planned

movements described by other investigators (Abend, Bizzi, & Morasso, 1982; Atkeson &

Hollerbach, 1985; Flash & Hogan, 1985; Morasso, 1981; Uno, Kawato, & Suzuki, 1989).

Thus, the fundamental kinematic features of the movements in the first block and those in

the last block are similar to each other.  The movements in the last block, however,

become more accurate than those in the first block as shown in Figures 11C and F, which

illustrate the original trajectories (Figs. 11A and D) after normalization such that the center

of the starting zone and the target of each trial become (0, 0) and (0, 100), respectively.

The end points of the trajectories were distributed over a wide region and most of

them undershot the target in the first block, while they concentrated near the target (Figs.

11C and F) in the last block of the first stage.  However, the end points were also

distributed over a wide region in the first block of the second stage (Fig. 11I ), and this

suggested that intermanual transfer did not occur under the extrinsically-consistent

condition.

------------------------------------------
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Insert Figure 11 about here

------------------------------------------

Aiming Error

In Figure 12, the mean and standard error of the aiming error in each block of trials

are plotted separately for one of the participants in the extrinsically-consistent group

(M.N.) and one in the intrinsically-consistent group (M.Y.).  The mean aiming error (y)

decreased with increasing number of trial blocks (x) in both the first and second stages,

and was well-fit (r>.85) by the exponential decay function:

y = k0 + k1 ⋅e−k2 ⋅x
(13)

by adjusting the parameters k0, k1, and k2 to minimize the χ2 value (Fig. 12).

Furthermore, a one-way analysis of variance (ANOVA) of the mean aiming error with the

number of trial blocks as a factor revealed that the number of trial blocks was a significant

factor (the first stage of participant M.N.: F (11, 586) = 7.38, p < .001; the second stage of

participant M.N.: F (11, 586) = 7.38, p < .001; the first stage of participant M.Y.: F (11,

588) = 10.28, p < .001; the second stage of participant M.Y.: F (11, 587) = 12.07, p <

.001).  Post hoc comparisons (Tukey HSD multiple comparisons) between the trial blocks

revealed a significant difference in the mean aiming error in the first block versus the last

block in all cases (p<.001 level).  These results suggest that learning occurred in all stages.

------------------------------------------

Insert Figure 12 about here

-------------------------------------------

The mean aiming error in the first stage was compared to that in the second stage

(Fig. 12) to investigate the difficulty of the aiming task in each of the stages.  For the

participant (M.N.) in the extrinsically-consistent group, the mean error in the second stage

(M = 63.11, SD = 43.16) was significantly larger than that in the first stage (M = 45.05,
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SD = 38.09; t (1197) = 7.68, p < .0001).  This result suggests that the aiming task in the

second stage was more difficult than that in the first stage.  Furthermore, for the participant

in the intrinsically-consistent group (M.Y.), the error in the second stage (M = 38.70, SD =

30.83) was significantly smaller than that of the first stage (M = 54.04, SD = 36.89; t'

(1161) = 7.68 3, p < .0001).  Thus, it is unlikely that the reason for the larger aiming error

in the second stage was that M.N. was fatigued.

The results of the remaining six participants were similar to those of M.N. or M.Y.

(Fig. 13).  The mean aiming error in the second stage was significantly larger than that in

the first stage for the extrinsically-consistent group, whereas it was significantly smaller

for the intrinsically-consistent group.  Because M.N. used the right (preferred) arm in the

first stage and the left (non-preferred) arm in the second stage, the reason for the larger

error in the second stage may be that M.N (Fig. 12A) used the non-preferred arm.  Note

that the results of S.M. and H.W., however, who used the left (non-preferred) arm in the

first stage and the right (preferred) arm in the second stage, were similar to that of M.N.

Therefore, the larger error in the second stage for M.N. did not appear to be due to arm

preference.

------------------------------------------

Insert Figure 13 about here

-------------------------------------------

The Effect of Distortion Caused by the Transformation

Table II shows the values of b (the effect of average velocity on the aiming error)

and K (constant error) estimated from linear regression analysis of the aiming error under

normal conditions.  The values of b are significant (p<.05) in the majority of cases (14 of

16 cases) and support Schmidt's law.
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------------------------------------------

Insert Table II about here

-------------------------------------------

The values of the distortion effect (a) were estimated from linear regression

analysis of the aiming error pooled for each trial block (n = 50 except for some blocks

containing the missing trials) using the values of b and K shown in Table II.  Figure 14

shows the estimated values of a plotted as a function of the number of trial blocks

separately for each of the participants.  The majority of values were significant (p < .05).

