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Abstract

Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, 
which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to 
data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for 
data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers 
have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to 
the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment 
approaches. This type of biomarker (i.e., “theranostic biomarker”) is expected to elucidate the disease mechanism of psychiatric 
conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To 
this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential 
biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this 

Head1=Head2=Head1=Head2/Head1
Head2=Head3=Head2=Head3/Head2
Head1=Head2=Head3=Head1=Head2/Head1=Head3/Head2

mailto:kawato@atr.jp?subject=


770  |  International Journal of Neuropsychopharmacology, 2017

review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing 
an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a 
proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-
based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based 
neurofeedback, focusing on the technological improvements and limitations associated with clinical use.

Keywords:  psychiatric disorder, resting-state functional connectivity, neurofeedback, theranostic biomarker

Introduction
Although great advancements in psychiatric research have been 
made in recent years, an explanatory gap between phenom-
enological entities and neurobiological underpinnings remains 
(Montague et al., 2012). This gap has prevented precise diagno-
sis and dramatic improvements in treatment outcomes in the 
field of clinical psychiatry (Insel and Cuthbert, 2015). Our lack of 
understanding of the disease mechanisms is reflected by the fact 
that the 2 world-wide standard psychiatric diagnosis systems—
the Diagnostic and Statistical Manual of Mental Disorders (DSM) 
(American Psychiatric Association, 2013) and International 
Classification of Diseases (ICD) (World Health Organization, 
1990)—adopt symptom-based approaches, in which underlying 
biological substrates are not taken into consideration (Insel and 
Cuthbert, 2009), except in the case of dementia and sleep dis-
order for which DSM-5 acknowledges biological measures such 
as genetic and neuroimaging testing as informative regarding 
diagnostic confirmation. Consequently, these symptom-based 
diagnostic systems may artificially draw distinctions among 
conditions that actually share common biological etiologies and 
therefore may fail to provide effective biology-based treatments 
directed toward specific pathogenic processes associated with 
these conditions (Owen, 2014). Therefore, the recent initiative of 
research domain criteria has proposed an important paradigm 
shift from the conventional symptom-based categories to data-
driven dimensional approaches based on observable behav-
iors and neurobiological measures (Insel and Cuthbert, 2009), 
with the aim of eliminating the gap between disease-related 
behaviors and neurobiological substrates. In this review, we 
first explain that brain functional measures provided by fMRI, 
particularly the resting-state functional connectivity (rs-fc) 
MRI, play crucial roles for the development of “biomarkers” that 
provide dimensions along which various psychiatric disorders 
could be defined. Then, we illustrate the potential and power 
of the fMRI- and biomarker-based neurofeedback methods in 
the treatments of disease-related behaviors. By illustrating the 
development of rs-fcMRI-based biomarkers and fMRI-based 
neurofeedback, we claim that these 2 lines of new research con-
verge in filling the abovementioned gap.

Towards Development of Theranostic 
Biomarker for Psychiatric Disorder

Recent psychiatric neuroimaging research has begun to bridge the 
explanatory gap by redefining psychiatric disorders as disorders 
of neural circuitry (Insel and Cuthbert, 2015). Indeed, rs-fcMRI 
represents a promising platform for identifying affected neural 
circuitry. Traditionally, alterations in neural circuitry have been 
studied by examining brain activation and/or functional connec-
tivity (FC) during specific task conditions using a limited number 
of participants. However, more recent whole-brain rs-fcMRI stud-
ies have applied state-of-the-art machine-learning algorithms to 
“big data” to identify brain features that predict the diagnostic 

status and/or severity of psychiatric disease (Clementz et al., 2016; 
Yahata et  al., 2016, 2017; Arbabshirani et  al., 2017). Since brain 
features are identified in a data-driven manner, this approach is 
free of potential biases that may derive from explicit hypotheses 
regarding affected brain regions, FCs, or functions. Furthermore, 
relative to task-based fMRI, rs-fcMRI is more suited to the clinical 
investigation of patients and young children who have difficulty 
in performing tasks (Poldrack and Farah, 2015). In addition, previ-
ous studies have shown that resting brain signals generate highly 
structured spatiotemporal patterns that correspond well to those 
observed when performing tasks (Smith et al., 2009; Laird et al., 
2011). These signals predict brain activation evoked by several 
kinds of tasks at the level of individual participant (Tavor et al., 
2016). These studies indicate that rs-fcMRI data may include abun-
dant information regarding individual characteristics and that 
these data can therefore be used as a substitute for task-based 
fMRI data. Together with the relative simplicity and low variabil-
ity in data acquisition setups, rs-fcMRI serves as the platform by 
which large amounts of clinical data can be analyzed to develop 
appropriate machine-learning algorithms.

