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Abstract

We previously proposed, on theoretical grounds, that the cerebellum must regulate the

dimensionality of its neuronal activity during motor learning and control to cope with the low

firing frequency of inferior olive neurons, which form one of two major inputs to the cerebellar

cortex. Such dimensionality regulation is possible via modulation of electrical coupling

through the gap junctions between inferior olive neurons by inhibitory GABAergic synapses.

In addition, we previously showed in simulations that intermediate coupling strengths induce

chaotic firing of inferior olive neurons and increase their information carrying capacity. How-

ever, there is no in vivo experimental data supporting these two theoretical predictions.

Here, we computed the levels of synchrony, dimensionality, and chaos of the inferior olive

code by analyzing in vivo recordings of Purkinje cell complex spike activity in three different

coupling conditions: carbenoxolone (gap junctions blocker), control, and picrotoxin (GABA-

A receptor antagonist). To examine the effect of electrical coupling on dimensionality and

chaotic dynamics, we first determined the physiological range of effective coupling strengths

between inferior olive neurons in the three conditions using a combination of a biophysical

network model of the inferior olive and a novel Bayesian model averaging approach. We

found that effective coupling co-varied with synchrony and was inversely related to the

dimensionality of inferior olive firing dynamics, as measured via a principal component anal-

ysis of the spike trains in each condition. Furthermore, for both the model and the data, we

found an inverted U-shaped relationship between coupling strengths and complexity

entropy, a measure of chaos for spiking neural data. These results are consistent with our

hypothesis according to which electrical coupling regulates the dimensionality and the com-

plexity in the inferior olive neurons in order to optimize both motor learning and control of

high dimensional motor systems by the cerebellum.
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Author summary

Computational theory suggests that the cerebellum must decrease the dimensionality of

its neuronal activity to learn and control high dimensional motor systems effectively,

while being constrained by the low firing frequency of inferior olive neurons, one of the

two major source of input signals to the cerebellum. We previously proposed that the cer-

ebellum adaptively controls the dimensionality of inferior olive firing by adjusting the

level of synchrony and that such control is made possible by modulating the electrical cou-

pling strength between inferior olive neurons. Here, we developed a novel method that

uses a biophysical model of the inferior olive to accurately estimate the effective coupling

strengths between inferior olive neurons from in vivo recordings of spike activity in three

different coupling conditions. We found that high coupling strengths induce synchronous

firing and decrease the dimensionality of inferior olive firing dynamics. In contrast, inter-

mediate coupling strengths lead to chaotic firing and increase the dimensionality of the

firing dynamics. Thus, electrical coupling is a feasible mechanism to control dimensional-

ity and chaotic firing of inferior olive neurons. In sum, our results provide insights into

possible mechanisms underlying cerebellar function and, in general, a biologically plausi-

ble framework to control the dimensionality of neural coding.

Introduction

The cerebellum plays important roles in motor learning and motor control, although how it

performs these roles is still unclear. In particular, the role of the inferior olive (IO) continues

to be debated. On one hand, there is evidence that the olivo-cerebellar system conveys error

signals into the cerebellum [1–4] and induces plasticity in parallel fiber-Purkinje cell synapses

(e.g., [5–8]). Such error-driven plasticity is a central tenet of the original motor learning theory

of the cerebellum [8–10], as it can allow learning of internal models for motor control [11–16].

On the other hand, there is also evidence that olivo-cerebellar activity has a direct role in gen-

erating ongoing motor commands because of its ability to dynamically generate large ensem-

bles of synchronously active Purkinje cells during movement that can affect downstream

motor systems [17–20]. Moreover, it has been shown that spontaneous olivo-cerebellar activity

can directly influence ongoing spiking in cerebellar nuclear cells, which relay motor com-

mands produced by the cerebellar cortex [21,22].

However, a fundamental and outstanding question that needs to be addressed by both theo-

ries is: how does the olivo-cerebellar system convey information, whether for learning or for

controlling the high dimensional and nonlinear motor systems that generate movements,

despite the low-firing rates of inferior olive neurons (typically ~1 Hz). Indeed, olivary neurons

discharge at most one or two times during a typical movement [23]. For motor learning, com-

pared to an artificial learning machine that can use high frequency errors [24], such a low fir-

ing rate significantly decreases the error transmission capability of the system, and thus its

learning efficiency. Similarly, for motor control, the low firing rate presents a problem for the

direct participation of the olivo-cerebellar system in the generation of high frequency and high

dimensional motor commands across multiple muscles and joints.

An answer to this question is suggested by the unusual organization of the IO, in which

neurons form the strongest electrically coupled neuronal network in the adult mammalian

brain [25–29]. This coupling underlines synchronization of complex spike activity in Purkinje

cells [30–33]. Moreover, the patterns and extent of synchronization are dynamically controlled

by two types of synaptic inputs to the IO: GABAergic synapses whose activity reduces
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synchrony [33,34] and excitatory synapses whose activity alters the distribution of synchrony

and enhances IO coupling of weakly coupled neurons [35–37].

We have previously proposed that the capacity of the olivo-cerebellar system to adaptively

control the dimensionality of the IO firing dynamics, defined as the minimal dimension

required to provide a precise description of the neural dynamics, via modulation of electrical

synapses between IO neurons is central to answering the above question [38–40]. According

to this idea, when coupling is high, IO synchrony is high, and groups of related neurons in the

olivo-cerebellar system behave, in the limit, as a single-neuron chain, decreasing the

dimensionality of the IO firing dynamics to one. For motor control, synchronous IO signals

would induce synchronous activation of Purkinje cell ensembles, which, in turn, would tune

the downstream systems to facilitate the initiation and coordination of fast and crude move-

ments [19]. For motor learning, high synchrony in the early stages of learning induces strong

plasticity at the parallel-fiber-Purkinje-cell synapses of large numbers of Purkinje cells simulta-

neously, resulting in fast but crude learning [39,40]. In contrast, in silico computer simulations

show that chaotic resonance occurs when coupling is decreased, leading to a decrease in syn-

chrony [41–45]. Chaotic resonance can thereby allow both sophisticated learning and control,

either for the final subtle corrections to optimize movements or for control of fine movements

[45,46].

Here, we re-analyzed in vivo recordings of complex spikes recorded simultaneously from

arrays of Purkinje cells [30,33,34] under three pharmacologically induced coupling conditions

(low, control, high) to study the effect of coupling on the dimensionality of the IO code and on

the induction of chaotic resonance. The low coupling condition was generated by intra-IO

injection of the gap junction blocker carbenoxolone (CBX), which lowers complex spike syn-

chrony [30], whereas the presumed high coupling condition was generated by intra-IO injec-

tion of the GABA-A blocker picrotoxin (PIX), which increases complex spike synchrony

[33,34]. In the present study, we tested our two predictions that 1) increasing the synchrony

level, via increased electrical coupling between IO neurons, decreases the dimensionality of IO

firing dynamics and 2) intermediate coupling induces chaotic spiking.

Results

Estimation of the effective coupling between IO neurons in vivo
To examine the effect of electrical coupling on the dimensionality and chaotic dynamics of the

IO code, we first need to determine the physiological range of effective coupling strengths

between IO neurons under in vivo conditions. Direct quantitative measurement of electrical

coupling between IO neurons has been obtained in slice preparations [47–49]; however, such

measurements remain technically impossible in vivo. We therefore used an indirect approach.

