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Abstract
In studies of anxiety and other affective disorders, objectively measured physiological responses have commonly been used
as a proxy for measuring subjective experiences associated with pathology. However, this commonly adopted “biosignal”
approach has recently been called into question on the grounds that subjective experiences and objective physiological
responses may dissociate. We performed machine-learning-based analyses on functional magnetic resonance imaging
(fMRI) data to assess this issue in the case of fear. Although subjective fear and objective physiological responses were
correlated in general, the respective whole-brain multivoxel decoders for the two measures were different. Some key brain
regions such as the amygdala and insula appear to be primarily involved in the prediction of physiological reactivity,
whereas some regions previously associated with metacognition and conscious perception, including some areas in the
prefrontal cortex, appear to be primarily predictive of the subjective experience of fear. The present findings are in support of
the recent call for caution in assuming a one-to-one mapping between subjective sufferings and their putative biosignals,
despite the clear advantages in the latter’s being objectively and continuously measurable in physiological terms.

Introduction

Physiological markers have been used as proxies for psy-
chological states in multiple mental health domains. How-
ever, evidence accumulated over the years called into

question the relationship between some subjective mental
states and their proposed physiological markers. For
example, in the case of pain, it is well established that
subjective nociceptive experiences can occur without any
obvious peripheral physiological manifestations [1]. As a
result, the self-reported subjective experience remains to
this day the gold standard in pain assessment [2].

Currently, a similar debate is taking place concerning
fear and anxiety [3–5]. In that literature, physiological
reactivity to threat has been considered a reliable objective
proxy for the subjective experience of fear [6]. The reliance
on such physiological measures proved to be quite suc-
cessful and they are now included in numerous studies on
fear and anxiety [7]. Specifically, the neural network
involved in physiological reactivity is currently one of the
primary neurobiological targets for the pharmacological
treatment of anxiety disorders [8].

However, some authors suggest that physiological reac-
tivity (as commonly indexed by skin conductance and
amygdala reactivity) might represent automatic, defensive
responses that are not necessarily conscious [3, 4, 9]. On
this view, studying these physiological defensive responses
may not cover all the relevant mechanisms involved in the
subjective suffering that is central to fear and anxiety dis-
orders. Accordingly, it is argued that an overemphasis on

* Vincent Taschereau-Dumouchel
vincenttd@ucla.edu

* Hakwan Lau
hakwan@gmail.com

1 Department of Decoded Neurofeedback, ATR Computational
Neuroscience Laboratories, Kyoto 619-0288, Japan

2 Department of Psychology, UCLA, Los Angeles, CA 90095, USA
3 RIKEN Center for Advanced Intelligence Project, ATR Institute

International, Kyoto, Japan
4 Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
5 Department of Psychology, University of Hong Kong, Pokfulam

Road, Pok Fu Lam, Hong Kong
6 State Key Laboratory of Brain and Cognitive Sciences, University

of Hong Kong, Kowloon Tong, Hong Kong

Supplementary information The online version of this article (https://
doi.org/10.1038/s41380-019-0520-3) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0520-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0520-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0520-3&domain=pdf
http://orcid.org/0000-0001-8433-4232
http://orcid.org/0000-0001-8433-4232
http://orcid.org/0000-0001-8433-4232
http://orcid.org/0000-0001-8433-4232
http://orcid.org/0000-0001-8433-4232
mailto:vincenttd@ucla.edu
mailto:hakwan@gmail.com
https://doi.org/10.1038/s41380-019-0520-3
https://doi.org/10.1038/s41380-019-0520-3


objective physiological biosignals might slow down the
development of new therapeutic options [4]. This position
remains controversial as others have pointed out that mul-
tiple lines of evidence actually indicate a high correlation
between subjective fear reports and physiological respon-
ses, notably in the amygdala [5]. Here we attempt to bring
in evidence to arbitrate this debate using human functional
neuroimaging.

Specifically, our goal is to study whether the brain
representation of subjective fear ratings dissociates from the
representation of objective physiological reactivity (i.e.,
skin conductance response to feared images). To do so, we
focused on naturally occurring instead of conditioned fears.
One advantage is that these representations are likely to
reflect more closely the brain mechanisms involved in
anxiety disorders such as naturally occurring phobia. We
constructed a functional magnetic resonance imaging
(fMRI) experiment to present as many as 3600 images of
the most commonly feared animals, some neutral animals,
as well as some man-made objects as controls (see Fig. 1a).