Many studies along this line of psychiatric research share the 
goal of identifying biological measures of altered neural circuitry 
that represent “biomarkers” for psychiatric disorders (Perlis, 
2011; Abi-Dargham and Horga, 2016). Indeed, to date, a number of 
structural and functional MRI studies have claimed to have iden-
tified such “biomarkers” for various psychiatric disorders (Fan 
et al., 2008; Sun et al., 2009; Kim et al., 2010; Sui et al., 2015; Ivleva 
et al., 2016; Kambeitz et al., 2016; Drysdale et al., 2017; Li et al., 
2017). However, the significance of these identified biomarkers 
varies greatly depending on study aims and designs. Here, we 
propose that so-called “biomarkers” should be categorized into 
the following 4 types: (1) biomarker “candidates” that correlate 
with diagnosis in a sample pool, (2) those that generalize over the 
studied samples and therefore predict diagnosis of a disease of 
interest in a general population, (3) those that predict the effect 
of a therapy (i.e., surrogate endpoint), and (4) those that corre-
spond to the disease mechanism and may therefore be regarded 
as therapeutic targets. Biomarker types 1 and 2 are similar in that 
the measure simply represents a correlation with the disease 
status, though they are critically different regarding whether the 
scope of the biomarker is limited to the sample dataset (1) or has 
the capacity to generalize over the disease of interest in general, 
beyond the sample (2). In this sense, only biomarker types 2 to 
4 qualify as true “biomarkers” (Abi-Dargham and Horga, 2016). 
While biomarker types 2 and 3 can be used as an auxiliary test in 
clinical practice and are expected to provide important informa-
tion regarding the diagnosis and treatment strategy, the clinical 
importance of these 2 types of biomarkers does not necessarily 
indicate that these measures account for the disease mecha-
nism. For instance, low-density lipoprotein (LDL) cholesterol has 
been used as a surrogate marker for a clinically meaningful end-
point for the heart disease. However, lowering LDL cholesterol 
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does not necessarily lead to the prevention of heart disease at the 
individual level, because the density of LDL cholesterol may not 
be associated with the underlying cause of heart disease (Albert, 
2011). In contrast, when the biomarker corresponds to elements 
of the disease mechanism as in type 4, its significance is 2-fold: 
as a measure of diagnostic status and/or the severity of symp-
toms, and as a therapeutic target. Therefore, we refer to this type 
of biomarker as a “theranostic biomarker” (Yahata et al., 2017). 
The development of such theranostic biomarkers will result in 
breakthroughs not only in basic biological research but also in 
clinical psychiatry practice, providing patients with individually 
tailored therapeutic targets and allowing for the elimination of 
unnecessary treatments and adverse effects (Ahn, 2016).

Hereafter, we introduce several recent studies that have sug-
gested that some rs-fcMRI-based biomarkers satisfy prerequi-
sites for type 2, 3, and even 4 biomarkers for major psychiatric 
disorders. That is, these biomarkers may explain elements of dis-
ease mechanisms and identify a therapeutic target for a range of 
neuromodulation interventions, including neuropharmacology, 
repetitive transcranial magnetic stimulation, and neurofeedback. 
To strictly verify that the rs-fcMRI-based biomarker represents 
the disease mechanism, the following 3 levels of evidence are 
necessary: (1) The rs-fcMRI-based biomarker predicts diagnostic 
status and/or the severity of symptoms with high accuracy for 
the general population of a disease of interest; (2) normalization 
of the biomarker via neuromodulation interventions leads to the 
alleviation of symptoms; and (3) alterations of neural circuits that 
are represented by the biomarker are caused by a whole range of 
known risk factors for the disease of interest, including genes, 
molecules, cells, circuits, cognition, behavior, and the physical 
and social environments. However, it is very difficult to provide 
the third level of evidence due to the limited datasets obtained 
in human studies. Consequently, we discuss the first 2 levels of 
evidence to examine whether rs-fcMRI-based biomarkers can act 
as theranostic biomarkers for psychiatric disorders. Concretely, 
we first introduce the development of the rs-fcMRI-based bio-
markers for autism spectrum disorder (ASD), major depressive 
disorder (MDD), schizophrenia (SCZ), and obsessive compulsive 
disorder (OCD)—which utilized state-of-the-art machine-learn-
ing algorithms that achieved high classification accuracy and 
generalized well for independent validation cohorts. Secondly, 
we introduce the preliminary results of recent proof-of-concept 
studies that have examined whether the normalization of rs-
fcMRI-based biomarker can be achieved via fMRI-based neuro-
feedback on FC and whether such normalization leads to the 
improvement of symptoms in depression. In addition, we also 
refer to technical difficulties in the development of rs-fcMRI-
based biomarkers and fMRI-based neurofeedback and discuss 
recent advances in overcoming these challenges.

Rs-Fcmri-Based Biomarker for Psychiatric 
Disorder

The Importance of rs-fcMRI-Based Biomarkers for 
Psychiatric Disorders

The brain generates highly structured spatiotemporal patterns 
even in the absence of explicit task execution (i.e., under rest-
ing-state conditions) (Smith et al., 2009; Laird et al., 2011). This 
finding suggests that rich information may be decoded by apply-
ing machine-learning algorithms to rs-fcMRI data in the individ-
ual brain. Indeed, a series of studies has successfully used such 
algorithms to predict various characteristics in healthy individ-
uals, including age (Dosenbach et al., 2010), intelligence (Smith 

et al., 2015), working memory (Yamashita et al., 2015), and sus-
tained attention (Rosenberg et al., 2016). Based on these success-
ful applications, a growing number of studies have sought to 
develop rs-fcMRI-based biomarkers for various psychiatric dis-
orders (Arbabshirani et al., 2017), such as ASD (Anderson et al., 
2011), MDD (Drysdale et al., 2017), SCZ (Kaufmann et al., 2015), 
and ADHD (Deshpande et al., 2015).

The Generalization Ability of rs-fcMRI-Based 
Biomarkers

A number of rs-fcMRI-based biomarker studies have claimed 
high accuracy in discrimination between individuals with a dis-
ease of interest and healthy controls (HCs) for most major psy-
chiatric disorders. However, to date, no such biomarkers have 
been identified for use in routine clinical practice. Aside from 
issues related to economic and practical feasibility in clinical 
settings, one major issue with previously developed biomark-
ers is that accuracy in discrimination of the biomarker is vali-
dated only for a single sample cohort that is shared with the 
training of the biomarker. Therefore, the generalizability of the 
biomarker is usually untested beyond the sample dataset, and 
highly accurate discrimination is likely to fail when that bio-
marker is applied to an independent cohort. More specifically, 
if the developed biomarker is fitted to noise structures that are 
specific to the training dataset (e.g., demographic distributions 
and measurement conditions such as the type of MRI scan pro-
tocol), the prediction is inflated for the training data but cata-
strophic to the independent validation dataset, which does not 
contain the same noise structure (Whelan and Garavan, 2014; 
Huys et al., 2016; Yahata et al., 2017).