Purkinje cell complex spikes, as opposed to simple spikes, bear a one-to-one relationship to IO

discharges. Thus, complex spikes can be used as a proxy for IO spikes (see S1 Fig for examples

of complex spike recordings in these three conditions; see Methods for experimental proce-

dures). Note that an IO cell discharge can lead to one or several axonic spikes occurring with

inter-spike intervals on the order of a millisecond [50]. Each such discharge, whether com-

posed of one or several spikes, leads to a single complex spike in the Purkinje cells to which the

IO cell projects. In this paper we consider each such IO discharge as a single ’spike’ event. In
vivo complex spike activity was compared with simulated activity generated by a biophysical

model of a network of coupled IO neurons, whose parameters were estimated via a Bayesian

method [51] that we modified by using Bayesian model-averaging to improve the robustness

of its estimation of the coupling parameters. The coupling parameters that produced the
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spatiotemporal firing patterns that best matched those of the experimental data were used as

the estimates (see below for details).

The biophysical IO model was adapted from a model that we previously developed to inves-

tigate the effect of PIX in modifying coupling via its action of blocking GABA inhibitory syn-

apses. This model modified the original IO model [43,52] to include the modulation of

electrical conductance between IO cells via inhibitory inputs from deep cerebellar nuclear cells

(for review of IO anatomy and function, see [53]). Briefly, in the model, each IO neuron com-

prises a soma, a main dendrite, and four dendritic spine compartments, with each compart-

ment having distinct ionic conductances. Most notably, the dendritic compartment has a high

threshold calcium conductance and a calcium-activated potassium conductance, which are

responsible for the after-depolarization and after-hyperpolarization sequence that follows each

sodium spike and for the low firing rates of IO neurons [52,54,55]. Each neuron is coupled to

its neighbors via electrical coupling conductances between the spine compartments. An inhibi-

tory synaptic conductance in the spine compartment modulates the effective coupling strength

(for a description of the model, see Methods for details and [51,56]; the code of the model is

available for download, see Code Availability). In the present study, we increased chaotic

dynamics by increasing the sodium conductance, as tests showed that these changes better

accounted for the actual IO firing properties (see Methods for details).

Using the model, it is possible to derive a theoretical "effective" electrical coupling conduc-

tance geff as a function of the axial conductance of the spines gs, the electrical coupling conduc-

tance gc, and the GABAergic synaptic conductance gi (see [57] and Methods for details).

Estimates of gc and gi, were obtained by comparing sixty-seven spatiotemporal features–

including firing rates, local variation [58], minimal distance [57], auto-correlograms and

cross-correlograms–of the model’s spike activity to those of the complex spike data sets for dif-

ferent values of synaptic noise input frequencies (gs was held constant, see Methods for details).

A final estimate of gi and gc for each condition (CBX, CON, and PIX) was obtained using

Bayesian averaging of the model estimates for the different synaptic noise levels, weighted in

proportion to the goodness-of-fit of the model for each noise level (see S3 Fig and S4 Fig, and

Methods for details). Note that for this analysis, we used data from in vivo neurons whose

activity was clearly affected by the drug treatments, based on changes in their firing rate from

control levels (see S2 Fig and Methods for details). This was done because the lack of effect in

some cells likely reflects the experimental limitation that the drug injection was localized to

one part of the IO, whereas climbing fibers to the recording array arise from multiple IO

regions (see [30] for results and discussion of this issue).

In order to compare the coupling across all three conditions, the two CON groups (CON–

CBX and CON–PIX) were combined. As expected, the estimated inhibitory conductance gi in

the CON condition (Fig 1A– 1.15 ± 0.21 mS/cm2, n = 100 neurons; all results reported as

mean ± std) was significantly higher than in the PIX condition (0.72 ± 0.3 mS/cm2, n = 47 neu-

rons; PIX vs CON: p< 0.0001). However, gi in the CBX condition (1.02 ± 0.13 mS/cm2, n = 53

neurons) was also significantly smaller than in both its own CON condition (1.21 ± 0.21 mS/

cm2, CBX vs CON–CBX, p< 0.001) and the combined CON condition (CBX vs CON:

p< 0.001) probably due to possible effects of CBX on inhibitory synapses [59]. Similarly, the

estimated gap-junctional conductance gc in the CBX condition (Fig 1B– 0.88 ± 0.22 mS/cm2)

was significantly smaller than in the CON condition (1.19 ± 0.25 mS/cm2, CBX vs CON:

p< 0.0001), but there was no significant difference between the PIX (1.16 ± 0.21 mS/cm2) and

CON conditions (PIX vs PIX–CON, p = 0.2; PIX vs CON: p = 0.5). As a result of these changes

in gi and gc, the estimated effective coupling strength, geff, differed across the three conditions

(one-way ANOVA: p< 0.0001). geff was smallest for the CBX condition (Fig 1C–geff =

0.030 ± 0.002 mS/cm2, CBX–CON: p< 0.0001), intermediate for the CON condition (geff =
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0.032 ± 0.002 mS/cm2) and largest for the PIX condition (geff = 0.036 ± 0.003 mS/cm2, PIX–

CON: p< 0.0001).

Fig 1. Estimation of conductance and coupling coefficients in the three experimental conditions. A-B: Values of the GABAergic synaptic conductance gi (A) and

electrical coupling conductance gc (B) estimates for the three experimental conditions: carbenoxolone (CBX, green box), control (CON, black box) and picrotoxin (PIX,

red box). C: The effective coupling coefficient geff computed from Eq (1) for the three conditions. D: The coupling coefficient (CC) estimated via simulations for the

three conditions. Each boxplot shows white line as the mean, dark region as 95% CIs and light region as 1 std. Asterisks represent significance levels: ns p> 0.05,
���p< 0.001, ����p< 0.0001.

https://doi.org/10.1371/journal.pcbi.1008075.g001
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We confirmed these results without pooling the two CON groups. The best fit of the model

to the data indicated PIX and CBX reduced mean gi and gc approximately 30% and 25% from

their respective CON values, consistent with their known pharmacological effects. Specifically,

gi was significantly decreased in the PIX condition from its CON value (1.06 ± 0.18 mS/cm2,

CON–PIX vs PIX, p< 0.0001). Similarly, gc in the CBX condition was significantly smaller

than in its CON condition (1.18 ± 0.28 mS/cm2, CON–CBX vs CBX, p< 0.0001).

Next, we examined whether the estimates of effective coupling strength, geff, were biologically

realistic by computing the coupling coefficients (CCs) as the average ratio of the change in steady

state membrane potentials of a master cell and its four neighboring cells in response to a current

step (see S5 Fig and Methods for details). The calculated CCs for our data were similar to in vitro
values [49]. As expected, CC was smaller in the CBX condition (Fig 1D–CC = 0.008 ± 0.002,

CBX vs CON: p< 0.0001) and larger in the PIX condition (CC = 0.019 ± 0.006, PIX vs CON:

p< 0.0001) than in the CON condition (CC = 0.012 ± 0.003).

The estimated gi and gc parameters were then used to generate simulated spike trains under

all three conditions. In each case, the spike trains were comparable to those of the recorded

complex-spike activity (see Fig 2A–2C). Quantitatively, firing rates (model: 0.39 ± 0.30 and

1.43 ± 0.76 and 2.21 ± 0.53; data: 0.42 ± 0.27 and 1.34 ± 0.72 and 2.83 ± 1.20 for CBX, CON

and PIX conditions, respectively) and cross-correlations (model: 0.01 ± 0.01 and 0.04 ± 0.03

and 0.11 ± 0.04; data: 0.02 ± 0.01 and 0.06 ± 0.02 and 0.18 ± 0.05; 10 ms time bin) increased in

the PIX and decreased in the CBX condition. In contrast, auto-correlations (model: 0.69 ± 0.20

and 0.48 ± 0.17 and 0.35 ± 0.09; data: 0.75 ± 0.13 and 0.51 ± 0.17 and 0.32 ± 0.12; 50 ms time

bin) showed the opposite change, being lower in the PIX and higher in the CBX condition (Fig

2D and 2E). The changes in those spike train measures reflect the changes in the firing dynam-

ics, which became more synchronous across the IO neuronal ensemble under the PIX than the

CON condition, and became less so under the CBX condition. The strong agreement of these

measures between the experimental and model data confirms the goodness-of-fit of the model

in all three data conditions.