For the extrinsically-consistent group, the 99% confidence interval 4 of the estimated value

in the last block of the first stage did not overlap that in the first block of the second stage,

suggesting that the learning curves of the two stages were discontinuous.  For the

intrinsically-consistent group, however, the former confidence interval overlapped the

latter except in one case (participant Y.F.), suggesting that the learning curves were

continuous.  Thus, positive intermanual transfer in learning was observed in the

intrinsically-consistent group, but no positive transfer was observed in the extrinsically-

consistent group.

------------------------------------------

Insert Figure 14 about here

-------------------------------------------

Discussion

To investigate whether the intrinsic kinematics is adaptively represented in the

CNS in the control of arm movements, visual feedback during an aiming task was altered

by a real-time transform function based on the magnification of the elbow- and shoulder-
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joint angles of the participants.  A linear transformation of joint angles (intrinsic

coordinates) corresponded to a nonlinear transformation of hand and screen coordinates

(extrinsic coordinates).

The present study examined whether the participants learned to adjust for a

transformation of joint angles in intrinsic coordinates or in extrinsic coordinates, by

investigating whether positive intermanual transfer occurred under the extrinsically-

consistent condition or intrinsically-consistent condition.  The participants practiced the

aiming task under a linear transformation of the joint angles in the first stage of both

conditions.  On the one hand, when the participants executed the aiming task under the

same mapping between the screen and the hand coordinates using the different arm in the

succeeding stage (extrinsically-consistent condition), no positive intermanual transfer was

observed, that is, 1) the aiming error in the second stage was larger than that in the first

stage, and 2) the learning curves of the two stages were discontinuous.  On the other hand,

when the participants executed the aiming task under the same transformation of the joint

angles using the different arm in the succeeding stage (intrinsically-consistent condition),

positive intermanual transfer was observed, that is, 1) the aiming error in the second stage

was smaller than that in the first stage, and 2) the learning curves of the two stages were

continuous.  The results suggest that the participants learned to adjust for the

transformation in the first stage in intrinsic coordinates.

The fact that positive intermanual transfer of learning was observed under the

intrinsically-consistent condition suggests that adjustments were made to a central

representation not specific to either arm but common to both arms.  This result is at least

partly consistent with previous physiological findings.  Tanji, Okano, and Sato (1987)

reported that the firing rates of primary motor cortex neurons are directly correlated with

contralateral muscle activity.  The majority of non-primary motor cortices, such as the

supplementary motor cortex and the pre-motor cortex, however, do not appear to code the
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activity of particular muscles, because their discharge rates are independent of the hand

used (i.e., their firing rates increased when the monkey used the right hand or the left

hand).  Rather, these neurons appear to encode the particular motor task (in this case

"pressing a button").  These physiological findings, indicate that there are two functional

levels in motor control systems, one level is hand- (or muscle-) specific and the other is

non-specific.  Presently, however, there are little data concerning the neurological locus or

correlates of motor learning specific to either arm or both arms.

One possible reason why the aiming error was larger in the second stage under the

extrinsically-consistent condition compared to that in the first stage is as follows.  The

mapping between the hand and screen coordinates used in the second stage under the

extrinsically-consistent condition was very complicated and nonlinear as represented by

Equation 5 while the transform in the first stage was simply represented as Equation 2.

Although there is no assurance that the mathematical complexity and nonlinearity

correspond to the difficulty of learning for a biological system, it appears that the

transformation by Equation 5 is more difficult in the CNS than the simple magnifications

of joint angles represented by Equation 2.  However, it is unclear whether the participants

learned the transformation used in the second stage under the extrinsically-consistent

condition in intrinsic coordinates.  There is a possibility that the participants adjusted to

the transformation in the first stage in terms of intrinsic coordinates and adjusted to the

transformation in the second stage in terms of extrinsic coordinates.  One participant of the

extrinsically-consistent group (M.N.) reported that he tried to remember the relation

between the hand and the screen planes in the later blocks in the second stage.