To develop clinically meaningful rs-fcMRI-based biomark-
ers, it is necessary to prove the generalizability of the biomarker 
using independent datasets as validation cohorts. For this step 
to be successful, the development of optimal machine-learning 
algorithms that alleviate overfitting to the noise structures of 
the training data is critical. Such overfitting often occurs when a 
large number of parameters are included relative to the number 
of participants, and when the model does not sufficiently remove 
the effect of nuisance variables that are included in training data-
set (Whelan and Garavan, 2014; Yahata et al., 2017). Therefore, for 
the model to be reliable, the number of parameters in the model 
should be reduced based on the number of participants, and the 
brain features that reflect disease-related factors (e.g., diagnostic 
status and symptom severity) should be extracted after remov-
ing the data-specific noise structure. In the following section, we 
review the development of rs-fcMRI-based biomarkers that sat-
isfy the aforementioned conditions for ASD (Yahata et al., 2016), 
MDD (Ichikawa et al., 2017), SCZ (Yoshihara et al., 2017), and OCD 
(Takagi et al., 2017). In illustrating these cases, we show that the 
overfitting problem was successfully alleviated by the develop-
ment of novel machine-learning algorithms, which resulted in 
the identification of a small number of altered FCs capable of 
discriminating between individuals with a specific medical con-
dition of interest and HCs or typically developed controls (TDs). 
The resultant biomarker has achieved high accuracy for a discov-
ery cohort (i.e., training data) together with good generalizability 
for independent validation cohorts (i.e., test data).

The rs-fcMRI-Based Biomarker for ASD

Although it is generally believed that abnormal FCs may underlie 
ASD (Menon, 2011), whether such abnormalities involve under-
connectivity, overconnectivity, or distance-dependent alterations 
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(Just et al., 2012; Supekar et al, 2013; Long et al., 2016) remains 
unknown. Several research groups have attempted to solve this 
problem by developing rs-fcMRI-based biomarkers. However, 
none of these biomarkers has been validated in an independent 
cohort (Anderson et al., 2011). One study that attempted to vali-
date the generalizability of the biomarker observed poor perfor-
mance below chance in an independent cohort (Yoshihara et al., 
2011). Among these unsatisfactory attempts to develop an rs-
fcMRI biomarker for ASD, Yahata et al. (2016), aimed to achieve 
a desired level of generalizability by controlling the 2 causes 
of overfitting: the number of parameters in the model and the 
interference of nuisance variables. Specifically, they developed a 
unique combination of machine-learning algorithms of L1 regu-
larized sparse canonical correlation analysis (L1-SCCA) followed 
by sparse logistic regression (SLR; Yamashita et al., 2008). Briefly, 
in this algorithm, L1-SCCA was applied to extract FC features 
associated with diagnostic labels (e.g., ASD or TD), while remov-
ing FC features associated with nuisance variables (e.g., age, sex, 
medication, scan protocol). Then, sparse estimation performed 
by L1-SCCA and SLR reduced the number of explanatory vari-
ables (i.e., FCs) in the biomarker. Therefore, the combination of 
L1-SCCA and SLR is highly suited for controlling the aforemen-
tioned 2 causes of over-fitting inherent to machine-learning 
studies using multicenter rs-fcMRI data.

Yahata et  al. (2016) applied this novel machine-learning 
algorithm to rs-fcMRI data from 74 high-functioning adults 
with ASD and 107 TD adults obtained from 3 different sites in 
Japan. FC data in each individual were analyzed as a correla-
tion matrix representing the Pearson correlation values for 9730 
pairs of time-series data extracted from 140 regions in the sulci-
based anatomical atlas (extended Brainvisa Sulci Atlas; Perrot 
et  al., 2011). Using the correlation matrices of 181 individuals 
as inputs, the machine-learning algorithm of L1-SCCA and SLR 
generated a classifier consisted of only 16 FCs (0.2% of all FCs) 
that distinguished between ASDs and TD with a high accuracy of 
85% and an area under the curve (AUC) of 0.93 (Figure 1a).

Because the biomarker for ASD was developed using 
Japanese datasets only, it must be validated using independent 
cohort datasets, which, in this study, were collected in coun-
tries with different cultural and ethnic backgrounds than those 
in Japan. Therefore, the US ABIDE dataset was selected as an 
independent cohort (Di Martino et al., 2014), which consisted of 
44 high-functioning adults with ASD and 44 demographically 
matched TD controls. Indeed, the biomarker developed in Japan 
generalized well and exhibited a high classification accuracy of 
75% (AUC = 0.76) (Figure 1b). To our knowledge, this is the first 
study to demonstrate high generalizability for an independent 
cohort across cultures and ethnicities. The generalizability of 

Figure 1.  Distribution of weighted linear summations (WLS) calculated by functional connections. (a) The white and black bars denote the number of typically devel-

oping (TD) and autism spectrum disorder (ASD) individuals in the Japanese dataset, respectively. A horizontal axis denotes WLS score. If the WLS score is positive, an 

individual is classified as having ASD, while a negative WLS score indicates TD. (b) A histogram shows the distribution of WLS scores for the US ABIDE dataset. (c) The 

density distribution of WLS when applying the ASD classifier to various psychiatric conditions, such as ASD, schizophrenia (SCZ), ADHD, and major depressive disorder 