Dimensionality is inversely related to synchrony and effective coupling

levels

Next, we examine the relationship between dimensionality and synchrony in an identical time

bin of those two measures. The dimensionality d is defined as the minimal number of principal

components accounting for approximately 90% of the variability in the covariance data (see

Eq 5 in Methods), as proposed by [60]. We extracted the average firing rates of neurons in

50-second long periods and applied principal component analysis (PCA) to compute the

covariance of these firing rate vectors for each animal. d values were then normalized by the

number of neurons simultaneously recorded (see S6 Fig and Methods for details). Synchrony

was measured by calculating the zero-lag cross-correlation coefficient of the two spike trains

(Eq 4). In the literature, time bins of 1–10 ms have been commonly used [22,61–63] (see [22]

for a detailed justification of this range from the perspective of the impact on cerebellar nuclear

cells). Thus, in our study, we chose a time bin of 10 ms for computing both the synchrony and

the dimensionality of Purkinje complex spike activity (see Methods for details).

For the present dataset, and consistent with the parent datasets [30,33,34], synchrony levels

increased three-fold in the PIX condition (synchrony = 0.186 ± 0.05, PIX vs CON, p = 0.012)

and decreased about three-fold in the CBX condition (synchrony = 0.018 ± 0.009, CBX vs

CON, p = 0.0015) compared to the CON condition (synchrony = 0.061 ± 0.015)–Fig 3A. We

then assessed whether the dimensionality changed with the drug condition. As predicted, d
differed across the three conditions (one-way ANOVA, p = 0.02), being smaller in the PIX
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condition (d = 0.15 ± 0.06, PIX vs CON, p = 0.07) and larger in the CBX condition

(d = 0.40 ± 0.16, CBX vs CON, p = 0.07) than in the CON condition (d = 0.25 ± 0.11)–Fig 3B.

Although change in the dimensionality was large between conditions (approximately 2-fold

from CBX to CON and from CON to PIX), there was no statistical difference between both the

PIX and CBX conditions with the control group. This is probably due to the small number of

samples as well as the large variance in the dimensionality across the animals in each condition.

The relationship between changes in synchrony and dimensionality was consistent and was

seen in each animal (Fig 3C). Relative to CON, a 2-fold decrease of synchrony in the CBX con-

dition was associated with an ~70% increase in d, whereas a 3-fold increase of synchrony in

the PIX condition was associated with a 40% reduction in dimensionality. Furthermore, we

Fig 2. Similarity between IO firing for model and data. A–C: Raster plots of ten representative IO neurons of the model and the experimental complex spike data of

three animals in the three conditions. Each row of tick marks represents the activity of a single neuron. A. Carbenoxolone (animal #1, irregular spiking). B. Control

(animal #7, oscillatory spiking) C. Picrotoxin (animal #9, highly synchronous spiking). D–E: Three major spatiotemporal features extracted from the spike trains–firing

rates, auto-correlations and cross-correlations–in the three data conditions of the model (D) and the data (E). FR: firing rates. ACor: auto-correlation. CCor: cross-

correlation. The ordinates of D–E are scaled so that the mean value of the CON is 1.

https://doi.org/10.1371/journal.pcbi.1008075.g002
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divided the control periods of the complex spike data (n = 9 animals) into short time segments,

to assess the relationship between synchrony level and dimensionality for levels that are within

the same range as occurs in the awake animal [63]. Synchrony levels fluctuated between these

segments and these fluctuations were negatively correlated with changes in the dimensionality

(S7 Fig). Thus, variations in synchrony within physiological range are associated with signifi-

cant changes in dimensionality.

Next, we quantitatively investigated the effect of effective coupling on synchrony and

dimensionality. As expected, there was a positive correlation (r = 0.76; p = 0.0002, Fig 3D)

between synchrony and effective coupling averaged for each animal. Note that we found an

outlier (animal #9 in the PIX condition, the red diamond in Fig 3D) by computing Cook’s

Fig 3. The synchrony and the dimensionality in IO firings moderated by effective coupling. A-B: The synchrony (A) and the dimensionality (B) for each of the three

data conditions. Significance level, ns p> 0.05, � p< 0.05, �� p< 0.01. C: the change of synchrony by drugs (either CBX–green bars, or PIX–red bars, left axis) is coupled

with change in the dimensionality (right axis) compared with the control level. Each connected pair of data points is from one animal. D–E: The synchrony (D) and the

dimensionality (E) as functions of effective coupling strength averaged for selected neurons in individual animals confirming that effective coupling is a control parameter

to optimize the synchrony and thus the dimensionality of IO firings. Each type of symbol represents the data of an individual animal. The cyan solid lines show results of

the linear regression models and shaded regions are of 95% CIs.

https://doi.org/10.1371/journal.pcbi.1008075.g003
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distances with a threshold of five times the mean value [64]. But even when that outlier was

removed, the correlation was still significant (r = 0.75; p = 0.0004). In addition, there was a

negative correlation between geff and d (r = -0.5; p = 0.03, no outlier detected with the same cri-

teria above, Fig 3E). These results support our hypothesis that synchronization is a feasible

mechanism for dimensionality reduction in IO neurons and that effective coupling is a control

parameter that the IO uses to optimize the dimensionality of the olivo-cerebellar system.

Inverted U-shaped relationship between complexity entropy and effective

coupling

We next addressed the question of whether intermediate, physiological coupling strengths

maximize the chaotic level of IO activity. Lyapunov exponents quantify the sensitivity of a

dynamical system to the initial conditions [65,66], and are thus often used as indicators of

chaos. However, methods to compute Lyapunov exponents from time series data [67,68] are

not applicable to our spike data sets, because the computation requires access to continuous

variables. We therefore computed the complexity entropy, which is applicable to spike train

data and approximates the largest Lyapunov exponents in simulations of IO neurons [69,70]

(see S8 Fig and Methods for details).

For both the simulated IO spike and the experimental complex spike data sets, we investi-

gated whether the relationship between complexity entropy and effective coupling formed an

inverted U-shape, as previously shown in simulations [43,45]. For each of the experimental IO

neurons, we computed the complexity entropy from the simulated spike data that was generated

with the estimated coupling values that best fit the data in terms of the PCA error (difference

between experimental and simulated spike data in the PCA space, S4A Fig). For the IO model

(Fig 4A), the second order model (regression model in Wilkinson notation [71]: entropy ~ 1
+ geff + geff2, Bayesian information criterion (BIC): -1263.4) where entropy is the complexity

entropy, had a negative coefficient for the second order term (mean ± sem, -157 ± 36), and bet-

ter fit the simulated spikes in the three conditions than the first-order linear model (entropy ~ 1
+ geff, BIC: -646.8; Log likelihood ratio test (LLR): p< 0.0001). For the IO data (Fig 4B), a mixed

effect regression model analysis, with Animal as the random intercept accounting for repeated

measures within the same animal, showed that the second order model (entropy ~ 1 + geff + geff2

+ (1 | Animal), BIC: -1319.5), where (1 | Animal) is the random intercept, had a negative fixed-

effect coefficient of the second order term (mean ± sem, -75 ± 30), and provided a better fit than

the linear model (entropy ~ 1 + geff + (1 | Animal), BIC: -1318; LLR: p = 0.01). We further con-

ducted a Gaussian-Process regression, which does not assume an explicit relationship between

the coupling and the complexity entropy. The result also showed an inverted U-curve that

peaks at around geff = 0.033 mS/cm2 for both the model and the data (S9 Fig). These results all

indicate that intermediate coupling strengths induce chaotic behavior in both the model and

the data. Note that the relatively small changes in the complexity entropy that we observed in

the model and data correspond to large changes in the largest Lyapunov exponent λ1 (see Meth-

ods and S8B Fig), from synchronous and rhythmic firings (in both the model and the data,

entropy = 0.21, λ1 = 5 bits/second) to chaotic firings (entropy = 0.24, λ1 = 40 bits/second).