In any case, the fact that positive intermanual transfer could not be observed under

the extrinsically-consistent condition implies that the participants tried to adjust for the

different transformations in the intrinsic coordinates or that they tried to adjust for the

transformations in coordinates that differed in the first stage from the second stage.
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It is still unclear whether the participants learned to adjust to the transformation of

joint angles in terms of kinematic parameters or dynamic parameters (e.g., joint torque and

muscle tension).  It appears unlikely, however, that the participants learned it in terms of

dynamic parameters, because the relation between the intrinsic kinematic coordinate

variables and the intrinsic dynamic coordinate variables is highly nonlinear.  A linear

transform of joint angles becomes nonlinear and complex when represented in dynamic

parameters.  In other words, when the shoulder- and elbow-joint angles are multiplied by α

and β, respectively, the inertial and viscous forces of the shoulder joint increase

approximately in proportion to α, the centripetal and Coriolis forces increase

approximately in proportion to α2 and αβ, respectively, the elastic force is constant, and

the resultant joint torque is the sum of these forces.  Furthermore, this nonlinear and

complex transform of joint torques is unlikely to become linear and simple when it is

represented as other dynamic parameters that the biological motor system may use (e.g.,

muscle tension and motor neuron activity).  Thus, it appears reasonable to assume that the

participants learned to adjust to the transformation of joint angles in terms of kinematic

parameters.

Recent behavioral and neurophysiological studies have suggested how the intrinsic

kinematics is used in the CNS to control arm movements.  Some of them indicate that the

intrinsic kinematics is used to represent the target's locations and others indicate that it is

used to represent the motion trajectories.  Soechting and Flanders (1989a, 1989b)

investigated pointing errors in a three-dimensional space and showed that they can account

for the observed errors on assumption that the CNS does not directly compute the muscle

tensions from the visual information of the target's locations relative to the shoulder but

that it computes the shoulder and the elbow joint angles from the target's locations.

Graziano, Yap, and Gross (1994) found that the position of the visual receptive field of

neurons in the premotor cortex of monkeys changes as the intrinsic kinematic information
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changes (i.e., hand position represented by joint angle or muscle length).  They showed

that these neurons respond to visual stimuli and that the visual receptive field includes

areas that surround sections of the surface of the body, such as the hand or arm.

Furthermore, the visual receptive field moves with the arm, even when the arm is

passively moved without visual feedback.  These studies suggest that the intrinsic

kinematics is closely related to the visual information of the target locations.

Kalaska and his colleagues suggested that a trajectory is represented in terms of

intrinsic kinematics by neuronal activity in area 5 in monkeys.  As mentioned in the

Introduction, area 5 neurons encode the intrinsic kinematics of arm movements (Kalaska,

Cohen, Prud'homme, & Hyde 1990; Lacquaniti, Guigon, Bianchi, Ferraina, & Caminiti, in

press).  Kalaska et al. (1990) reported that some of the directionally-tuned cells in area 5

exhibit marked changes in discharge prior to reaching movements.  The time function of

their discharge rate closely resembles that of the movement velocity (i.e., a bell-shaped

function).  This suggests that the activity of these phasic cells encodes a time sequence of

movement velocities along the path.  Rosenbaum and his colleagues (e.g., Rosenbaum,

Loukopoulos, Meulenbroek, Vaughan & Engelbrecht, 1995) proposed a kinematic model

of motion control (Knowledge model) in which postures are stored as vectors in joint

space and used to select reaching movements evaluating accuracy costs and travel costs.

In conclusion, the results of the present study suggest that a representation of

intrinsic kinematics is formed in the CNS and used in the control of reaching movements

during the learning of an aiming task.  Moreover, this representation appears to be

continuously adaptive, able to adjust in response to novel circumstances.  The presence of

an adaptive representation corresponding to the intrinsic kinematics in the CNS supports

the hierarchical model rather than the non-hierarchical model of visually-guided reaching

movements.
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Appendix A

Derivation of Equations 5 and 7

The purpose of this appendix is to explain how Equations 5 and 7 were derived.

As described in the text, the transformation used in the second stage under the

extrinsically-consistent condition corresponds to a linear transformation of joint angles of

the biologically impossible arm configuration (the bottom of  Figure 6B).  Let the

shoulder-joint angle and the elbow-joint angle of the actual arm configuration of the

participants be θ1  and θ2 .  Also, let the shoulder-joint angle and the elbow-joint angle of

the other arm configuration whose forearm length, upper arm length and positions of the

shoulder and hand are the same as those of the actual configuration, be ρ1  and ρ2  ,

respectively.