(MDD). In each panel, TD/HC distribution is gray and ASD distribution is red. The distribution of other psychiatric conditions (i.e., SCZ, ADHD, and MDD) is colored with 

blue, green, and yellow, respectively. Area under the curve (AUC) values are based on the classification between each psychiatric condition and TD/HC. P values are 

obtained by the Benjamini-Hochberg-corrected Kolmogorov-Smirnov test. The TD distribution of WLS at each panel is adjusted to have the same median and SD for 

the visualization purpose. Adapted, with permission, from Figures 1 and 5 in Yahata et al. A small number of abnormal connections predicts adult autism spectrum 

disorder. Nature Communications, DOI: 10.1038/ncomms11254 (2016).
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the biomarker was further confirmed in a second independent 
cohort collected in Japan (accuracy = 70%, AUC = 0.77). Lastly, the 
selected FCs used in the developed biomarker predicted with 
high accuracy not only diagnostic status but also the severity 
of communication problems, based on communication domain 
scores of the Autism Diagnostic Observation Schedule (Lord 
et al., 2000) (r = 0.44, P < .001). These results indicate that, with 
the proper use of machine-learning algorithms for controlling 
over-fitting, we are able to develop a reliable biomarker from the 
rs-fcMRI data that predicts ASD with high accuracy.

Further, we applied this ASD biomarker to other psychiat-
ric disorders (SCZ, ADHD, and MDD) to investigate whether the 
selected FCs could discriminate patients with these psychiat-
ric disorders from HCs. That is, we aimed to determine whether 
the biomarker is specific to ASD diagnosis. Our results indi-
cated that this biomarker could not significantly differentiate 
individuals with ADHD or MDD from their respective controls 
(ADHD: AUC = 0.57, P = .65, MDD: AUC = 0.48, P = .83), although 
moderate differentiation of those with SCZ was observed 
(AUC = 0.65, P = .012) (Figure 1c). This modest generalizability of 
the constructed ASD biomarker only to SCZ indicates that the 
weighted summation of the extracted FCs for the biomarker 
may reflect the extent of “ASD-ness,” or more precisely liabil-
ity of ASD, as individuals throughout any population—including 
those with other psychiatric conditions—may possess ASD-like 
traits (Yahata et al., 2016). This speculation is biologically plau-
sible considering the evidence that ASD is closer to SCZ than 
ADHD and MDD in terms of genetic, behavioral, and neuroimag-
ing findings (King and Lord, 2011; Cross-Disorder Group of the 
Psychiatric Genomics Consortium, 2013).

The Generalizable rs-fcMRI-Based Biomarkers 
for Depression, Schizophrenia, and Obsessive 
Compulsive Disorder

The classifier construction algorithm developed in Yahata et al. 
(2016) was applied to patients with melancholic depression, SCZ, 
and OCD. Ichikawa et al. (2017) restricted the training samples 
to individuals with melancholic depression (n = 66) and demo-
graphically matched HCs with Beck Depression Inventory-II 
scores ≤ 10 (Beck et al., 1996) (n = 66) to avoid issues in the het-
erogeneity of depression (CONVERGE consortium, 2015). The 
resulting classifier identified 12 diagnosis-specific FCs (of 9316 
connections) and achieved high discriminability (AUC  =  0.77, 
accuracy = 70%) in the training dataset and high generalizabil-
ity (AUC  =  0.62, accuracy = 65%) to the independent validation 
cohort (i.e., test data), which included individuals with melan-
cholic depression (n  =  11) and HCs (n  =  40). (These HCs were 
matched based on Beck Depression Inventory-II score to those 
in the training dataset.)

A biomarker for SCZ (AUC  =  0.83, accuracy  =  76%) using a 
Japanese training dataset consisting of patients in the chronic 
stage (duration of illness = 12.8 ± 7.8 years), scanned at 2 imag-
ing sites in Japan, was also developed (Yujiro Yoshihara, per-
sonal communication, March 30, 2017). The SCZ biomarker also 
worked well for 2 independent validation cohorts of patients 
in the chronic stage (United States site 1: duration of ill-
ness = 14.2 ± 11.5 years, AUC = 0.75, accuracy = 70%, EU site: dura-
tion of illness = 5.9 ± 5.8 years, AUC = 0.66, accuracy = 61%), but 
not for a test dataset of patients experiencing their first episode 
(United States site 2: duration of illness  =  16.8  ±  9.6  months, 
AUC = 0.42, accuracy = 45%). These findings suggest that each 
stage of SCZ is associated with specific pathological processes 

manifested as differentially altered FCs, in accordance with the 
findings of previous studies (Anticevic et al., 2015; Li et al., 2016).

For the discrimination of OCD, Takagi et  al. (2017) adopted 
the methodology for developing rs-fcMRI-based biomarkers 
described by Yahata et al. (2016) in conjunction with principal 
component analysis for feature selection of FCs, partly because 
a small training dataset from a single imaging site was avail-
able. All principal components were analyzed using the afore-
mentioned algorithm (L1-SCCA and SLR). The biomarker for 
the training dataset (nOCD  =  52, nHC  =  56) exhibited high accu-
racy (AUC: 0.81, accuracy: 73%), while that for the test dataset 
(nOCD = 18, nHC = 10) exhibited high generalizability (AUC: 0.70).