Discussion

Estimation of the physiological electrical coupling between IO neurons

from complex spike data

We developed a novel technique that combines computational modeling, Bayesian inference

and model-averaging to estimate the effective coupling among IO neurons from rat in vivo
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complex spike data and to investigate the effects of changes in this coupling on the dynamics

of olivo-cerebellar activity.

To estimate the effective coupling among IO neurons, we determined the gi and gc values

that allowed our model to best match the experimental complex spike data in conditions of

normal (CON), high (PIX), and low (CBX) synchrony levels, which are assumed to correspond

to normal, high, and low coupling among IO neurons. These values were then used to calculate

the effective coupling and coupling coefficients between IO neurons under these conditions.

In addition, we adopted a Bayesian model-averaging approach to examine the effect of synap-

tic input strength on the effective coupling. As the result, we obtained an estimate of the physi-

ological range over which the coupling between IO neurons may vary.

The validity of our methods to estimate coupling strengths is supported by several observa-

tions. First, the direction of the changes in gc and gi between the control and each drug condi-

tion determined by the model matched the known effects of the drugs. Specifically, PIX is a

GABAa receptor antagonist and the model best simulated the complex spike patterns in PIX

by decreasing gi. In contrast, CBX spiking patterns were best reproduced when gc and gi were

both reduced. These changes match the pharmacology of CBX, which is generally known as a

Fig 4. Inverted U-shaped relationship of complexity versus effective coupling, model and data. A-B: Complexity entropy versus effective coupling. Upper panel:

chaotic levels measured by the complexity entropy of the spike data as a function of effective coupling strength for the model (A) and real IO neurons (B) confirming that

moderate couplings induce chaos. Each value in (A) (open symbols) is given by the model neuron that best fits to the actual IO neuron in terms of the PCA error. The right

ordinates of A-B represent the first Lyapunov exponents approximated from the simulation data (S8B Fig). Each type of symbol in (B) represents the data of an individual

animal. The cyan solid lines indicate the second-order of linear model (A) and mixed-effects model (B) and shaded regions are of 95% CIs. Lower panel: spike trains of the

representative neurons (located at dark arrows in the upper panel of Fig 4B) which show periodic and synchronous firings for either low or high couplings but exhibits

chaotic firings for intermediate couplings.

https://doi.org/10.1371/journal.pcbi.1008075.g004
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gap junction blocker, but also blocks GABAa receptors [59]. Second, reflecting these changes gc
and gi, geff rose with PIX and fell with CBX, leading to increased and decreased coupling coeffi-

cients, respectively, which is again consistent with the observed experimental changes in complex

spike synchrony caused by these drugs. Third, our coupling coefficient results agree with those of

an in vitro slice study in which the effect of GABA on IO coupling coefficients was directly mea-

sured [49]. Specifically, baseline coupling coefficients in IO slices (CC = 0.021 ± 0.02, cf. S1

Table in [49]) closely match the values we obtained for the PIX condition (CC = 0.019 ± 0.006, Fig

1D), which is consistent with the fact that in both cases there is little to no GABAergic activity (the

lack of spontaneous GABAergic activity in the slice was confirmed by the lack of effect of applying

gabazine, a GABAa antagonist, on slice activity). Moreover, when GABAergic fibers were activated

optogenetically in the study of [49] (CC = 0.012 ± 0.013), this created a situation analogous to the

CON condition in our study (CC = 0.012 ± 0.003), because deep-cerebellar cells are spontaneously

active in the anesthetized animal. In both studies, an approximate doubling of the coupling coeffi-

cients was found for the conditions where GABAergic activity was reduced or blocked. Thus our

estimated coupling strengths values fall within the range of physiologically realistic values.

The validity of our approach also rests on the assumption that complex spike synchrony

observed in the recordings is primarily due to the electrical coupling of IO neurons as opposed

to some other source, such as correlated activity in afferents [72]. Indeed, in awake animals,

synaptic input to the IO can limit the impact of gap junctional coupling within the IO [73].

Furthermore, the synchrony is reduced under isoflurane anesthesia compared to the awake

state [20]. However, the evidence suggests that in our recordings, and probably under multiple

physiological conditions, complex spike synchrony patterns largely reflect the effective cou-

pling among IO neurons. We note that significant levels of complex spike synchrony remain

after blocking GABAergic and/or glutamatergic afferents to the IO [33–35]. Moreover, com-

plex spike synchrony depends on gap junction coupling, as it is lost or greatly decreased by

pharmacological block of the gap junctions and is absent in connexin36 knockout mice in

which IO neurons are not coupled [30,32,74]. Thus, synchrony in spontaneous complex spike

activity requires electrical coupling of IO neurons and can occur in the absence of IO afferent

activity. While these experiments were obtained in anesthetized animals, similar patterns of

synchrony are found for spontaneous complex spike activity in awake animals [63]. Thus, the

relationship between synchrony and electrical coupling seems to be broadly valid. Of course,

complex spike synchrony could be driven by highly synchronized afferent activity in certain

situations. In fact, complex spike activity driven by electrical stimulation of the motor cortex

does show higher levels of synchrony. However, even in this case, the spatial distribution of

synchrony still matches the spontaneous distribution set by electrical coupling [34]. In sum,

the basic patterns of complex spike synchrony seem to strongly reflect the coupling pattern

within the IO, even in the face of highly correlated afferent activity.

Synchrony as a mechanism for controlling dimensionality

Our analysis of complex-spike data shows that controlling the effective coupling between IO

neurons may be a mechanism for controlling the dimensionality of olivo-cerebellar activity. In

particular, we found that increased electrical coupling between IO neurons decreased the

dimensionality of IO firing dynamics. Dimensionality reduction has long been considered one

of the core computations in the brain [75–79]. Our study provides direct evidence that electri-

cal coupling among neurons can control the dimensionality of the population activity by mod-

ulating the synchrony of the neural code. Quantitatively, the approximately two-fold reduction

in dimensionality from the PIX to the CON condition was highly comparable to that of stimu-

lus-evoked activity of cortical neurons under different stimulus conditions and in varied tasks
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[76,79]. We note, however, that additional mechanisms could work in parallel to effectively

control the dimensionality, such as pruning of irrelevant inputs [80]. In the olivo-cerebellar

system, in particular, climbing fiber-Purkinje-cell synapses are gradually eliminated based on

IO activity during development [81,82]. We further note that our proposal of dimension

reduction of an oscillatory system via coupling-induced synchronization contrasts other neu-

ral networks (e.g., auto-encoders) in that we propose a framework of neural communication

among neurons for transmitting information rather than approximating a function that maps

the data from high-dimensional space to low-dimensional space (i.e, encoding/decoding). In

most artificial neural networks, such encoding/decoding scheme creates a black box on their

mechanisms in reducing the dimension in the data. For instance, there is no meaningful link

between the weights and the function being approximated or which variables in the data are

irrelevant is an open problem. In contrast, the core idea of our proposal is that coupling pro-

vides a biologically plausible mechanism to achieve stable and reliable transitions between dif-

ferent oscillatory regimes [83]. Such framework allows the olivo-cerebellar system to

dynamically control of the dimensionality depending upon the required task.

