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Abstract

The brain’s most difficult computation in decision-making learning is searching for essential information related to rewards among vast
multimodal inputs and then integrating it into beneficial behaviors. Contextual cues consisting of limbic, cognitive, visual, auditory, somatosensory,
and motor signals need to be associated with both rewards and actions by utilizing an internal representation such as reward prediction and reward
prediction error. Previous studies have suggested that a suitable brain structure for such integration is the neural circuitry associated with multiple
cortico-striatal loops. However, computational exploration still remains into how the information in and around these multiple closed loops can
be shared and transferred. Here, we propose a “heterarchical reinforcement learning” model, where reward prediction made by more limbic and
cognitive loops is propagated to motor loops by spiral projections between the striatum and substantia nigra, assisted by cortical projections to
the pedunculopontine tegmental nucleus, which sends excitatory input to the substantia nigra. The model makes several fMRI-testable predictions
of brain activity during stimulus-action-reward association learning. The caudate nucleus and the cognitive cortical areas are correlated with
reward prediction error, while the putamen and motor-related areas are correlated with stimulus-action-dependent reward prediction. Furthermore,
a heterogeneous activity pattern within the striatum is predicted depending on learning difficulty, i.e., the anterior medial caudate nucleus will be
correlated more with reward prediction error when learning becomes difficult, while the posterior putamen will be correlated more with stimulus-
action-dependent reward prediction in easy learning. Our fMRI results revealed that different cortico-striatal loops are operating, as suggested by
the proposed model.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Whenever faced with a decision-making situation, our brain
has to integrate multiple sources of information. That is, it
needs to explore and choose relevant features among limbic,
cognitive, visual, auditory, somatosensory, and motor signals
to characterize the given situation and evaluate the relative
advantages of possible behaviors in terms of reward to select
the appropriate action. This integration is particularly important
during learning because contextual cues must be associated
with both reward and action to achieve valuable and rapid
decision-making.
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The striatum has been regarded as a key player in
multimodal integration during learning for the following
two reasons. First, since it constitutes distinct loop circuits
with many cortical areas including prefrontal, medial frontal,
cingulate, and premotor and primary motor cortices (Alexander,
Crutcher, & Delong, 1990; Gerardin et al., 2003; Parthsarathy,
Schall, & Graybiel, 1992; Selemon & Goldman-Rakic, 1985;
Takada, Tokuno, Nambu, & Inase, 1998), it therefore has
access to multimodal information. Second, the striatum has
strong reciprocal connections with the substantia nigra pars
compacta (SNc) and the ventral tegmental area (VTA), so
it can therefore regulate multimodal inputs by the effect of
dopamine (Hollerman & Schultz, 1998; Schultz, Apicella,
Scarnati, & Ljungberg, 1992; Schultz & Dickinson, 2000;
Takikawa, Kawagoe, & Hikosaka, 2004). However, it is
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well-known that each cortico-striatal loop is closed; a loop
originating from a cortical region goes around the striatum,
the globus pallidus, and the thalamus and then projects back
to the original location without much blending (Middleton &
Strick, 2000). This anatomical specificity poses an intriguingly
difficult computational question: how can the information
processing conducted by different closed cortico-striatal loops
be integrated? In other words, an additional mechanism is
needed to link different cortico-striatal loops, except the
intracortical connections that are quite remote from the center
of reinforcement learning.

In this paper, we first propose a heterarchical reinforcement-
learning model in which dopamine projection from the SNc
and the VTA to the striatum plays a key role in this
integration. Dopamine projections are used as a messenger
shared by multiple cortico-striatal loops. It is widely accepted
that at the timing of reward delivery, dopamine neurons
in the SNc and the VTA encode some error of reward
prediction, which is computed by the interaction between the
cortex, the striatum, the SNc/VTA, and the pedunculopontine
tegmental nucleus (Hollerman & Schultz, 1998; Schultz
et al., 1992; Houk, Adams, & Barto, 1995; Kobayashi,
Inoue, Yamamoto, Isa, & Aizawa, 2002; Montague, Dayan,
& Sejnowski, 1996; Takikawa et al., 2004). Furthermore,
in the loop circuit between the striatum and the midbrain
(SNc/VTA), the dorsal striatum influences a limited midbrain
region, but it is affected by a larger midbrain region (Haber,
Fudge, & McFarland, 2000; Haber, 2003). Additionally,
the pedunculopontine tegmental nucleus (PPTN) and the
laterodorsal tegmental receive cortical excitatory inputs and
projects to the SNc and the VTA by excitatory synapses,
respectively (Oakman, Faris, Kerr, Cozzari, & Hartman,
1995). Based on these two facts, which indicate spatially
heterogeneous distribution of reward prediction and reward
prediction error, the heterarchical reinforcement learning model
proposes that early-learning-stage reward prediction in the
striatum and the SNc/VTA is only obtained from very coarse
description of a given situation (mainly limbic and associative
information such as that obtained by rough inferences or
guesses from rewards), which can be spread as dopamine inputs
to motor cortico-striatal loops. Then, detailed and reliable
reward predictions can be computed, which incorporate richer
and more detailed information including motor commands.
This gradual propagation of reward prediction and reward
prediction error contributes to increase the efficiency of the
reinforcement learning of complex tasks.

The proposed model can make several predictions regarding
neural activity in the component brain structures such as
the cortico-striatal loops, the SNc, the VTA, and the PPTN.
In the experimental section of this paper, we will focus
on predictions for the cortico-striatal loops because they are
testable within the spatial and temporal resolutions of fMRI.
More specifically, we hypothesize that activity in the caudate
nucleus and cognitive cortical areas is correlated with reward
prediction error from the beginning because the error is mainly
comprised of rough inferences from rewards. On the other hand,
activity in the putamen and motor-related areas is expected to
be correlated with stimulus-action-dependent reward prediction
because the association of reward and motor information is
required. Furthermore, when we make learning more difficult,
it is not only predictable that activity in the caudate nucleus
and cognitive cortical areas shows more correlation with reward
prediction error because learning is at a more initial phase
but also that the locus of activity changes systematically
within the striatum. We examined these predictions by using
model-based fMRI (Haruno et al., 2004; Haruno & Kawato,
2006; O’Doherty et al., 2004), where a computational model
is utilized to estimate such internal subject variables as
reward prediction and reward prediction error, which are then
used in the correlation analysis of brain activity data (it is
straightforward to apply this approach to other modalities
including electrophysiology, optical imaging, etc).