Neurofeedback

fMRI-Based Neurofeedback

Neurofeedback is an auxiliary technique for self-regulating the 
neural activity that underpins specific behaviors or symptoms 
by providing participants with real-time feedback that repre-
sents the current activity state of the neural activity of interest 
(Sitaram et al., 2016; Thibault et al., 2016). In contrast to other 
neuromodulation methods that rely on externally applied fac-
tors (e.g., electromagnetic field and pharmacological agents), 
neurofeedback is a method of internally (either volitionally or 
conditionally) regulating neural activity. As such, this method 
provides a means to aid participants to learn to induce brain 
activity toward a desired pattern of neural activity relying only 
on participants’ own endogenous factors. Among several neuro-
imaging modalities including electroencephalography (EEG) and 
functional near-infrared spectroscopy, fMRI-based neurofeed-
back has attracted considerable attention for its potential as a 
novel method of therapeutic treatment in clinical neuroscience 
(Fovet et al., 2015; Morimoto and Kawato, 2015). To date, several 
studies have applied fMRI-based neurofeedback methods to psy-
chiatric patients by training them to upregulate or downregulate 
the level of activation in single or multiple regions-of-interest 
(ROI) (Sitaram et  al., 2016). This fMRI-based neurofeedback 
method was shown to significantly alleviate symptoms in sev-
eral conditions, including depression (Linden et al., 2012), sub-
clinical OCD (Scheinost et  al., 2013), ADHD (Zilverstand et  al., 
2017), and schizophrenia (Sitaram et  al., 2014). In particular, 
strong evidence for therapeutic effect of this type of fMRI-
based neurofeedback on MDD has been demonstrated utilizing 
a double-blind, placebo-controlled, randomized clinical para-
digm (Young et al., 2017). This study demonstrated that patients 
with MDD learned to upregulate the amygdala activity, which 
resulted in larger decrease in depressive symptoms when they 
were assigned to the real neurofeedback condition, compared 
with a control condition where they were required to increase 
the intra-parietal activity. Besides the use of the randomized 
controlled trial design, this study has 2 additional characteris-
tics that may deserve particular attention: (1) participants were 
unmedicated during a current episode, and (2) participants were 
asked to recall positive memory during the neurofeedback train-
ing for both experimental and control conditions; therefore, the 
cognitive strategy was controlled between conditions. These 
characteristics of the carefully designed study strengthened 
the conclusion that fMRI-based neurofeedback is effective for 
the treatment of MDD. Furthermore, recent simultaneous EEG 
and fMRI neurofeedback studies have suggested that amygdala 
activity change induced by the fMRI-based neurofeedback may 
be achieved by a more accessible EEG neurofeedback (Keynan 
et al., 2016; Zotev et al., 2016). These studies demonstrated that 
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amygdala blood oxygen level-dependent signal could be suc-
cessfully predicted by EEG. In one of these studies, based on the 
prediction model, they performed EEG neurofeedback training to 
decrease amygdala activity and showed that the neurofeedback 
helped participants downregulate the target blood oxygen level-
dependent signal and improve implicit emotion regulation.

In addition to the conventional fMRI-based neurofeedback 
that aims to manipulate the level of activation in predefined 
ROIs, recent advances in fMRI data acquisition and analysis 
have enabled us to evaluate fMRI signals with greater spatial 
and temporal precision in real-time. This technological advance 
has yielded 2 novel lines of fMRI-based neurofeedback: decoded 
neurofeedback (DecNef) and functional-connectivity-based 
neurofeedback (FCNef). DecNef is a novel method of control-
ling distributed activity patterns of multiple voxels within a cir-
cumscribed ROI (Shibata et al., 2011) (Figure 2), thereby greatly 
increasing spatial precision over the previous method of regula-
tion of localized activity in coarsely defined ROIs. In contrast, 
FCNef allows for the modulation of spatiotemporal activation 
patterns across multiple ROIs (Koush et al., 2013, 2015) as well as 
intrinsic functional networks (Megumi et al., 2015) (Figure 3). In 
the following sections, we review recent successful applications 
of DecNef and FCNef, which, in our view, have potential as novel 
interventions for the treatment of psychiatric disorders via pow-
erful regulation of neural activity (Yanagisawa et al., 2016; Sakai, 
2015).

DecNef

DecNef is a novel neurofeedback method in which participants 
learn to induce specific activation patterns of multiple voxels 
in a given brain region. This neurofeedback method is based on 
recently developed fMRI decoding techniques (Kamitani and 
Tong, 2005), which allow researchers to infer the mental expe-
riences and states of participants via analysis of multi-voxel 
patterns of activation. DecNef is thus based on the assumption 
that, by determining a particular multi-voxel pattern as a tar-
get pattern that corresponds to a specific mental experience or 
state, experimenters can calculate the similarity between the 
target and the current multi-voxel pattern online and return it 
to participants as a feedback score. DecNef studies are usually 
composed of 3 types of experiments: (1) pre- and postbehavioral 

tests, (2) fMRI decoder construction, and (3) DecNef training 
(Shibata et al., 2011, 2016; Amano et al., 2016; Koizmi et al., 2016; 
Cortese et  al., 2016, 2017). The pre- and postbehavioral tests 
examine whether the DecNef method can alter the target behav-
ior in the desired direction (e.g., whether DecNef can enhance 
visual perceptual learning). In the fMRI decoder construction 
stage, multi-voxel patterns of activation corresponding to the 
target mental experience or state (e.g., visual perception of grat-
ings with orientation of 45 degrees) are identified via a stimulus-
driven and task-based fMRI experiment. In the DecNef training 
stage, participants learn to induce the decoded multi-voxel pat-
tern of activation matched with the target mental experience 
or state through neurofeedback. In the following paragraph, we 
mainly review 3 DecNef studies, in which researchers aimed to 
alter 3 types of behavior: (1) visual perceptual learning, (2) meta-
cognition, and (3) fear response.

Shibata et al. (2011) demonstrated that the DecNef method 
may aid participants in inducing target spatiotemporal patterns 
of activation in the primary visual cortex corresponding to a 
specific orientation of Gabor patches, without the presentation 
of a matched stimulus. Furthermore, the authors observed that 
this method resulted in visual perceptual learning specific to 
the target orientation. These results and characteristics indicate 
that DecNef has the potential to induce sufficient neuroplasti-
city for perceptual learning in the adult early visual cortex with 
high selectivity.