Intermediate coupling strengths induce chaotic firings in inferior olive

neurons

Our results also show that intermediate ranges of electrical coupling maximize chaotic dynamics.

The model suggests that low complexity entropies found at weak and strong coupling levels are

due to two different mechanisms. In the first mechanism, strong couplings synchronize the neu-

rons and thus reduce the entropy of the network. In the second mechanism, weak couplings

enhance asynchrony in the network. However, in the limit of no coupling, IO neurons do not

interact. In this case, the whole network possesses a quasi-periodic solution when natural frequen-

cies of different IO neurons have irrational ratios. It is known that the maximum Lyapunov expo-

nent of quasi-periodic solutions is zero [84]. Thus, no chaotic behavior is expected in the no

coupling condition, and very weak coupling should lead to similar dynamics. In contrast to the

scenario of strong and weak couplings, moderate interactions of the neurons via intermediate

coupling strengths induce asynchronous and irregular spiking activity and thus maximize the

entropy [85]. We note that, in addition to the coupling strengths, there exists several factors that

may affect chaotic dynamics of IO neurons. We found, in simulations, that the landscape of the

complexity entropy, with respect to inhibitory conductance gi and gap-junctional conductance gc,
changes as the synaptic input level varies (S10A Fig). However, an inverted-U curve of complexity

entropy as a function of effective coupling was observed in all the synaptic input levels tested, indi-

cating the robustness of our finding that intermediate coupling strengths induce chaos (S10B Fig).

The finding of an inverted U curve in both the model and experimental data are consistent

with the “chaotic resonance” hypothesis, according to which chaotic firing increases informa-

tion transmission despite the low firing rates of IO neurons [43]. We have previously pro-

posed, and shown in simulations, that such chaotic firing may be useful to enhance cerebellar

learning by increasing the error transmission capability of the olivocerebellar system [45]. In

agreement with this view, a previous combined in vitro and in vivo study of balanced excit-

atory/inhibitory cortical networks showed that the entropy of neural activity and mutual infor-

mation between stimulus and response are maximized [86].

Modulation of electrical coupling is a key parameter of olivocerebellar

activity

Our results support the view that the efficacy of coupling between IO neurons is regulated by

synaptic inputs to the IO, particularly those that terminate on the gap junction-coupled spines
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[25]. Both excitatory and inhibitory synapses are present and may provide complementary

mechanisms for controlling the strength of coupling between IO cells [87]. In the first mecha-

nism, presynaptic GABAergic terminals control the efficacy of electrical coupling

[25,26,49,56,88]. Note that GABAergic sources may also have an inhibitory effect on IO activ-

ity in general, and on their subthreshold oscillations in particular [89]. Thus, the changes in

complex spike activity probably reflect both changes in coupling strength and excitability of

IO neurons. We examined that possibility by varying the levels of the inhibitory synaptic

inputs in the model. The effective coupling strengths estimated from the IO spiking data was

slightly varied across the individual models, indicating the possible effect of GABAergic

sources on excitability of IO neurons. However, we also found consistent effects of the drugs

on the coupling strengths (i.e. increased by PIX and decreased by CBX), suggesting that the

effect on complex spike activity reflects the drugs’ effects on effective coupling strength directly

(S4C Fig). In the second mechanism, glutamatergic synapses may control the strength of cou-

pling between IO cells through both AMPA and NMDA-receptor mediated actions. It has

been shown that blocking of AMPA receptors restricts and modifies the distribution of com-

plex spike synchrony [34,35] and that activation of NMDA receptor strengthens coupling

between weakly-coupled IO neurons thereby expanding the coupled IO network [36,37].

Thus, both of these mechanisms suggest that the olivo-cerebellar system can dynamically con-

trol the synchrony level of their corresponding climbing fiber inputs through regulating the

coupling strength between IO neurons.

Changes in dimensionality enable changes in modes of motor learning and

control

The view that olivo-cerebellar axons carry error-based signals that induce plasticity at the par-

allel-fiber Purkinje cell synapses has received extensive experimental support since it was pro-

posed on theoretical grounds by Marr and Albus (see Introduction). In addition, animal and

human experimental data support the importance of electrical coupling for cerebellar learning

[90,91]. Our results are compatible with the view that by modulating electrical coupling of IO

neurons the dimensionality of olivo-cerebellar activity is adaptively optimized for different

modes of motor learning. While plasticity of parallel fiber synapses with any particular PC

may not necessarily depend on the dimensionality of IO activity, dimensionality and syn-

chrony may have an influence on the distribution of plasticity across PCs, and this may be a

key parameter of motor learning. For example, in the early phase of learning, motor com-

mands are far from the desired ones. As a result, the Purkinje cells would be strongly modu-

lated by large sensory inputs due to large error signals and their activity would inhibit

cerebellar nuclei-IO neurons, thereby decreasing GABA release in the IO. Thus, IO neurons

would be strongly coupled, and the dimensionality of olivo-cerebellar activity would be low.

Because of this low dimensionality, the IO network would respond only to low-frequency

components of the error signals, which would convey only the gross features of the motor

commands. However, the strong coupling would allow widespread synchrony among IO neu-

rons and potentially lead to parallel-fiber-Purkinje-cell synaptic plasticity (LTP or LTD)

among large numbers of PCs simultaneously, resulting in fast but coarse learning. In contrast,

in the late phase of learning, as the motor error becomes smaller, error-driven Purkinje

cell activity would decrease, allowing increased activity of cerebellar nucleo-olivary neurons.

This would result, in turn, in reduced IO coupling, lower synchrony, and thereby higher

dimensionality. Furthermore, the decreased synchrony potentially would allow the occurrence

of chaotic resonance to enhance information transmission of the error signals [41–45], which

would overcome the constraint of low IO firing rates [55,92]. De-synchronized, high-
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dimensional IO activity may optimally select the sites at which LTD/LTP occurs, and thereby

allow more sophisticated learning, resulting in fine tuning of motor commands [45,46,93].

In addition to its effect on plasticity and learning, it is thought that the IO activity contrib-

utes directly to ongoing motor outputs throughout the learning process because changes in

synchrony levels affect cerebellar nuclear cell activity directly [21,61,94]. Early on, highly syn-

chronous activity, perhaps triggered by error signals, would trigger relatively crude corrective

movements. Later on, more restricted synchrony patterns would convey high dimensional sig-

nals to be used for the fine grain motor control commands that are needed for precise motor

coordination [19]. Note that the motor learning and control functions of the IO are not mutu-

ally exclusive, and the current consensus is that the olivo-cerebellar system contributes to both

functions. Indeed, conceptual proposals have been made to integrate these two functional

roles [39,95,96]. Additional modeling studies, in which IO and cerebellar networks are embed-

ded into realistic motor systems with multiple muscles and joints will be needed to fully inte-

grate and understand the role of the IO with its varying coupling strengths into motor learning

and control.

Methods

The recording experiments were performed in accordance with the National Institute of

Health Guide for the Care and Use of Laboratory Animals. Experimental protocols were

approved by the Institutional Animal Care and Use Committee of New York University School

of Medicine.