First, we will represent the relation between (θ1  , θ2 ) and ( ρ1 , ρ2 ).  The angles

indicated by filled circles at the bottom of Figure 6B are equally represented as

arctan
l2 sinθ2

l1 + l2 cosθ 2

 

 
 

 

 
 . (14)

Thus, we can get Equation 7 representing the joint angles of the other arm configuration:

ρ1 = π − 2arctan
l2 sinθ2

l1 + l2 cosθ2

 

 
 

 

 
 − θ1

ρ2 = θ2 . (7)

Secondly, we will explain the derivation of Equation 5.  The linear transformation

of joint angles of the actual arm configuration is represented as

θ1
* = k1θ1 + h1

θ2
* = k2θ2 + h2 , (15)
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where, θ1
*
 and θ2

*
 are the joint angles after the transformation, k1  and k2  are

magnification or minimization factors, and h1  and h2  are constant values.  The

transformation of joint angles  of the other arm configuration ( ρ1 , ρ2 ) in the same manner

as Equation 15 gives

ρ1
* = k1ρ1 + h1

ρ2
* = k2ρ2 + h2 . (16)

The transformed joint angles ρ1
*, ρ2

*( )  can be represented by those of the actual arm

configuration θ1
*,θ2

*( )  using the same relation as Equation 7:

θ1
* = π − 2arctan

l2 sin ρ2
*

l1 + l2 cos ρ2
*

 

 
 

 

 
 − ρ1

*

θ2
* = ρ2 . (17)

Substituting Equation 7 into Equation 16 and then substituting Equation 16 into Equation

17 gives

θ1
* = k1θ1 + (1− k1)π − h1 + 2 ⋅k1 arctan

l2 sinθ2

l1 + l2 cosθ2

 

 
 

 

 
 

−2arctan
l2 sin(k2θ2 + h2 )

l1 + l2 cos(k2θ 2 + h2 )

 
 
 

 
 
 

θ2
* = k2θ2 + h2 . (18)

Thus, Equation 5 is obtained by replacing k1 and k2  with 1.25 and 0.5, respectively.
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Appendix B

Additional Experiment to Test the Effect of a Slightly Different Ratio of the Marker

Movement to the Cursor Movement

An experiment was conducted to test the effect of different ratios of the marker

movement to the cursor movement in the x and y directions.  The aiming error was

compared when the ratios in the x and y directions were identical (1.0:1.0 in both

directions) to that when the ratios were different (1.0:1.0 in the x direction and 1.0:0.8 in

the y direction).

Methods

Participants.  Three volunteers who did not participate in the main experiment

participated in this experiment.  All participants were naive as to the purpose of this

experiment and self-reported to be right-handed.

Apparatus and procedure.  The apparatus was the same as that used in the main

experiment, and the procedure was similar.  Visual feedback was not altered in this

experiment.  There were two types of trials: identical and different trials.  In the identical

trials, the ratios in the x and y directions of the marker movement to the cursor movement

were identical (1.0:1.0 in both directions).  In the different trials, they were different

(1.0:1.0 in the x direction and 1.0:0.8 in the y direction).

The participants completed two blocks of 50 trials.  The two types of trials were

randomly mixed within a block so that the total number of each type was 25.  A 3 min rest

period was allowed between blocks.  The participants were not informed of the two types

of trials nor of the ratio of the marker movement to the cursor movement.
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Results and Discussion

Table B1 shows the mean and standard deviation of the aiming error in the

identical trials and different trials.  A t-test with 98 df was performed separately for the

data from each participant.  There was no significant difference between the two types of

trials.  Additionally, none of the participants realized that different types of trials existed.

The results suggest that the slight difference of the ratio did not significantly affect the

aiming error.  Therefore, the data of the participants (H.W., M.N., Y.F., and M.Y.), who

conducted the aiming task with different ratios in the main experiment, was analyzed in

the same manner as that of the other participants.

------------------------------------------

Insert Table B1 about here

-------------------------------------------
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Footnotes

1 For four participants (H.W., M.N., Y.F., and M.Y.), the ratio in the x direction (1.0

: 1.0) was slightly different from that in the y direction (1.0 : 0.8, see Figure 5 for the

definitions of the directions) due to an incorrect setting of the CRT monitor.  The ratio in

the x direction was equal to that in the y direction (1.0 : 1.0) for the other participants.

Therefore, an additional experiment was conducted to test the effect of the different ratios

(see Appendix B).  The results of this experiment clearly showed that the ratio difference

did not significantly affect the aiming error.  Consequently, the data of the four

participants were analyzed using the same methods as that for the other participants.

2 Woodworth (1899) made a distinction between the components for voluntary

movements in the aiming task:  an initial impulse phase and a series of secondary

adjustments made subsequently to attain the final target position.  The first component is a

fast, preprogrammed ballistic movement that brings the hand into the general area of the

target.  The second component comprises a number of adjustments.  In this latter phase,

movements are continuously monitored and adjusted in relation to sensory information.