Based on the findings of this seminal study, DecNef has now 
been extended to the associative learning (Amano et al., 2016), 
face preference (Shibata et  al., 2016), meta-cognition (Cortese 
et al., 2016), and fear extinction paradigms (Koizumi et al., 2016). 
In the following paragraphs, we focus on the latter 2 paradigms, 
which are thought to be related to the etiology and/or patho-
genesis of psychiatric disorders. Cortese et  al. (2016) selected 
confidence ratings as the target behavior during a 2-choice 
dot-motion discrimination task in a cross-over DecNef study. 
(That is, the same participant performed two types of DecNef 
in a random order, separated by a 1-week interval: one aimed at 
increasing confidence ratings and one aimed at decreasing con-
fidence ratings.) The authors reported that DecNef could be used 
to modulate activity in fronto-parietal regions to produce bidi-
rectional alterations in confidence ratings without affecting task 
accuracy. Such a result would indicate that confidence is well 

Figure 2.  The procedure of decoded neurofeedback (DecNef). During training, participants were instructed to self-regulate brain activity to maximize the feedback 

score. This was represented by, for example, the size of a green disc, which corresponded to the participant’s success in inducing a current brain activity pattern as 

similar as possible to the target brain activity pattern.
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decoded in higher cognitive areas, and that DecNef can be used 
to bidirectionally alter this meta-cognition-related behavior.

Koizumi et al. (2016) investigated whether the DecNef par-
adigm could be applied to fear extinction. In this experiment, 
prebehavioral testing included fear-conditioning, in which fear 
responses were induced by pairing 2 kinds of colored circles (tar-
get fear-conditioned stimulus CS+ and control CS+) with electric 
shocks. Participants then underwent 3 days of DecNef training 
in which rewards were paired with the multi-voxel patterns of 
activity in V1/V2 matched to the target CS+. After the training, 
fear responses as assessed by skin conductance response were 
selectively reduced for the target CS+ but not for control CS+. We 
emphasize that this counter-conditioning occurred even though 
participants were not explicitly exposed to any fear-related 
stimuli, but rather implicitly exposed to the neural activity pat-
terns matched with the target CS+.

The results of the latter 2 types of experiments—which may 
reflect alterations in meta-cognitive processes and the Pavlovian 
conditioned fear response—suggest that DecNef may be useful 
as an adjunctive therapy for psychiatric disorders, as meta-
cognition and fear are closely related to behavioral changes 
associated with mental illness (David et  al., 2012). In particu-
lar, counter-conditioning DecNef may benefit patients with 
fear-related disorders such as phobias and posttraumatic stress 
disorder, as explicit exposure to traumatic situations (e.g., pro-
longed exposure therapy) may be too difficult for some patients 
(Schnurr et al., 2007).

FCNef

The scope of fMRI-based neurofeedback now extends beyond 
controlling activation levels or patterns within ROIs to include 
regulation of FC between brain regions. Kim et al. (2015) demon-
strated that the combination of ROI- and FC-based neurofeed-
back for heavy smokers aided participants in inducing increased 
ROI activation and FC, which was accompanied by reduced crav-
ings for nicotine. Another FCNef study used dynamic causal 
modeling to enhance the flow of information from the dorso-
medial prefrontal cortex to the amygdala—the putative neural 
circuit associated with the cognitive control of emotions—suc-
cessfully reducing state anxiety (Koush et al., 2015).

These results indicate that specific regulation of FCs can 
indeed be achieved using FCNef, in turn leading to desired 
changes in behavior and function. Although such findings 
suggest that FCNef may represent a novel treatment method 
for psychiatric disorders, it remains unclear for how long 

FCNef-induced connectivity changes are retained. This issue 
was addressed by another recent study in which FC between the 
lateral parietal and primary motor areas, which were negatively 
correlated prior to training, was enhanced via a 4-day, FC-based 
neurofeedback training protocol (Megumi et  al., 2015). This 
increase in FC during the training period resulted in positive 
alteration of the rs-fcMRI between the default-mode and motor/
visuo-spatial networks, which include the 2 ROIs, respectively. 
Intriguingly, this effect lasted for more than 2 months after the 
training. These results indicate that FCNef may be capable of 
inducing robust and long-lasting plasticity in target FCs, which 
is clinically significant for the treatment of psychiatric disor-
ders. Yamashita et  al. (2017) further demonstrated that FCNef 
induced bidirectional changes in behavior by changing the sign 
of a neurofeedback signal. Our hypothesis is as follows: If an rs-
fcMRI-based biomarker capable of discriminating between indi-
viduals with a psychiatric condition and HCs with high accuracy 
can be developed, successful normalization of the individual’s 
own FC pattern using FCNef would lead to a reduction in psy-
chiatric symptoms.

Unique Characteristics of DecNef and FCNef

DecNef and the latter 2 FCNef (Megumi et al., 2015; Yamashita 
et al., 2017) studies have the following 3 unique characteristics: 
(1) implicitness, (2) monetary reward, and (3) spatially limited 
influence. First, no verbal instruction regarding any explicit 
strategy was given to participants, and no participant became 
aware of how feedback was increased or the mechanisms under-
lying the neurofeedback experiment. Second, monetary reward 
was given to participants in proportion to the success of voxel 
pattern or FC induction. Third, induced information by DecNef 
and FCNef was largely constrained in the brain region. As for 
(1), no participant adopted a rational cognitive strategy that 
was fitted to the respective experimental designs, as revealed 
in postexperiment interviews (Shibata et al., 2011, 2016; Megumi 
et  al., 2015; Amano et  al., 2016; Koizumi et  al., 2016; Cortese 
et al., 2016, 2017). When an efficient cognitive strategy is una-
vailable, desired brain activation can be reinforced by providing 
contingent feedback and/or rewards, rather than by the cogni-
tive strategy itself. Therefore, reinforcement learning—or more 
specifically, neural operant conditioning—may well explain the 
training mechanism of DecNef and FCNef. However, to develop 
a clinically useful neurofeedback paradigm, it is necessary to 
compare the effect of various instruction, feedback, and reward 
conditions in future studies.