Experimental data

The analyses were performed on a subset of data obtained in two prior series of experiments in

ketamine/xylazine anesthetized female, Sprague-Dawley rats that involved either injection of

picrotoxin (PIX) or carbenoxolone (CBX) to the IO to block GABA-A receptors or gap junc-

tions, respectively [30,33,34]. The specific experiments were chosen primarily on the basis of

having typical complex spike activity in control and a large change in activity in response to

the drug injection.

Details of the experimental procedures can be found in the original reports. In brief, a rect-

angular array of glass microelectrodes was implanted into the apical surface of crus 2a. The

arrays typically contained 3–4 mediolaterally running rows and up to 10 rostro-caudally run-

ning columns, with an interelectrode spacing of ~250 μm. Electrodes were implanted to a

depth of ~100 μm below the brain surface such that complex spikes from individual Purkinje

cells were recorded. In each experiment, spontaneous complex spike activity was recorded

during an initial control period. Following the control (CON) period, the IO was located by

lowering a microelectrode through the brainstem under stereotaxic guidance until activity

characteristic of IO neurons was observed. The microelectrode was then replaced by an injec-

tion pipette containing the drug solution that was lowered to the same location as the site

where IO activity was found. A slow injection of drug solution was then performed (~1 μl over

5–10 min). The drug conditions analyzed were recorded after completion of the injection and

a clear change in activity was observed. The multielectrode arrays recorded from 10–30 Pur-

kinje cells in each of the CBX experiments (n = 6 animals), and from 16–42 Purkinje cells in

the PIX experiments (n = 3 animals).

The effect of CBX and PIX on complex spike activity often varied among cells within an

experiment. This was likely due to the Purkinje cells in different parts of the array receiving

climbing fibers from different regions of the IO, that the drugs were injected at a single point

within the IO, and that drug concentration (and therefore efficacy) will fall with distance from
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the injection site. Indeed, the IO is an extended structure (particularly in the rostrocaudal axis

where it is ~2 mm long). We therefore considered the effects of the drugs when selecting the

neurons for analysis. That is, Purkinje cells that exhibited significant changes in complex spike

firing rate, measured as the mean number of spikes per second, between the control and drug

conditions were selected. For CBX, the criterion was a 50% decrease and for PIX it was a 50%

increase (S2 Fig). In total, we analyzed spike train data from 500-second long periods for the

control and drug conditions for each neuron (neurons/condition: control, n = 100; PIX,

n = 47; CBX, n = 53).

IO network model

The IO neuron model is a conductance-based model [52] extended via addition of glomerular

compartments comprising electrically coupled spines [56]. The network model consisted of an

array of 3x3 IO neurons, each of which was mutually connected to its four neighboring neu-

rons by a gap junction from one of its spines to one of its neighbor’s represented by the gap-

junctional conductance gc, whose strength was drawn from a uniform distribution with the

maximum deviation set at ± 20% of the mean (S3A Fig).

We simulated spike data of the nine cells with stepwise changes of two model parameters:

inhibitory synaptic conductance gi, and coupling conductance gc. These two parameters were

both varied in the range of 0–2.0 mS/cm2 with an increment of 0.05 mS/cm2. We generated a

total of 41x41 = 1681 sets of 500-second long simulated spike trains. The simulated spike data

for each variation of gi and gc was then compared with the actual spike data, and the parame-

ters whose firing dynamics best fit to that of individual neurons in the control, PIX, and CBX

conditions were selected as the estimated values (see below for details). Because the effect of

the axial conductance of the spines, gs, is equivalent to that of the gap-junctional conductance,

gc, in determining the amount of current will flow across the gap junction, gs does not need to

be estimated from the data and thus was fixed at 0.1 mS/cm2 [56]. To better account for excit-

ability of the neurons in vivo, the inward sodium current conductance gNa was set as 110 mS/

cm2, which has been shown to induce robust chaos in the model [43]. All of the soma, den-

drite, and spine compartments respectively receive 10, 80, and 10 excitatory and inhibitory

synapses driven by Poisson spike generators [56]. The numbers of synapses are roughly pro-

portional to the surface areas of the three compartments.

The segmental Bayes inference for estimating the effective coupling from a

single model

Under simplified assumptions, the effective coupling, geff, between two IO neurons was calcu-

lated from the axial conductance of the spines gs, inhibitory conductance gi and gap-junctional

conductance gc as in [57]:

geff ¼
gs

2gc þ gi þ gs
gc: ð1Þ

This equation implies that to estimate the effective coupling geff, we need to estimate both

the coupling conductance gc and the GABA conductance gi reliably for each of the three data-

sets CBX, CON, and PIX. For that purpose, we previously developed a Bayesian method that

contains two steps [51]. In the first step, the parameters are estimated for each 50-second time-

segment of individual neurons, allowing the parameter values to vary in time. This compen-

sates for inevitable mismatch in the firing patterns between the model and the data. In the sec-

ond step, a single set of parameter values is estimated for the entire set of time-segments of
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individual neurons by a hierarchical Bayes framework. Below, we outline the segmental Bayes

method (for a detailed description, see [51]).

First, the firing dynamics of the spike data were characterized by a feature vector composed

of a total of sixty-seven spatiotemporal features, e.g., firing rate, local variation [58], cross-cor-

relation, auto-correlation, and minimal distance [97]. Principal component analysis (PCA)

was then conducted to remove the redundancy of those features. The Bayesian inference aims

to inversely estimate the conductance values from the top three principal components, which

accounted for 55% of the data variance (S3B Fig). To compensate for the modeling errors, i.e.

differences in the complexity of firing patterns between the model and actual neurons, we

divided the spike data of each neuron into short time-segments under the assumption that seg-

mental estimates of individual neurons fluctuated around a single neuronal estimate with a

normal (Gaussian) distribution. The conductance values of individual neurons can be esti-

mated by a hierarchical Bayesian framework (S3C Fig). Here, the segment size, 50 seconds,

was optimized so that the variance of firing frequency across segments was minimal [56]. We

have shown that the segmental Bayes algorithm minimizes the fitting between experimental

and simulated spike data [51], and further confirmed, by simulations, that it indeed minimizes

the estimation errors compared to other conventional methods–including the non-segmental

Bayes inference, which finds the estimates once across the entire spike data, and the mini-

mum-error algorithm, which directly finds the closest match in the feature space [98].

Model-averaging estimation of the effective coupling between IO neurons

We found that the firing frequency of inhibitory synaptic noise inputs significantly affects the

spiking behavior of the IO model and thus the estimation results. To reduce the uncertainty in

estimates of gc and gi, we therefore adopted the segmental Bayes algorithm by using a model-

averaging approach as follows (for review, see [99]). We first simulated four models with the

firing frequency of inhibitory synaptic inputs of 10, 20, 50 and 70 Hz, which are observed in

slices of cerebellar nucleo-olivary neurons [100]. Next, we conducted the segmental Bayes to

estimate posterior probability of gi and gc for each model.

Pðgjy;miÞ / Pðyjg;miÞPðgjmiÞ; ð2Þ

where P(g | y,mi) is the posterior probability of the conductance g = (gi, gc), y is the feature vec-

tors extracted from the spike data, andmi is the ith selected model (i = 1. . .4). We then mixed

the posterior probabilities with the weights proportional to the model evidence as follows:

PðgjyÞ ¼
P

i¼1:4
Pðgjy;miÞPðmijyÞ;

PðmijyÞ / PðyjmiÞPðmiÞ;

PðyjmiÞ ¼
R

gPðyjg;miÞPðgjmiÞdg;

PðmiÞ / 1;

ð3Þ

where P(g | y) is the mixed probability for an individual neuron and P(y | mi) is the evidence of

the ith model. Here, all models are treated equally with a non-preference prior P(mi). Finally,

the point estimates of gi and gc were computed by marginalizing the mixed posterior probabili-

ties (S4B Fig).