In the rest of the paper, we will first provide qualitative
explanations of the heterarchical reinforcement learning model
and its predictions on fMRI signals during stimulus-action-
reward association learning. Next, we will move to more formal
details of the heterarchical reinforcement learning model.
Finally, we will discuss the experimental setting and results
using fMRI in comparison with the model’s predictions.

2. Heterarchical reinforcement learning model

2.1. Temporal-difference learning model

A reinforcement learning model, which is an appealing
theoretical framework that might explain the essential aspects
of animal and human learning, is only guided by reward and
penalty information. The temporal-difference learning (TD)
model (Barto, Sutton, & Anderson, 1983; Sutton & Barto,
1998) is the most established formulation of reinforcement
learning, and it tries to learn a so-called value function V (s, t)
that represents the expectation of the discounted sum of future
rewards starting from context (state) s at time t . In this equation,
r(t) and γ are actual rewards at time t and a discount factor for
future rewards:

V (s, t) = E

{(
∞∑

k=0

γ krt+k+1

∣∣∣∣∣ st = s

)}
.

During learning, the TD model updates V (s, t) as follows in
proportion to TD error δ(t):

V (s, t)← V (s, t)+ αδ(t).

δ(t) = γ V (st+1, t + 1)+ r(t)− V (st , t).

The first and second terms of TD error are the estimations of
V (s, t) after receiving a reward at time t , while the third term
is the same estimation before receiving the reward. Therefore,
when the estimation of V (s, t) is complete, TD error δ(t)
should be 0. The TD model changes the estimation of V (s, t) in
the direction minimizing TD error δ(t). An important variant of
the TD model is Q-learning, which employs Q(s, a, t) rather
than V (s, t), that represents the expectation of the discounted
sum of future rewards starting from context (state) s and action
a at time t . The TD model is attractive not only because
simple computation of TD error can be used to handle the
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Fig. 1. Neural circuits consisting of cortico-striatal and striato-nigral loops. DLPFC: dorsolateral prefrontal cortex, OFC: orbitofrontal cortex, ACC: anterior
cingulate cortex, CMr: rostral cingulate motor area, PMd: dorsal premotor cortex, PMv: ventral premotor cortex, MI: primary motor cortex.
delay between an action and a reward (called the “temporal
credit assignment problem”) (Sutton & Barto, 1998) but also
because some relatively complicated discrete problems such
as backgammon can be successfully solved at the same levels
as human experts. Furthermore, a recent neurophysiological
study (Schultz & Dickinson, 2000) suggests that dopamine
neurons represent TD error.

2.2. Basic ideas and predictions for fMRI experiments

Applying the standard algorithms to such examples of
reinforcement learning as above, even to the medium-sized,
real-world sensory-motor problems that animals and humans
face daily, reveals them to be so unsatisfactorily slow that they
cannot be practically utilized. Only by introducing a modular
and hierarchical reinforcement learning architecture could such
relatively large-scale problems as a standing robot be solved
within a reasonable amount of learning trials (Morimoto &
Doya, 1999). Driven by the same necessity from practical
applications, studies of hierarchical reinforcement learning
have been active (Dayan & Hinton, 1993; Singh, 1992;
Sutton, Singh, Precup, & Ravindran, 1999), but they have met
with only fairly limited success; in real-world problems it is
unrealistic to design the hard hierarchy of modules (subgoals)
that strictly controls how to switch reward predictions
and subgoals between higher and lower hierarchical layers.
This limitation suggests that in actual animal reinforcement
learning, heterogeneous reward predictions are softly combined
depending on their time-varying significance instead of such a
hard hierarchy.

Here, we propose a heterarchical reinforcement learning
model as a computational model of animal reinforcement
learning. The model’s most important aspect is that reward
prediction made by limbic and cognitive loops is propagated
to motor loops by spiral projections between the striatum and
substantia nigra. This mechanism allows the reward prediction
error coarsely represented by the cognitive loop to guide
the learning of more detailed reward predictions in motor
loops, which incorporate more detailed information such as
motor commands. Fig. 1 illustrates the anatomical connections
of the two key components, the cortico-striatal and striato-
nigral loops, based on work from Haber’s group (Haber
et al., 2000; Haber, 2003). The illustrated spiral striato-nigral
connection is one of the two anatomical and physiological
pieces of evidence that support our heterarchical reinforcement-
learning model. The striatum maintains closed loop circuits
with many cortical areas including the medial prefrontal, the
orbitofrontal, the dorsolateral prefrontal, the anterior cingulate,
the cingulate motor, the dorsal and ventral premotor, and the
primary motor cortices. A remarkable difference between the
caudate nucleus and the ventral striatum from the putamen
is that the caudate and the ventral striatum mainly receive
projection from the cognitive areas of the cortex, whereas the
putamen is projected more by such motor-related areas as
the premotor and cingulate motor areas (Price, Carmichael,
& Drevets, 1996). In contrast to the closed nature of the
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cortico-striatal loop, afferent and efferent projections are
asymmetric in the striato-nigral loop (Haber et al., 2000; Haber,
2003). That is, the dorsal striatum influences a limited region of
the SNc and the VTA, but is affected by a larger region. On
the other hand, the ventral striatum receives limited midbrain
input, but projects to a large region. The efference part of
these spiral connections enables reward prediction coded by
caudate neurons constructed at coarse limbic and cognitive
levels to be utilized in initially guiding the acquisition of more
detailed and sophisticated representation of reward prediction
at the motor level. Simultaneously, because of the afference
limb of the spiral connections, the reward prediction error
coarsely represented by the dorsomedial midbrain can guide
more detailed reinforcement learning at the putamen.