Figure 3.  The procedure of functional connectivity (FC)-based neurofeedback (FCNef). During training, participants were instructed to self-regulate brain activity to 

maximize the feedback score. This was represented by, for example, the size of a green disc, which reflected the degree of success in achieving target FC.
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Neurofeedback and Pharmacology

When applying these fMRI-based neurofeedback methods to 
individuals with psychiatric disorders, it is necessary to consider 
the relationship between neurofeedback and pharmacology, 
as many patients with such conditions are prescribed psycho-
tropic agents. Neurofeedback learning apparently depends on 
induction of changes in synaptic efficiency where neurochemi-
cal environments, including neurotransmitters and receptors, 
play crucial roles (Sitaram et al., 2016). Although what types of 
learning systems constitute neurofeedback has not been exactly 
identified, a type of associative learning, operant conditioning, 
is thought to be one of the major components of neurofeedback 
learning. Previous studies have shown that NMDA receptors, 
dopamine, and serotonin affect synaptic plasticity during asso-
ciative learning (Gruart et al., 2015; Khani and Rainer, 2016). To 
test the roles of these neurochemicals in neurofeedback learn-
ing, a previous study manipulated several pharmacological 
agents and examined how neurochemicals and receptors medi-
ate neurofeedback learning in rodents (Ishikawa et al., 2014). In 
this study, the authors first successfully induced hippocampal 
neuronal activity through a neural operant conditioning method 
using electrical stimulation of lateral hypothalamus as a contin-
gent reward. Then, the authors further demonstrated that the 
administration of an NMDA receptor antagonist and dopamine 
D1 receptor antagonist abolished the neural operant condition-
ing. In addition, depression model mice conditioned by forced 
swimming failed to induce target neural activity. However, neu-
ral operant conditioning was successfully induced in the same 
mice following treatment with fluoxetine, a selective serotonin 
reuptake inhibitor. These results suggest that successful appli-
cation of fMRI-based neurofeedback in humans also depends on 
specific neurochemical environments determined by molecules 
including dopamine, glutamate, and serotonin. Because these 
environments of neurotransmitters and neuromodulators are 
often significantly altered in psychiatric diseases because of 
either disease itself or medication, further animal research is 
indispensable for identifying molecular conditions where fMRI-
based neurofeedback is clinically applicable. Fruitful interaction 
with pharmacology is critical for the development of fMRI-based 
neurofeedback as a realistic option for clinical application and 
for maximizing the effect of neurofeedback depending on the 
pharmaceutical conditions of patients.

Neurofeedback Therapy Based on Neuroimaging 
Biomarkers

Based on the promising results of the aforementioned stud-
ies regarding rs-fcMRI-based biomarkers and FCNef, several 
proof-of-concept studies have examined the potential effi-
cacy of FCNef in the treatment of patients with MDD and ASD 
(Hashimoto 2013; Kawato 2013; Yahata et al., 2016 and 2017). The 
most recent study consists of rs-fcMRI-based biomarker con-
struction (see The rs-fcMRI-Based Biomarker for ASD) and nor-
malization (i.e., FCs consisted of the biomarker) using an FCNef 
protocol. The protocol for normalization of target FCs was deter-
mined in large part based on a previous study (Megumi et al., 
2015). Briefly, the FCNef training was held over 4 successive days. 
In each trial during the training, participants were instructed to 
manipulate brain activity to increase as much as possible the 
size of a green disc in the display, which represented the degree 
of target FC normalization. The following paragraphs discuss the 
preliminary findings of recent proof-of-concept experiments in 
individuals with MDD and ASD. These studies were approved by 

the ethical committee of Kyoto University and Showa University, 
respectively. All volunteers gave written informed consent prior 
to the study, in accordance with the Declaration of Helsinki.

In the study of MDD, we selected FC between the left dorso-
lateral prefrontal cortex and left precuneus/posterior cingulate 
cortex as a target for FCNef, based on the following steps. First, 
we constructed 2 types of rs-fcMRI-based biomarker, one for 
predicting diagnosis (i.e., depression or healthy) (Ichikawa et al., 
2017) and the other for predicting the severity of depressive 
symptoms (i.e., the score of BDI) (Yamashita et al., 2015). The tar-
get FC was defined as that included in both types of biomarkers. 
The identified FC was consistent with the findings of previous 
studies that have demonstrated an imbalance in anticorrela-
tion between the default mode and fronto-parietal networks as 
a neural correlate for MDD (Kaiser et al., 2015; Northoff, 2016; 
Rayner et al., 2016). During neurofeedback training, participants 
aimed to decrease the correlation of the target FC. In the most 
recent study, FCNef has been conducted for 3 individuals with 
MDD and 7 individuals with subclinical depression. Participants 
with average BDI-II scores >10 at 2 different time points prior to 
training were categorized into the subclinical depression group. 
Figure 4a shows the neurofeedback scores of all 3 patients with 
MDD on each day of training. Scores exhibited an upward trend 
across the 4  days of training, and this was confirmed using a 
multiple regression model that included 2 explanatory variables 
(i.e., each training day and subject) and one response variable 
(i.e., neurofeedback scores), showing significant positive effect 
of the training day (95% CI 1.9–9.1 of the coefficient). Post-hoc 
t-tests revealed that scores for all 3 participants were signifi-
cantly higher on the last day than on the first (t = 4.01, P < .001). 
These results consistently demonstrated that participants 
learned to induce negative correlation for the target FC through-
out the training. Furthermore, all 3 patients exhibited decreased 
scores on the Hamilton Depression Rating Scale (Hamilton, 
1980), which represents the severity of depressive symptoms, 
after the training (Figure  4b). Similar to those of the depres-
sion group, neurofeedback scores also tended to increase over 
the training period among the 7 individuals with subclinical 
depression (Figure  4c). One-way ANOVA revealed a significant 
main effect of training day (P = .011), while posthoc paired t tests 
revealed that neurofeedback scores were significantly higher on 
the last day of training than on the first (P = .0046). A tendency 
for reduced BDI scores following training was also observed 
(P =  .07). Furthermore, 5 of the 7 participants also reduced the 
target rs-fcMRI in the normal direction, and the change in rs-
fcMRI between pre- and post-FCNef was significantly correlated 
with that of BDI score (r = 0.87, P = .011) (Figure 4d). These results 
indicated the possibility that the target FC between the left dor-
solateral prefrontal cortex and left precuneus/posterior cingu-
late cortex may be a theranostic biomarker for depression, as 
more than one-half of the participants decreased the target rs-fc 
in accordance with BDI score through our FCNef training. Taken 
together, these findings suggest that our therapeutic package for 
depression can be used to detect potential theranostic biomark-
ers and ameliorate depressive symptoms using circuit-specific 
fMRI-based neurofeedback.