The first component, the initial impulse phase in Woodworth’s terminology, can be called

a ballistic movement and the second current control component can be called a corrective

movement (Flowers, 1975).

3 A Welch test was used instead of a t-test when the variances of the two groups

could not be considered to be equal to each other, that is, the F ratio of one group to the

other was significantly large (p < .05).
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4 In the linear regression analysis, the 100(1-α)% confidence interval of the

estimated value ( ˆ β ) is defined as

ˆ β − t(α /2,n − p)⋅ SE ≤ β ≤ ˆ β + t(α /2, n − p) ⋅SE ,

where n is the number of data, p is the number of parameters in the assumed linear model,

t(α /2,n − p)  is the upper 100(1-α/2)% point of the t-distribution, and SE is the standard

error of the estimated value.
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Table I  Learning schedule of each participant

Group Participants Arm used

in the first stage

Arm used

in the second stage

Extrinsically- H.W. and S.M. Left Right

consistent M.N. and K.S. Right Left

Intrinsically- Y.F. and Y.H. Left Right

consistent M.Y. and K.A Right Left
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Table II. Estimated values of b and K from the aiming error under normal conditions.

Right Arm Left Arm

Participant b (mm) K (mm) b (mm) K (mm)

H.W. 12.73n.s. 16.64*** 25.80*** 10.10**

S.M. 12.56* 12.92*** 37.84*** 2.27 n.s.

M.N. 55.65*** -3.57n.s. 55.65*** 10.66***

K.S. 47.08*** -3.57n.s. 73.99*** -10.12*

Y.F. 45.31*** 3.66n.s. 13.93n.s. 19.71***

Y.H. 18.84* 16.62*** 62.54*** 0.29n.s.

M.Y. 44.31*** 7.75n.s. 27.35** 14.50**

K.A. 28.21*** 10.08** 18.87*** 10.09**

Note.   n.s. Not significant;   * p <.05;   ** p <.01;   *** p <.001;

 b and K are defined in Equation 12.
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Table B1. Means and standard deviations of the aiming error for identical and

different trials for each participant.

Identical Different

Participant M SD M SD t-value probability

R.O. 24.53 12.12 23.97 11.29 0.04 .83

T.F. 34.09 18.16 28.90 17.74 2.09 .15

T.Y. 36.98 21.62 37.72 20.95 0.03 .86

Note.  Units of the mean (M) and the standard deviation (SD) are in mm.
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Figure Captions

Figure 1 Schematic diagram of visual-motor control based on a hierarchical

approach.  The top row illustrates the computational modules and the intermediate

representations connecting each module.  The next two rows illustrate examples of

representations in robot control.  (x, y)  denotes the Cartesian coordinates of the object's

position.  θ1  and θ2  denote the shoulder-joint angle and elbow-joint angle, and τ1  and τ 2

denote the shoulder-joint torque and elbow-joint torque.  Paths in the joint space and in the

torque space are arbitrary examples in point-to-point reaching movements.

Figure 2 Schematic diagram of visual-motor control based on a non-hierarchical

approach.  The computational model is at the top with the neural network model

underneath (Massone and Bizzi, 1989).

Figure 3 Overview of the experimental setup illustrated from behind the right

shoulder of the participant.

Figure 4 An illustration of the transform in extrinsic coordinates (f) in the top figure

and that in intrinsic coordinates (g) in the bottom figure.  (x, y)  denotes the Cartesian

coordinates of the hand position with the origin at the shoulder.  θ1  and θ2  denote the

shoulder-joint angle and elbow-joint angle.  The filled circles indicate the hand positions

before the transformation and the open circles indicate those after the transformation.

Figure 5 An illustration of joint angle transformation.  The top portion is a front

view of the CRT screen, and the bottom is a top view of the participant.  The shoulder- and
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elbow-joint angles (θ1  and θ2 , respectively) when the hand is located at a fixed point for

this transformation (indicated by a cross), are h1  and h2 , respectively.