Even within these cortico-striatal and striato-nigral parts of
the model, we can still derive predictions of fMRI signal change
during stimulus-action-reward association learning because
the striatum is voluminous enough to be tested by fMRI.
First, the activity of the caudate nucleus, the prefrontal and
anterior cingulate cortices are expected to be correlated with
reward prediction error because error computed using coarse
representation should initially be dominant in the early stage
of learning. This tendency should be more prominent when
learning is difficult. On the other hand, the putamen, the
rostral premotor cortex, and the rostral cingulate motor cortex
are expected to show a correlation of activity with stimulus-
action-dependent reward prediction because, in the late stage
of learning, acquisition of stimulus-action-dependent reward
prediction with fine motor command representation has already
been achieved while guided by the above cognitive reward
prediction error. This tendency should be more prominent when
learning is easy. Furthermore, because of internal differences
in the midbrain projections within the caudate nucleus and the
putamen (Haber et al., 2000; Haber, 2003), correlation with the
stimulus-action-dependent reward prediction in the putamen
should be posterior in easy tasks but anterior in difficult tasks
when we control learning difficulty. In contrast, correlation with
reward prediction error in the caudate nucleus is supposed to
be located posterior-lateral in easy tasks but anterior-medial
in difficult tasks. When the task is very easy, the activity
is also likely to be found in the putamen because reward
prediction error for fine-grained prediction is dominant during
learning.

2.3. Formal explanations of the heterarchical reinforcement
learning model

In this section, we introduce the full components of the
heterarchical reinforcement learning model and provide formal
explanations of how it works. Fig. 2 illustrates the neural
circuits of the heterarchical reinforcement-learning model. In
this figure, we explain the model’s essential features in a
very simplified diagram of neural circuits around the multiple
cortico-striatal and striato-nigral loops. Here, for simplicity,
only two neocortical areas (prefrontal and motor) are assumed
to be connected to the two corresponding parts of the
striatum (caudate and putamen) by one-to-one connections.
Fig. 2. A basic heterarchical reinforcement-learning model consisting of
caudate–prefrontal and motor-putamen loops, ventral tegmental area (VTA),
substantia nigra pars compacta (SNc), and pedunculopontine tegmental nucleus
(PPTN). Open and closed circles show excitatory (disinhibitory) and inhibitory
projections, respectively. V c and V p represent a coarse and fine value function
in the caudate nucleus and putamen, respectively, and r is a reward. γ is a
discount factor for future rewards and ε is a time-varying weighting factor
between V c and V p.

We assume that the privacy of these two parallel loops
is violated by the following two spread and feedforward
connections in computing reward prediction error. One is the
spread and efference connection from the caudate nucleus
to the ventrolateral part of the SNc, as described above and
illustrated in Fig. 1 (Haber, 2003). The other is the spread
and feedforward excitatory connection from the prefrontal
cortex to PPTN, which then projects to the ventrolateral part
of SNc by excitatory synapses. This part of the model is
motivated by physiological studies on monkey PPTN neural
firings by Kobayashi and his colleagues (Kobayashi et al., 2002;
Kobayashi, Okada, Inoue, Yamamoto, & Isa, 2005).

For the dorsomedial part of SNc/VTA, which is inhibited by
caudate GABAnergic innervation, temporal-difference reward
prediction error is computed as the difference between the
excitatory PPTN inputs, that is, the summation of the time-
advanced value function (i.e., t + 1) from the cortex (assumed
fast) and the primary reward signal, and the inhibitory caudate
input, that is, the value function computed by the caudate as
follows. The state variables in value functions are omitted for
simplicity.
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δc(t) = PPTNC (t)− Caudate(t)

= {γ VC (t + 1)+ r(t)} − VC (t)

= γ VC (t + 1)+ r(t)− VC (t). (1)

Here and below, C and P are indices for variables computed
by the caudate and putamen, respectively. Computation
for the caudate–prefrontal loop is purely private, and the
caudate equation (1) is identical to ordinary reinforcement-
learning models for temporal-difference (TD) error. However,
in contrast to previous basal-ganglia reinforcement-learning
models (Brown, Bullock, & Grossberg, 1999; Houk et al.,
1995; Montague et al., 1996), we assume that PPTN excitatory
inputs originating from the cortex provide the dorsomedial
part of the VTA/SNc, the summation of time-advanced value-
function terms, and the reward. Thus, the learning equation of
the caudate part is identical to the regular TD model, but the
neural circuit implementing this differs from previous models.

On the other hand, we assume that temporal-difference
reward prediction error for the putamen–motor loop is affected
by the caudate–prefrontal loop, as shown below and in the right
side of Fig. 2.

δP (t) = [PPTNP (t)+ Caudate(t)] − Putamen(t)

= [{(1− ε)γ VP (t + 1)+ r(t)} + εγ VC (t + 1)]

− VP (t)

= εγ VC (t + 1)+ (1− ε)γ VP (t + 1)

+ r(t)− VP (t), (2)

where ε is a positive decreasing function of time, starting from
1 and approaching 0 as time t goes from 0 to infinity. One
plausible choice of ε is given as follows:

ε(t) =
∫
∞

0
e−s/τ

|δP (t − s)|ds

/∫
∞

0
e−s/τ

|δP (−s)|ds. (3)

Here τ is a time constant for averaging high-frequency
fluctuations in δP (t) and should be shorter than the longest time
constant of decrease in δP (t) (i.e., learning time constant). As
explained below, δP (t) is expected to decrease and approach 0
as learning proceeds. Thus, ε(t) possesses the above desirable
properties. Because we assume that the dopamine neurons of
the ventrolateral part of the midbrain encode δP (t), ε(t) can
be realized as a normalized and leaky integrated average of
the ventrolateral dopamine level, possibly implemented as a
long-term effect of dopamine. By comparing the above Eqs.
(1) and (2), notice that the difference between the caudate and
putamen equations is in the time-advanced value-function term
(first term in (1) and first and second terms in (2)). That is,
the temporally-advanced value-function term for putamen is the
ε(t)-weighted average of those from caudate and putamen.