The integration of the FCNef technique with disease-specific 
rs-fcMRI-based biomarkers may also aid in the development of 
a novel therapeutic treatment for ASD. Using the highly accu-
rate rs-fcMRI-based biomarker for ASD (Yahata et al., 2016), we 
conducted a proof-of-concept study of this approach in which a 
small number of adults with high-functioning ASD underwent 
4 to 5 successive days of FC-neurofeedback training (Hashimoto 
2013; Yahata et  al., 2016, 2017). In contrast to MDD, multiple 
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FCs included in the ASD biomarker were selected as targets of 
intervention. Although the results are still preliminary and sev-
eral aspects of the protocol must be refined, we observed steady 
improvement in feedback scores throughout the training in some 
participants. This observation indicates that some individuals 
with ASD are indeed capable of learning to change their altered FC 

patterns in the direction toward the typically developed pattern, 
even in adulthood. Furthermore, we observed cases in which the 
neurofeedback training had a long-lasting impact on the FC pat-
tern during the resting state. The outputs of the rs-fcMRI-based 
biomarker closely approached the neurotypical level not only 
during the training sessions but also more than 3 weeks after 

Figure 4.  Results from 3 individuals with depression and 7 subclinical participants. (a) and (b) show the results of participants with depression. (c) and (d) show the 

results of participants with subclinical depression. (a) Neurofeedback scores across the 4 training days. Red bar denotes the mean of neurofeedback scores for all trials. 

Error bar denotes SEM. Asterisk shows the statistical significance (P < .001). (b) Hamilton Depression Rating Scale scores at pre- and postfunctional connectivity-based 

neurofeedback (FCNef). Red bar denotes the mean of Hamilton Depression Rating Scale scores and error bar shows SEM. (c) Neurofeedback scores in the same format 

as a. Asterisk shows the statistical significance (P < .01). (d) Scatter plot of the change in the Beck Depression Inventory (BDI) score vs the change of the target resting-

state functional connectivity (FC) MRI (rs-fcMRI) between post- and preneurofeedback. Each dot represents individual data. The line denotes the linear regression of 

the change of BDI score from the change of the target rs-fcMRI.

Figure 5.  Neurofeedback-induced change of functional connectivity (FC) toward the neurotypical pattern in a case of adult high-functioning autism spectrum disorder 

(ASD). The graph shows the feedback scores during the training sessions (blank squares and error bars) and the outputs of the ASD biomarker (Yahata et al., 2016) using 

the resting-state FC data collected before (i.e., RS-1 and RS-2) and after (i.e., RS-3) the neurofeedback training (x signs). The open circle denotes the mean output of the 

ASD biomarker across the three rs-fcMRI sessions conducted in a single day. Although the linear weighted summation of FCs in the ASD biomarker ranged between 

0 (neurotypical pattern) and 1 (typical ASD pattern), the value was fed into a mathematical transformation involving a sigmoid function, such that the output of the 

ASD biomarker ranged between 0 (typical ASD) to 100 (neurotypical). In each training day, there were 6 runs (filled squares and error bars; except for three runs in the 

final day), each of which had 10 trials. Note that, whereas the outputs of the biomarker had remained close to 0 before the training, the resting state FCs exhibited the 

neurotypical pattern at least twice out of 3 scans in the posttraining, which was acquired 3 weeks after the training.
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the training, whereas, prior to training, the biomarker outputs 
had been invariably ASD-like. A typical case is shown in Figure 5. 
We acknowledge that even more robust changes in rs-fcMRI may 
be required to induce behavioral changes that may significantly 
improve patient quality of life. Furthermore, several difficulties 
may exist that are specific to ASD, such as the altered sensitiv-
ity to reward (Dichter et  al., 2012; Kohls et  al., 2013). However, 
recent preliminary results suggest that real-time FCNef guided 
by the disease-specific rs-fcMRI-based biomarker may provide a 
foundation for the development of a novel neuro-circuitry-based 
therapy, particularly for conditions in which the effects of stand-
ard interventions are very limited, such as ASD.

Conclusion

In this review, we discussed recent progress in computational 
psychiatric studies and the findings of our research program 
focusing on rs-fcMRI-based biomarkers and fMRI-based neu-
rofeedback (DecNef project 2017). While not utilized in clinical 
psychiatry at present, these approaches have the potential to 
change the conventional method of symptom-based diagno-
sis to a data-driven method, allowing for more precise treat-
ment with psychotropic agents and circuit-specific therapies 
such as neurofeedback and repetitive transcranial magnetic 
stimulation. Furthermore, the combination of rs-fcMRI-based 
biomarkers and FCNef may allow for the simultaneous diagno-
sis and treatment of psychiatric disorders, thus establishing a 
theranostic biomarker, which has yet to be achieved in clinical 
psychiatry.
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