Calculation of the synchrony for individual neurons

The spike train of a neuron was binned into X(i), where i represents the time step (i = 1,. . .,T),
with X(i) = 1 if the spike occurs in the ith time bin; otherwise, X(i) = 0. The synchrony of two
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different neurons, x and y, was calculated as the cross-correlation coefficient at zero-time lag:

Cx;y ¼
PT

i¼1
�XðiÞ�Y ðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

i¼1
�XðiÞ2

PT
i¼1

�Y ðiÞ2
q ; ð4Þ

�X ið Þ ¼ X ið Þ �
1

T
PT

j¼1
XðjÞ; �Y ið Þ ¼ Y ið Þ �

1

T
PT

j¼1
YðjÞ;

where �XðiÞ and �Y ðiÞ are the normalized forms of X(i) and Y(i) to account for the firing fre-

quency. Here, the two spikes were considered synchronous if their onsets occur in the same 10

milli-second bin. The synchrony level of an individual neuron x was computed as the mean of

Cx,y for all neurons y6¼x in the same animal.

Estimation of the coupling coefficient by simulations

To examine whether the estimates of effective coupling strengths were biologically realistic, we

computed the coupling coefficients (CCs) for the model neurons as follows. After hyperpolarizing

all neurons to -69 mV by injection of Ihyp = -1 μA/cm2 to increase responsiveness, we injected a

step current Icmd = -1 μA/cm2 in the soma of the center neuron. We computed the CCs as the

average ratio of change in steady state membrane potentials of this “master” cell and its four

neighboring cells (S5A Fig). We generated and computed the CCs for hundreds of gi and gc values

over the range that the estimated conductance of the data was distributed and found a strong pos-

itive correlation between the effective coupling and the CC (S5B Fig, R2 = 0.8, p< 0.0001). CC

was determined by transforming the geff value with the fitted model of geff vs. CC (S5B Fig).

Estimation of the dimensionality of neural firings

The dimensionality can be considered as the minimal dimensions necessary to provide an

accurate description of the neural dynamics. Principal component analysis (PCA) has become

the most widely used approach for determining this, because it enables neural dynamics to be

represented in a lower dimensional space [79]. Here, we adopted this approach for estimating

the dimensionality of the firing activity of a small number of neurons, like the numbers in the

recording arrays.

We first sampled 50-s long spike trains using sampling intervals of 10 milli-seconds, from

which the firing rate vectors of all neurons were computed (S6A Fig). Firing rate vector in

each sampled window corresponds to an observation in the N-dimensional space, where N is

the number of ensemble neurons. Then, PCA was applied to estimate the dimensionality as

[60]:

d ¼
1

PN
i¼1

~l2
i

; ð5Þ

where ~l i ¼ li=ð
P

jljÞ are the principal eigenvalues expressed as the amount of variance

explained (S6A Fig), and λi is the ith eigenvalue of the covariance matrix of the firing rate

vectors.

To test whether dimensionality was sensitive to the duration of the sampled window, win-

dows with duration of 10–50 seconds were analyzed. No significant different values were

found (S6B Fig), probably because IO firing rates are stable across each condition. However, it

has been shown that dimensionality estimation depends on the number of ensemble neurons

N. Specifically, d is underestimated for small N but becomes independent of N for sufficiently

large N [79]. After data selection (see above), the number of IO neurons in each animal is
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N = 4–20, which is likely to suffer from the under-sampling bias. Thus, to compare dimension-

ality among the animals, we normalized it by the number of selected IO neurons in individual

animals (i.e normalized d = d/N).

Computation of the complexity entropy

The Lyapunov exponents quantify the sensitivity of a dynamical system to initial conditions, and

thus are often used as indicators of chaos [65,66]. A number of methods have been developed to

compute the Lyapunov exponents from time series with a fixed sampling interval [67,68]. Those

methods, however, are not applicable for our IO data because computation of Lyapunov expo-

nents requires access to continuous variables, which is not the case in our discrete IO spike sets.

We therefore adopted a previously proposed approach [70] that approximates the Lyapunov

exponents via a recurrence plot by using the edit distance of spike trains [101]. Our method

requires computing the modified edit distance of the spike trains [97] and its recurrence plot

[102,103]. The edit distance of two derived windows is defined by a total minimal cost for con-

verting one window to the other [101]. Allowed operations include deletion or insertion of events

(both cost 1 for each event), and shift of events (cost 20% the amount of shifting in second for

each event). The complexity entropy [69] was computed from the distribution of the length of

diagonal lines in the recurrence plot (see S8 Fig for illustration of the complexity method).

Specifically, we first sampled the spikes trains in windows of 50 seconds and computed the

edit distance for all pairs of sampled windows. To resolve the issue of discontinuity induced by

the difference in the number of spikes in two sampled windows, we adopted a modified version

of edit distance computation as in [97]. Briefly, for each sampled window, we took into account

the spikes that occur immediately before and/or after the time window, thus resulting in four

derived windows. We then computed the edit distance for a total of 16 (4x4) derived pairs of the

two sampled windows and temporarily assigned the minimum value as edit distance between

them. The edit distance for all pairs of sampled windows of 50 seconds with an interval of 2 sec-

onds constitutes a two-dimensional distance matrix. We then updated the edit distance matrix by

the shortest distance connecting any two sampled windows–S8A Fig. The recurrence plot is con-

structed by binarizing the edit distance matrix, with the distance values smaller than a predefined

threshold as 1, and the others else as 0 [102]. The threshold was determined so that 10% of data

points in the distance matrix were 1, as in [103]. Next, we extracted the frequency distribution of

the length of the points 1 that form diagonal lines in the recurrence plot. The Shannon entropy of

that distribution has been shown to be inversely proportional to the largest Lyapunov exponent

[69]. We thus used the inverse of Shannon entropy as a measure of chaos for the spike data.

To validate that complexity entropy is an indicator of chaos, we generated noise-free simu-

lation data and computed the correlations between complexity entropy and the Lyapunov

indexes (S8B and S8C Fig). Note that this approach is possible for the simulation data because

we have access to the continuous trace of the membrane potential. Specifically, we first

removed the noise in the synaptic inputs, and simulated 500-second spike trains for more than

100 conductance values (gi varied in 0–1.0 mS/cm2 and gc in 0–2.0 mS/cm2) and estimated the

complexity entropy from the simulated spike trains. Next we computed the Lyapunov expo-

nents of the IO model by the method of [104], and then extracted the largest component, λ1, as

well as the Lyapunov dimension, DKY, as these are two direct indicators of chaos [105].

Statistical analysis

Unless specifically stated elsewhere, all data is reported as mean ± std. The non-parametric

Kruskal-Wallis one-way analysis of variance was used to test whether data groups of different

sizes originate from the same distribution.
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Code availability

The simulation code of the IO network model is hosted publicly on github, accessible via

https://github.com/hoang-atr/io_model. The MATLAB implementations of the segmental

Bayes algorithm [51] and the complexity entropy method [70] are available upon request from

the corresponding authors.

Supporting information

S1 Fig. Inferior olive firing data set for all animals. A: Spike data in 50 second of 10 repre-

sentative neurons in 9 animals with the physiological conditions (CBX and PIX) in the right

and the control condition (CON) in the left columns.

(TIF)

S2 Fig. Data selection by changes in the firing rate. A: the histograms of firing rate change by

drug treatments (decreased by CBX and increased by PIX) compared to the CON condition.