At the end of learning when both δP (t) and ε(t) approach
0, Eq. (2) reverts to the standard TD-reinforcement learning
algorithm. On the other hand, at the beginning of learning when
δP (t) is large and ε(t) is close to 1, Eq. (2) can be approximated
as follows:

δP (t) ∼= γ VC (t + 1)+ r(t)− VP (t). (4)
This approximate equation (4) can be interpreted in at
least three different manners. In the first interpretation, the
first term represents the subgoal given to the lower level
putamen loop provided by the upper level caudate loop, as
an addition to the primary reward. This is in the spirit of the
hierarchical reinforcement-learning framework and assumes
that a more cognitive caudate–prefrontal loop could provide an
intermediate subgoal, or highly processed reward information,
to the lower putamen–motor loop. The second interpretation
is supervised learning. Although discussing reinforcement
learning, we could reinterpret Eq. (4) as a definition of
error-driven supervised learning. Then we can argue that
the summation of the first and second terms is playing
the role of teaching signal for the putamen value function.
The first term is the coarse-grained approximation of the
discounted value function computed by the caudate–prefrontal
loop, and it plays a partial role as the teaching signal.
Here, we assume that while utilizing more abstract, coarse,
limbic, and cognitive representations of the environment,
the caudate–prefrontal loop can relatively quickly learn to
approximate value function according to (1). On the other
hand, learning in the putamen–motor loop is slow because
their representations are very detailed, both in space and
time, and contain motor commands, and thus are of a much
higher dimension. Consequently, if the putamen–motor loop
were to learn the value function by itself, it would take an
indefinitely long time due to the curse of dimensionality,
but with such semi-supervised learning (4) at the beginning,
reinforcement learning could be dramatically accelerated. The
third interpretation is the coarse-to-fine approximation of the
value function. We assume that in the prefrontal cortex, the
representation of state space is much coarser than in the
motor cortex. Then value function learning that uses a much
smaller number of basis functions with lower dimension should
proceed much faster than value-function approximation with
a much larger number of basis functions with very large
dimensions. Thus, caudate–prefrontal loop learning is much
faster than putamen–motor loop learning, but its ultimate
approximation capability is inferior. If the caudate value-
function approximation remains the non-changing subgoal or
the teaching signal, the putamen value-function approximation
could not become better than that of caudate. Weighting
by ε(t) attenuates the influence from the prefrontal loop
to the motor loop as the latter learning catches the former
supervision.

Fig. 3 illustrates a similar but different version of the
neural circuit model of heterarchical reinforcement learning.
Here, the afferent part of the striatal spiral connections with
SNc/VTA (Haber, 2003) is taken into account as well as the
efferent part. Another point we assume in this version is that
the spread projection from the caudate to the ventrolateral
part of SNc/VTA is inhibitory and provides the negative of
the caudate value approximation and not the positive time-
advanced version. Note here that in both models, several
weighting factors such as 1/2, γ , and ε are arbitrarily selected
to keep equations simple and comparable with the standard TD
model:
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Fig. 3. A different neural implementation of the heterarchical reinforcement-
learning model. The key differences from Fig. 2 are the inhibitory projection of
a value function (not time-advanced) from the caudate nucleus to VTA/SNc and
a spreading afferent dopamine projection (δc(t)) from VTA/SNc to the caudate
nucleus and putamen.

δP (t) = PPTNP (t)− Caudate(t)/2− Putamen(t)+ δC (t)/2

= {γ VP (t + 1)+ γ VC (t + 1)/2+ r(t)/2}

− VC (t)/2− VP (t)

+{γ VC (t + 1)+ r(t)− VC (t)}/2

= γ {VC (t + 1)+ VP (t + 1)}

+ r(t)− {VC (t)+ VP (t)}. (5)

As before, we assume that prefrontal loop describes the
environment with more coarse-grained representations. Then
the caudate value-function approximation is expected to be of
much lower frequency than putamen in both space and time.
At the very early stage of learning when both Vp(t + 1) and
VP (t) are close to zero, Eq. (5) is almost equal to standard
TD learning. In the early stage of learning when VP (t) is
very small but VC (t) is significantly different from zero, the
γ VC (t + 1)− VC (t) term gives a virtual and additional reward
or subgoal, which is an addition to the basic reward r(t). Even
when the reward is given at a long future time, and VP (t) is flat
and zero, this extra term can give quite frequent reward clues for
the correct direction of changes. In another interpretation of (5)
at the early stage of learning, δP (t) is approximated by δC (t)
because VP (t) is very small but VC (t) is significantly different
from zero. Thus, Vp(t) follows VC (t) in an almost supervised
Fig. 4. Generalized scheme of the heterarchical reinforcement-learning model
consisting of multiple brain structures. ξ specifies a granularity of state
representation that ranges from 0 to 1, and V (S(ξ)) represents a value function
for different state space and time scale.

manner. At the late stage of learning, when δC (t) almost
vanishes at the coarse spatial and temporal resolution, γ VP (t +
1)+r(t)−VP (t) is well approximated by the fine-grained high-
frequency component of the primary reward because the coarse-
grained low-frequency component of the reward is cancelled by
γ VC (t + 1) − VC (t). Thus, a final brush-up of VP (t) at the
fine-grained resolution might happen at the final stage so that
VP (t) can be a good approximation to the real value function.
We again emphasize the coarse-to-fine but parallel nature of the
heterarchical reinforcement learning model.

Finally, we explain a more realistic multiple cortico-
striatal loop model in Fig. 4 while emphasizing coarse-to-fine
representations from the DLPFC to the primary motor cortex,
as shown in Fig. 1. Just as the simplified models of Figs. 2 and
3, the loop communication between the neocortex, the striatum,
the VTA/SNc, and the PPTN is almost private except the spiral
connections between the striatum and the VTA/SNc and the
cortex to PPTN. We assume that these connections are spread
in a direction from coarse-to-fine. Emphasizing the topographic
and almost continuous distributions of differentially-grained
representations within the neocortical areas and the striatum,
as depicted in Fig. 1, we denote the degree of resolution of
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the representation at each point in the loop by ξ . ξ is 0 for
the coarsest representation and 1 for the finest representation.
S(ξ) is the state representation at resolution ξ . Independent
representations of reward prediction V (S(ξ), t) and reward
prediction error δ(ξ, t) are computed at each resolution ξ by the
corresponding parts of the striatum and VTA/SNc, respectively,
while influenced by coarser representations. A straightforward
extension of Eq. (5) to this continuous case is given as follows:

δ(ξ, t) = γ

∫ ∆

0
V (S(ξ − y), t + 1)dy + r(t)

−

∫ ∆

0
V (S(ξ − y), t)dy. (6)

∆ defines the extent of granularity which affects δ(ξ, t).