Figure 6 Illustrations of the experimental design.  The grids in each of the panels

show the mapping between the screen coordinates (x-y: the upper panels) and the hand

coordinates (p-q: the lower panels).  As the participant moved the hand along the straight

grid lines (the lower panels), the cursor trajectories on the screen became curved lines (the

upper panels).  The participants learned the same mapping between the screen coordinates

and hand coordinates in the first and the second stages under the extrinsically-consistent

condition (A and B) while they learned the same transformation of the joint angles in both

stages under the intrinsically-consistent condition (A and C).  θ1  and θ2  denote the

shoulder-joint angle and elbow-joint angle of the actual arm configuration (solid lines) of

the participants.  ρ1  and ρ2  denote the joint angles of the other geometrically possible

arm configuration (broken lines) whose forearm length, upper arm length and positions of

the shoulder and hand were the same as those of the actual arm configuration.

Figure 7 Predictions of the results under the extrinsically-consistent condition and

the intrinsically-consistent condition.  A  Illustration of the prediction of the results on the

assumption that the participant learns to adjust for the transformation in the first stage as a

nonlinear one in terms of the screen and hand coordinates (i.e., extrinsic coordinates).  B

Illustration of the prediction of the results on the assumption that the participant learns to

adjust for the transformation in the first stage as a linear one in terms of the joint angles

(i.e., intrinsic coordinates).

Figure 8 Determination of test area and starting and target positions.  A  Definition

of the test area (hatched area); top view of the hand plane.  B  Targets (filled circles) and
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starting zones (open circles) in a trial block on the screen (in the screen coordinates).  Each

pair connects a target and a starting zone (in a trial) by a solid line.  The broken lines

indicate the border of the screen.  These fifty pairs were used in one of the trial blocks for

participant K.A.  C Targets and starting zones on the board (in the hand coordinates)

corresponding to those shown in Figure B.  The broken lines show the border of the test

area.

Figure 9 Detection of the first ballistic movement.  A and B  A typical trajectory:

panel A illustrates the entire trajectory, and panel B focuses on the part of it near the

target.  The open circle and the filled circle indicate the starting zone and the target,

respectively.  The square indicates the end point of the first ballistic movement.  C

Tangential velocity (solid line) and curvature (gray bars) are plotted against time from the

onset of the first auditory cue signaling the beginning of the trial.

Figure 10 Definition of V indicates the degree of distortion caused by the

transformation.  A and B illustrate trajectories of the cursor on the CRT screen and the

hand on the board, respectively.  These two figures are overlapped in C.  The vector S

represents the displacement from the starting point on the board to that on the screen, and

the vector G represents the displacement from the target on the board to that on the screen.

A scalar V is defined as the absolute value of subtraction of vector S from vector G.

Figure 11 Trajectory and velocity profiles.  A, D and G  Trajectories of the hand

coordinates of one participant (K.S.) in the first and the last trial blocks of the first stage,

and in the first trial block of the second stage, respectively.  The dots are 10 ms apart (i.e.,

sampled at 100 Hz).  (0, 0) is a fixed point for the transformation (position of the shoulder

of the participant is (0, -384)).  Every other trajectory (25 each) of the trial blocks is
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superimposed on each graph.  The terminal points of the trajectories correspond to the end

of the first ballistic movement.  B, E and H  Tangential velocity profiles of the trajectories

shown in A, D and G, respectively.  C, F and I Trajectories that were normalized so that

the center of the starting zone and the target of each trial became (0, 0) and (100, 0),

respectively.  The filled circles indicate the normalized position of the target.

Figure 12 Aiming error as a function of the number of trial blocks.  A shows a typical

result of a participant in the extrinsically-consistent group (M.N.) while B shows that of a

participant in the intrinsically-consistent group (M.Y.).  The error bars represent the

standard error of the mean, and the gray bars indicate the mean aiming error of each stage.

The solid lines and equations show the best fitting lines using the least squares method.  r

is the correlation coefficient between the mean aiming error and the predicted best fit

value.

Figure 13 Aiming error as a function of the number of trial blocks for the participants

other than M.N. and M.Y., whose results are shown in Figure 12.  The conventions are the

same as for Figure 12.  (Right) and (Left) indicate the arm that the participant used in each

of the stages.

Figure 14 Effect of distortion caused by the transform on the aiming error as a

function of the number of trial blocks.  The errors of each trial block were analyzed using

linear regression analysis.  The open circles, gray filled circles, and black filled circles

indicate that the estimated values are significant (p < .05), marginal (.05 ≤  p ≤  .1), and

not significant (p > .1), respectively.  The error bars represent 99% confidence intervals,

and the gray rectangles highlight the confidence intervals of the last block of the first stage
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and the first block of the second stage to show continuity or discontinuity of the learning

curves.  (Right) and (Left) indicate the arm that the participant used in each of the stages.
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