The red lines indicate the thresholds (50%) for selecting the neurons for analysis. B: pseudo-

color maps show the firing rate change by drug treatments of the neurons in the micro-elec-

trode arrays for six CBX animals (top two rows) and three PIX animals (bottom row). Red

asterisks indicated the selected neurons, whose firing rate changes exceed the thresholds.

(TIF)

S3 Fig. Estimation of the conductances from spiking data using IO model and segmental

Bayes algorithm. A: left, electrical circuit equivalents of the soma (S), dendrite (D) and spine

compartments (SP) of a model IO neuron. middle, the connection of two IO neurons via a gap

junctional conductance gc that connects the spine compartments. right, The IO network,

which consists of 3x3 neurons, each of which is connected to its four neighboring neurons as

shown. B: Left, five major features (FR = firing rate, ACG1 = auto-correlogram in 50 ms bin,

CCG1 = cross-correlogram in 50 ms bin, MD1 = the first fraction of the minimal distance dis-

tribution, LV = local variation) extracted from spiking data of the three conditions (see [56]

for detailed definitions of the features). Each feature was normalized by the mean value of the

CON level. Right, the top two principal components of the extracted features. C: Flow chart of

conductance estimation for each neuron. To account for highly non-stationary of the spike

patterns in the three data condition, we divided the spike data of each neuron into small time-

segments, applied the Bayesian inference to estimate gi and gc for every segment under the

assumption that segmental estimates were drawn from a single neuronal estimate of a normal

(Gaussian) distribution with unknown mean and the variance as a prior (left). The variance

was optimized so as to maximize the fit of the data and the model in the PCA space. The poste-

rior estimation for a representative neuron’s gi and gc conductances (right). A broad probabil-

ity distribution was found when the variance was relaxed but a much smaller distribution

resulted when optimized variance was used [51].

(TIF)

S4 Fig. Improving the parameter estimates via Bayesian model-averaging. A: PCA error

rates of the gi and gc estimates by the segmental Bayesian inference averaged for the entire IO

neurons for CBX, CON, and PIX conditions for four different models (color bars) in compari-

son with the previous model (black bar, [56]). The error bars are of 95% CIs. B: Posterior proba-

bilities of a representative IO neuron by individual models and the mixed posterior probability

with the weights determined by the evidence of Bayesian inference. C: boxplots show estimates

of the effective coupling geff of the three data conditions in the four individual models.

(TIF)
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S5 Fig. Estimation of the coupling coefficient (CC) by simulation. A: We injected a current

pulse of -1 μA/cm2 to a cell and recorded the steady-state voltage change of this “master” cell

and its four post-junctional cells. B: We computed the CCs for hundreds of gi and gc values in

the range over which the estimated conductances of the data distributed, and found a strong

positive correlation between the effective coupling and the CC (R2 = 0.8, p< 0.0001). Note

that the non-linear fit represents the nature of deriving geff from gi and gc following Eq (1).

(TIF)

S6 Fig. Dimensionality estimation for the spike data of ensemble neurons. A: Illustration of

the principal component analysis (PCA) for the firing rate vectors extracted from 50-second

windows of three neurons of Animal #6 in the CON condition. The estimated dimensionality

d = 1.86 (dashed dark line, Eq 5), indicates that the approximately 2-dimensional subspace

(shaded gray plane) can explain more than 90% of the variance of neural firing dynamics. B:

Estimating dimensionality (Eq 5) with varied window lengths from 10–50 seconds for 9 ani-

mals in the three data conditions showing the robustness of dimensionality estimation against

the window length. The error bars are of 95% CIs.

(TIF)

S7 Fig. Change in synchrony is linearly coupled with change in dimensionality. We first

divided the complex spike data of 9 animals in the control condition into a series of shorter

segments using a moving window of length 5, 10, 20, or 50 s, whose start incremented in 1 sec-

ond steps. Next, we computed the dimensionality and the synchrony (both in 10 milli-second

timescale) for each segment (A) and measured the correlation coefficient between those two

metrics (B). The correlation coefficients were negative for almost all animals and window

lengths (C). These results provide clear evidence that variations of synchrony within the physi-

ological range are negatively correlated with changes in dimensionality. Note that the control

data of spontaneous complex spike activity in our study is within the range of physiologically

occurring synchrony levels. A: time-varying synchrony (left ordinate) and dimensionality

(right ordinate) in successive, overlapped 10-s sliding windows of the control recording from

animal #3. B: Scatterplot of correlation versus dimensionality values shown in A shows the

presence of a significant negative correlation (r = -0.6). C: synchrony vs. dimensionality corre-

lation coefficients for 9 control animals and all tested window lengths.

(TIF)

S8 Fig. Computation and validation of the complexity entropy method. A: Illustration of

edit distance computation between two sampled spike windows shows a sequence of elemen-

tary steps that convert the spike window (a) into (b). Each bar represents one spike. Allowed

operations include deletion of a spike (shown in red), insertion of a spike (shown in green), or

shifting a spike in time (blue arrows). Computation of edit distance for continuous sampling

windows for the entire spike train constitutes the edit distance matrix. Then, the recurrent plot

is constructed by binarizing the edit distance matrix. The points, whose values are smaller than

the threshold, were plotted as white dots, otherwise as black dots. Complexity entropy is com-

puted as the inverse of Shannon entropy, in terms of frequency distribution of the length of

the diagonal lines of white dots [69]. B–C: Complexity entropy measured for a total of a hun-

dred of parameter values (black crosses) in noise-free simulations showed strong positive cor-

relations with the largest Lyapunov exponent λ1 (regression model: λ1 ~ 1 + entropy, R2 = 0.4,

F-test: p< 0.0001, S8B Fig) and the Lyapunov dimension DKY (DKY ~ 1 + entropy, R2 = 0.48,

F-test: p< 0.0001, S8C Fig). Solid cyan lines represent the fit of linear models with 95% CIs

(dashed cyan lines).

(TIF)
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S9 Fig. Validation of the inverted U-shaped curves. We investigated whether intermediate

couplings maximize the complexity entropy by applying a non-parametric Gaussian Process

regression model, which does not assume an explicit relationship between the coupling and

the complexity entropy. Still, we observed inverted U-shaped curves maximized at around geff
= 0.033 mS/cm2 for both the model (A) and the data (B). In sum, these results support the

inverted U-shaped relationship between the effective coupling and complexity entropy. The

right ordinates of A–B represent the first Lyapunov exponents approximated from the simula-

tion data (see S8B Fig), indicating that intermediate couplings induce chaos. The shaded

regions are of ±sem.

(TIF)

S10 Fig. Effect of inhibitory synaptic input on complexity entropy. A: the pseudo-color

heatmap of the complexity entropies, averaged across 9 model neurons, for all pairs of (gi, gc)
in the range of 0–2 mS/cm2. The frequency of inhibitory synaptic input noise was varied in the

range of 10–70 Hz. B: complexity entropy vs. effective coupling geff. In each model, a second-

order regression (entropy ~ 1 + geff + geff2) fit was shown by black thick line. The second-order

coefficient was negative and significant for all the models indicating the robustness of the

inverted-U curve.

(TIF)
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85. Bertschinger N, Natschläger T. Real-time computation at the edge of chaos in recurrent neural net-

works. Neural Comput. 2004 Jul; 16(7):1413–36. https://doi.org/10.1162/089976604323057443

PMID: 15165396

86. Shew WL, Yang H, Yu S, Roy R, Plenz D. Information Capacity and Transmission Are Maximized in

Balanced Cortical Networks with Neuronal Avalanches. J Neurosci. 2011 Jan 5; 31(1):55–63. https://

doi.org/10.1523/JNEUROSCI.4637-10.2011 PMID: 21209189
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