3. Experimental methods

To examine the model’s predictions, we conducted a model-
based fMRI experiment of a stimulus-action-reward association
task in which subjects were asked to learn an advantageous
button-push (left or right) in response to visual stimuli.

It is ideal for the multiple reward predictions and reward
prediction errors, proposed in the heterarchical reinforcement
learning model, to be estimated for each subject during
learning; unfortunately that is practically intractable. Therefore,
we replaced them with the stimulus-action-dependent reward
prediction and reward prediction error (hereafter referred to as
SADRP and RPE, respectively) in each trial for each subject
by using the Q-learning model (Sutton & Barto, 1998) (c.f.,
temporal difference learning model section) to evaluate the
models’ predictions as quantitatively as possible. Because each
trial is independent in our experimental design, we regarded γ

as 0 and focused on within-trial predictions of reward.

3.1. Experimental design

Fig. 5A delineates an experimental trial under TEST (left)
and CONTROL (right) conditions, which is the identical
experiment reported in (Haruno & Kawato, 2006). In a TEST
trial, subjects learned the stochastic association between a
visual stimulus, a button-push, and rewards to maximize their
total monetary rewards. After one of three fractal stimuli was
presented (onset at 0.7 s), subjects either pushed the left or right
button triggered by a beep (at 5.2 or 6.2 s). Either to the left or
right of the fixation cross, a small green circle appeared to show
which button had been selected. All subjects pushed the buttons
with their index or middle finger of their right hand. If the trial
was successful, the figure frame turned yellow (at 10.2 or 12.2
s), and the subject obtained a 50-yen reward. Otherwise, the
frame turned purple, and the subject suffered a 50-yen penalty
(not shown in Fig. 5A). The next trial began nine sec after
reward feedback.

The actual outcome of each button-push—success or
failure—was stochastically determined depending on the fractal
stimulus presented and the subject’s button-push. As an
example of how this stochasticity works, Fig. 5 illustrates
experimental session 1 (S1 out of three sessions, S1–S3),
which was controlled with a probability of 0.9 (90%). For the
yellow fractal figure (FS1), a left button-push yielded +50 yen
with a probability of 0.9 and −50 yen with a probability of
0.1. In contrast, a right button-push produced +50 yen with
a probability of 0.1 and −50 yen with a probability of 0.9.
Therefore, the optimal behavior for FS1 was to push the left
button, which the subjects had to learn by trial and error. In S1,
the dominant probabilities of the other two fractal figures (FS2
and FS3) were also 0.9, and the advantageous button-push was
randomized for left or right (optimal behaviors were FS1: left,
FS2: right, and FS3: left). Note that subjects could not develop
a stimulus-action-reward association before presentation of the
fractal stimulus. Importantly, the subjects were instructed to
decide which button to push as soon as the fractal stimulus
was presented. Occurrence of the three fractal figures was
controlled equally and pseudo-randomly by setting the same
random number sequence for all subjects to reduce the variance
of learning speed across subjects. Each trial lasted 19 or 21
s, and one TEST block included four repetitions of a trial
(Fig. 5B). Accumulated reward was displayed above the figure
frame and updated at the moment of reward delivery.

To control learning difficulty, we conducted three experi-
mental sessions, S1, S2, and S3, in which the dominant proba-
bility was 0.9, 0.8, and 0.7, respectively. According to stochas-
tic uncertainty, learning was expected to become progressively
more difficult. The order of these sessions was counterbalanced
across subjects, and the results were analyzed together because
no marked differences in learning performance or imaging re-
sults were found between the different orderings of tasks. At
the start of the experiments, the subjects were told that success
or failure depended stochastically on the fractal stimulus pre-
sented and the button pushed, but they were not provided with
any concrete information on the stochastic parameters. The sub-
jects were encouraged to earn as large a monetary reward as
possible, which was actually given to them in addition to their
basic compensation (1500 yen).

In a CONTROL trial, subjects were asked to push the same
button as in the preceding TEST block. They were signaled
which button to push by a small green circle that appeared
to the left or right of the fixation point just after fractal
stimulus presentation; this reproduced their own button-push
in the preceding TEST block in a randomized order. The
fractal stimulus and outcome color (yellow or purple) had no
influence on subject button selection but simply reproduced
the effects of the visual displays in the TEST trials. Thus,
aside from the timing of the green circle’s presentation, the
CONTROL block reproduced all of the physical events of the
preceding TEST block and was used to subtract these effects
from the TEST trials. No reward or penalty was given in the
CONTROL trial. The accumulated reward above the figure
box in the CONTROL block remained constant at the value
of the preceding TEST trial. As in the TEST block, one trial
lasted 19 or 21 s, four repetitions per block, and the TEST
and CONTROL blocks were alternated (Fig. 5B). One session
included 12 TEST/CONTROL blocks and lasted 32 min (20 s
[on average] × 4 trials × 2 [TEST + CONTROL] × 12
blocks.). We prepared five different sets of three fractal stimuli
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Fig. 5. Experimental design. A and B illustrate the TEST and CONTROL trials and the overall organization of the experiment. A left: In each TEST trial, one of
three fractal stimuli (FS) was presented, and the subject was asked to press the left or right button following a beep to obtain a monetary reward. A small green circle
appeared showing which button the subject had pushed. In this example (Session 1) the optimal (advantageous) button-push for each FS was set (FS1: left, FS2: right,
FS3: left) to yield a reward of 50 yen (yellow frame presented) or a penalty of−50 yen (purple, not shown) with a probability of 0.9 and 0.1, respectively. By contrast,
a non-optimal (disadvantageous) button-push (FS1: right, FS2: left, FS3: right) led to a 50-yen reward or penalty with a probability of 0.1 and 0.9, respectively.
right: In CONTROL, subjects had to reproduce button-pushes in the preceding TEST block for the same set of fractal stimuli, instructed visually by the small green
circle’s position. The order of the stimulus and button-push was randomized. The fractal stimulus and outcome color (yellow or purple) simply reproduced TEST
and was unrelated to the subjects’ selection of button-push. The accumulated reward above the figure frame remained constant at the value of the preceding TEST
trial (no reward or penalty in CONTROL). B Four trials were included in each of the TEST and CONTROL blocks, and they were interleaved twelve times.
and changed the configuration of the stimulus set every session
to exclude any brain activity arising from a fixed set of figures.

3.2. Subjects

Twenty healthy adults (23–31 years old, 11 males and
9 females, all right-handed) participated in the experiment.
Informed consent of the participants was obtained before the
experiment, and the protocol was approved by ATR’s ethics
committee.

3.3. MRI acquisition and preprocessing

MRI scanning was conducted with a 1.5 T Marconi scanner.
For each subject, 768 scans of BOLD images (TR 2.5 s,
TE 49 ms, flip angle 80◦, FOV 192 mm, resolution 3 ×
3 × 5 mm) were acquired over two sessions. In addition
to these experimental trials, each session contained two
preliminary dummy CONTROL trials (16 scans) to allow for
T1 equilibration effects. Then we stopped the MRI scanner
and gave the subjects a ten-minute break outside the scanner.
After the break, the same procedure was repeated for another
(third) session. High-resolution (T1 (1 × 1 × 1 mm) and T2
(0.75 × 0.75 × 5 mm)) structure images were also acquired
for each subject. The data were analyzed using standard
procedures implemented in Statistical Parametric Mapping
(SPM99) (Friston et al., 1995). Prior to the statistical analysis,
we conducted motion correction and nonlinear transformation
into the standard space of the MNI coordinates, as implemented
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in SPM99. These normalized EPI images were resliced into
2 × 2 × 2 mm voxels and then smoothed with an 8 mm full
width half maximum isotropic Gaussian kernel.

3.4. SADRP and RPE estimations

The Q-learning model was introduced to estimate the
subject’s SADRP and RPE during learning. More precisely,
a subject’s SADRP at time t can be represented as a table
for Q( f s, bp, t) indicating the predicted amount of reward
for button-push bp (right or left) and fractal stimulus fs. Note
that the optimal selection of behaviors is trivial once the true
SADRP table is acquired; at that point, the button with the
larger Q is selected. When the subject receives actual reward
r(t), RPE amounts to r(t) – Q( f s, bp, t). Then the model
changes the element of the table by the following rule to
decrease RPE for the next occurrence of the same combination
of stimulus and action:

Q( f s, bp, t + 1) = Q( f s, bp, t)+ α
f s

t (r(t)− Q( f s, bp, t)).

This procedure only updates the table element corresponding
to the subject’s selected action bp and the given fractal stimulus
f s in proportion to reward prediction error (Sutton & Barto,
1998). It is used here to estimate subjects’ SADRP and RPE.
Therefore, only the component of SADRP that corresponds to
the given stimulus and the selected action in each trial will be
shown, updated, and used in the subsequent analysis. In the
early stage of learning, when SADRP is inaccurate and RPE
has a large value, the change in SADRP is expected to be large,
whereas in the late stage of learning when SADRP is accurate
and RPE is small, the change in SADRP is expected to be small.
Thus, SADRP tends to converge to an asymptotic value.

Learning rate α
f s

t controls the amplitude of change and
is determined by a standard recursive least-square procedure
(Bertsekas & Tsitsiklis, 1996; Young, 1984). In the current sit-
uation, α

f s
t is reduced to an estimation of the inversed variance

for fractal stimulus f s that has a value of 1 when presented and
0 otherwise; then we derive the following update rule:

α
f s

t =
α

f s
t−1

1+ α
f s

t−1

.

Qualitatively, learning rate α
f s

t decreases as SADRP
becomes reliable. This property of α

f s
t is important because

SADRP does not necessarily change much after the completion
of learning, even if RPE occurs due to the stochastic nature of
the task. The update equation indicates that the learning rate
sharply decreases below 1, suggesting that the initial value of
α

f s
t (i.e., α

f s
0 ) has little effect on the estimation of SADRP and

RPE. We set a value of 1000 throughout the study.

3.5. Correlation analysis of fMRI data

After preprocessing, we conducted an event-related corre-
lation analysis of fMRI data with SADRP and RPE. We as-
sumed that brain activities related to SADRP and RPE occur
at the timing of stimulus presentation and reward delivery,
Fig. 6. Behavioral results of learning for the most and least successful subjects
in terms of total reward. A and B show the time courses of the AR, SADRP,
and RPE for the most and least successful subjects, respectively. S1, S2, and
S3 represent experimental sessions with a dominant probability of 0.9, 0.8, and
0.7, respectively.

respectively (Haruno & Kawato, 2006). During the CONTROL
trials SADRP and RPE were assumed to be 0 for the following
reasons. First, there was no monetary reward. Second, the com-
bination of fractal stimuli and button-pushes (left or right) was
arbitrary during control trials. Therefore, it was neither neces-
sary nor possible for subjects to predict the number of rewards
during CONTROL. Third, the subjects were instructed to pas-
sively push the button.

4. Results

4.1. Subjects’ behaviors and estimation of subjects’ SADRP
and RPE

Fig. 6 shows how the reward acquisition and button-
push behaviors changed during the TEST blocks of the
stimulus-action-reward association task for the most successful
subject (A) and least successful subject (B) in terms of total
monetary reward. Accumulated reward (AR) increases almost
monotonically in S1–S3 in A. In contrast, only S1 exhibits a
monotonic increase in B, and the flat and decreasing tendencies
found in S2 and S3 show that learning was demanding for the
subject and that it had not yet been completed within the given
number of trials. The averages of all subjects displayed in Fig. 7
show that ARs yielded progressively smaller positive slopes in
S1, S2, and S3. Accumulated rewards in the final TEST blocks
were significantly larger than zero (P < 0.0001; t-test) and
ranked in the following order: S1/0.9 > S2/0.8 > S3/0.7
(P < 0.05; t-test). These observations are consistent with the
hypothesis that learning is progressively more difficult in S1,
S2, and S3 in accordance with their stochastic uncertainties.

From their behavior, we used the Q-learning model (Sutton
& Barto, 1998) to estimate each subject’s stimulus-action-
dependent reward prediction (SADRP), which is defined as
the amount of reward predicted by a subject based on a given
contextual stimulus and an action selected by the subject. RPE
simply amounts to the difference between SADRP and actual
reward. SADRP is shown in the second rows of Figs. 6 and
7. The horizontal lines in Fig. 7 show theoretical maximum
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Fig. 7. Behavioral results of learning for the average and standard deviations
of all twenty subjects. Similar to Fig. 6, the time courses of AR, SADRP, and
RPE averaged over twenty subjects are shown.

values that are expected for optimal button-push (40 yen [=
50 ∗ (0.9 − 0.1)], 30 yen [= 50 ∗ (0.8 − 0.2)], and 20 yen
[= 50 ∗ (0.7 − 0.3)] for S1–S3, respectively). In the easiest
task (S1), SADRP increased and approached the theoretical
maximum (40 yen) within 20 trials for all subjects. In more
stochastic tasks (S2 and S3), the increase in SADRP became
progressively slower than in S1, and some subjects failed to
achieve maximum SADRP even in the final TEST trial. None of
the estimated SADRPs of any of the subjects showed a simple
monotonically increasing tendency due to the stochasticity of
the task. Corresponding to SADRP, the absolute values for RPE
shown in the third rows of Figs. 6 and 7 rapidly decreased close
to 5 yen within 20 trials in S1, but decreased only slowly in S2
and S3. Again, because of the task’s stochasticity, RPEs did not
exhibit a monotonically decreasing tendency in time.

4.2. Correlation analysis of fMRI data

We carried out an event-related regression analysis of the
fMRI data with SADRP and RPE. Here, we focus on an
analysis of brain activity in the striatum, the medial and orbital
prefrontal, the anterior cingulate, the cingulate motor, and the
dorsal premotor cortices because our aim is to examine the
predictions of the heterarchical reinforcement learning model.
All analyses were conducted with the random-effect model
implemented in SPM99 (Friston et al., 1995), and the statistical
threshold was set at P < 0.001, uncorrected for multiple
comparisons, with an additional constraint that at least five
contiguous voxels be included. Correlation analyses for the
two variables in different sessions (S1–S3) were conducted
separately because the scanner was stopped and the subjects
took a ten-minute break between their second and third
sessions. All illustrations of statistical maps (i.e., Figs. 8–10,
average of all subjects) were made using our in-house
software ‘multi color,’ which is freely available to the research
community at http://www.cns.atr.jp/multi color/.
Fig. 8. Activity in striatum correlated with SADRP and RPE for S1–3. Each
voxel (2 × 2 × 2 mm) is associated with T -values for SADRP and RPE,
represented as the brightness of colors, as shown in color bars. The overlapping
voxel activated in the two analyses is represented by a mosaic comprising two
corresponding colors. The range of Z in MNI coordinates was −2 to 14, which
includes the putamen and caudate nucleus as well as part of the ventral striatum
(ventral putamen) (Talairach & Tournoux, 1998).

Fig. 9. Activity in medial regions of frontal cortex correlated with SADRP and
RPE for S1–3. A and B show sagital and horizontal views, respectively, in the
same format as Fig. 8. The range of Z in MNI coordinates was 4 to 60, which
includes the orbitofrontal and medial prefrontal, the anterior cingulate, and the
cingulate motor cortices (Talairach & Tournoux, 1998).

Fig. 10. Activity in left premotor cortex correlated with SADRP and RPE (no
voxel) for S1–3, formatted in the same way as Fig. 8. The range of Z in MNI
coordinates was 50 to 62.

http://www.cns.atr.jp/multi%5Fcolor/
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Fig. 8 illustrates the significant correlation in the striatum
(consisting of the putamen and caudate nucleus) with SADRP
and RPE for three tasks (S1–S3). Here, the color map associated
with each voxel represents its T -values of SPM99 for SADRP
and RPE. The most remarkable observation is that SADRP
activity for S1–S3 was mainly confined within the putamen,
whereas RPE activity was mainly localized within the caudate
nucleus and the ventral striatum. These separate distributions
of SADRP and RPE activities remained robustly consistent
regardless of the differences in task difficulty from S1 to S3.
Second, the number of voxels correlated with SADRP and RPE
strongly depended on task difficulty in exactly the opposite
manner: SADRP activity tended to be more prominent in the
less stochastic task (S1) than in the more stochastic tasks (S2
and S3), whereas RPE activity both in the caudate nucleus
and ventral striatum tended to exhibit stronger correlations in
the more stochastic tasks (S2 and S3). More specifically, the
number of voxels that correlated with SADRP in S1, S2, and
S3 was 683, 87, and 101, respectively, and the number that
correlated with RPE was 399, 864, and 565. Only SADRP
activity for S1 significantly overlapped RPE activity (SADRP
had only five overlapping voxels with RPE for both S2 and
S3). The number of overlapping voxels of SADRP for S1 with
RPE for S1, S2, and S3 was 40, 180, and 107, respectively.
It is also intriguing to focus on spatial distribution within
these SADRP and RPE correlated activities that depended on
task difficulty. SADRP activity for S1 was seen in the whole
putamen, while activity for S2 and S3 was located in the more
anterior-lateral part (Z = −2 and 6). In contrast, RPE activity
for S1 in the ventral part (Z = −2) was almost confined to
the putamen, while activity for S2 and S3 was located more
medially in the caudate nucleus. Because in S2 and S3, learning
is at a comparatively earlier stage than in S1, finding more
prediction error in the putamen during S1 and more prediction
error in the caudate during S2 and S3 fits well with the model’s
prediction that reward prediction error gradually shifts from the
dorsomedial to the ventrolateral substantia nigra.

Fig. 9 shows the activity in the medial frontal region of
the brain that correlated with SADRP and RPE. The SADRP
correlation was located in the dorso-caudal regions, mainly in
the rostral cingulate motor area, SMA and pre SMA. Activity
in simple tasks (S1 and S2) tended to be located dorsally within
these areas (Z = 36, 44, and 53). In contrast, RPE correlation
was located more ronstro-ventrally, mainly in the rostral part of
anterior cingulate cortex. The activity in simple tasks (S1 and
S2) tended to be located more ventrally within these areas than
in difficult tasks (S3) (Z = 4, 12, 20, and 28).

Fig. 10 shows the activity in the dorsal premotor cortex that
correlated with SADRP. There was no correlated activity found
in this area with RPE. In sharp contrast with the striatum and
medial frontal regions, task difficulty (S1–S3) did not cause any
spatial difference of activity within the region.

In summary, fMRI results are in agreement with the model’s
predictions, i.e., the activity of the anterior cingulate cortex and
the caudate nucleus correlated with reward prediction error, and
the rostral premotor, cingulate motor cortices, SMA and pre
SMA along with the putamen showed a correlation of activity
with stimulus-action-dependent reward prediction. In addition,
in the putamen, correlation with SADRP is located posteriorly
in easy tasks but anteriorly in difficult tasks. On the other hand,
in the caudate nucleus, correlation with reward prediction error
is located posterior-laterally in easy tasks but anterior-medially
in difficult tasks. The putamen also showed a correlation with
RPE in easy tasks.

5. Discussion

We proposed a heterarchical reinforcement learning model
that suggests how multimodal information in cortico-striatal
loops is integrated. Asymmetric descending and ascending
projections between SNc/VTA and the striatum play a key role
in propagating reward prediction and its error signal from one
cortico-striatal loop to the other through dopamine, enabling
gradual refinement or tuning of reward prediction during
learning. We conducted an fMRI experiment of stimulus-
action-reward association learning to directly examine the
model’s predictions and obtained results consistent with the
model. Specifically, brain activity in the anterior cingulate
cortex and the caudate nucleus was correlated with reward
prediction error during learning, while the dorsal premotor
and rostral cingulate cortices, SMA and the putamen exhibited
a strong correlation of activity with the stimulus-action-
dependent reward prediction, which is gradually acquired using
error signals. We also demonstrated the spatial non-uniformity
of both SADRP and RPE activity within a brain structure
(particularly, the putamen and caudate nucleus), which depends
on the learning difficulty of a task. Due to the temporal and
spatial limitations of fMRI resolution, only a few aspects
of the model could be investigated. It is also important to
compare neural activity in the SNc, the VTA, and the PPTN
with the model’s behaviors by conducting electrophysiological
experiments.

Dynamic association of various contextual cues with action
and reward is critical to make effective decisions (Barraclough,
Conroy, & Lee, 2004). A crucial question here is how
to combine several reward predictions, each of which is
based on different information. For example, some reward
prediction may only depend on visual cues, but others may
utilize not only visual and auditory cues but also the action
taken by a subject. Because the accuracy of different reward
predictions varies dynamically during the course of learning,
the combination of predictions is important (Daw, Niv, &
Dayan, 2005). The proposed model takes a coarse-to-fine and
continuous approach for blending, which could be naturally
implemented by the asymmetric upstream and downstream
projections between the SNc/VTA and the striatum. In the
model, starting with initial rough reward prediction by guessing
or inference, prediction is gradually refined taking motor
information into account. In good agreement with the model,
our experimental results highlighted the medial prefrontal
and the orbitofrontal and anterior cingulate cortices when
reward prediction error is huge in the early stage of learning.
These areas have been implicated in reward-related cognitive
functions (Picard & Strick, 1996; Price et al., 1996), and
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therefore might be related to reward prediction, which is based
solely on visual cues and is called a state value function
V in computational literatures (Sutton & Barto, 1998). In
contrast, the anterior dorsal premotor and cingulate motor
cortices were lit up when stimulus-action-dependent reward
prediction is dominant rather than reward prediction error in
the late stage of learning. These brain areas have been reported
to be involved in motor-related cognitive functions (Picard
& Strick, 2001). It is therefore reasonable that these regions
encode stimulus-action-dependent reward prediction or state-
action value function Q in computational literatures (Sutton
& Barto, 1998). Our model and experimental data are also
consistent with a pioneering work from Hikosaka’s group
that focused on the functional roles of parallel cortico-striatal
loops during sequential motor learning of monkeys (Hikosaka
et al., 1999; Hikosaka, Nakamura, Sakai, & Nakahara, 2002;
Miyachi, Hikosaka, Miyashita, Karadi, & Rand, 1997; Miyachi,
Hikosaka, & Lu, 2002). They demonstrated that the caudate
nucleus, the pre-SMA, and the dorsolateral prefrontal cortex
were activated in the early stage of learning, while the
putamen and SMA were important in the late stage of learning,
suggesting that the observed shift of brain activity centers
corresponded to the transformation from external to muscle
coordinates. The heterarchical reinforcement learning model
may explain how such a shift can be achieved.

It would also be interesting to determine whether the
information flow in cortico-striatal loops is fixed in a top-
down (coarse-to-fine) direction or regulated both top-down and
bottom-up depending on the comparative accuracy of several
reward predictions. Such learning and selection of multiple
predictions is not a specific topic to the cortico-striatal loops,
but rather generic to multiple closed loop structures found
in subcortical-cortical structures. We previously proposed a
model of cerebro-cerbellar loops known as the MOSAIC
model, where multiple internal models are learned and basically
selected in a bottom-up manner based on the accuracy of each
prediction (Haruno, Wolpert, & Kawato, 2001). Pursuing a
unified computational principle that exists behind closed loop
circuits in the brain is an important future direction.
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