We used a machine-learning approach [10–12] to train
multivoxel brain decoders to predict either objective phy-
siological reactivity or subjective fear reports. To do so, we
leveraged whole-brain data to determine the patterns of
voxel activities that are the most predictive of each outcome
(i.e., levels of fear and levels of skin conductance reactiv-
ity). We then tested the generalization of these decoders
using two independent validation datasets (N= 12 and N=
17) (see Fig. 1c) and the brain data of patients diagnosed
with specific phobias (N= 3). Furthermore, we aimed at
determining whether some brain regions are preferentially
involved in the prediction of either the subjective or phy-
siological measures. As such, we established where in the
brain it was possible to predict one outcome with a better
accuracy than the other. This was achieved by comparing
the predictions of both decoders within brain regions.

To anticipate, we found that the representations of sub-
jective fear and skin conductance reactivity present some
overlap but also some differences in the brain. Specifically,
regions previously associated with defensive responses
(such as the amygdala) present a preference in the predic-
tion of defensive responses, whereas some higher-order
frontal regions, previously associated with conscious per-
ception and metacognition, appear primarily involved in the
prediction of the subjective fear reports.

Methods

Participants

The discovery cohort included 31 participants (15 females;
mean age= 23.29 years; SD= 4.21). Participants were

included if they reported, on a six-point Likert scale, “high”
or “very high” fear of at least one animal included in the
experiment (see “Stimuli and task” for a detailed list). Skin
conductance reactivity was not acquired for four partici-
pants and technical issues prevented from recording the skin
conductance of two participants. As a result, the data of 25
participants were available to train the skin conductance
reactivity decoder. The first independent validation cohort
included 12 participants (2 females; mean age= 25.75
years; SD= 3.98) who performed the same fMRI procedure
(i.e., same task in Fig. 1c). Skin conductance reactivity was
acquired for eight of them. The second independent vali-
dation cohort task comprised 17 participants from the dis-
covery cohort (5 females; mean age= 21.92 years; SD=
1.54) that performed a different experimental task (i.e.,
different task in Fig. 1c) (see Supplementary Methods).
Skin conductance reactivity was recorded for all
participants.

The sampling procedure was based on convenience. The
sample sizes were set according to the number of partici-
pants included in previous studies [13, 14]. No acquired
data were excluded from the analysis. No participants
dropped out or declined participation. Participants were not
allocated in experimental groups. All participants provided
written informed consent and the study was approved by the
Institutional Review Board of Advanced Telecommunica-
tions Research Institute International (ATR), Japan.

Stimuli and task

The experimental procedure has been described in detail
elsewhere [13] and is summarized in Fig. 1a. Briefly, par-
ticipants underwent a 1 h fMRI session where they were
presented with images of the most commonly feared ani-
mals (e.g., snake, spider, cockroach, bee, bat, mouse, dog,
cat, shark, etc.) as well as pictures of other animals and
objects. We chose to present 90 different images per cate-
gory and to include 30 animal categories and 10 object
categories (for a total of 3600 different images). The 30
different animal categories included reptiles (snake, turtle,
and gecko), amphibians (frog), insects (cockroach, beetle,
ant, spider, grasshopper, caterpillar, bee, butterfly, and fly),
birds (robin, peacock, and chicken), annelids (earthworm),
mammals (mouse, guinea pig, bat, dog, sheep, cat, rabbit,
horse, and giraffe), and aquatic animals (shark, whale,
common fish, and dolphin). The database also included ten
categories of human-made objects (airplane, car, bicycle,
scissors, hammer, key, guitar, cellphone, umbrella, and
chair). The images presented a full frontal view of the object
or animal and no other recognizable object was clearly
identifiable in the background. Images were cropped so that
they would frame the object. The final images were 533 ×
533 pixels and covered 13.33° of visual angles during the
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procedure. The average contrast and luminance of images
were not different between categories [13]. The data of the
human-made objects were not analyzed. Trials were orga-
nized in six runs of 600 trials interleaved with short breaks.
The sequence of presentation was pseudo-randomized and
fixed across participants.

MRI parameters

Participants were scanned in two 3T MRI scanners (Prisma
Siemens and Verio Siemens) with a head coil at the ATR
Brain Activation Imaging Center. During the experiments,
we obtained 33 contiguous slices (Repetition time (TR)=
2000 ms, Echo time (TE)= 30 ms, voxel size= 3 × 3 × 3.5
mm3, field-of-view= 192 × 192 mm, matrix size= 64 × 64,
slice thickness= 3.5 mm, 0 mm slice gap, flip angle= 80°)
oriented parallel to the AC-PC plane, which covered the
entire brain. We also obtained T1-weighted MR images
(MP-RAGE; 256 slices, TR= 2250 ms, TE= 3.06 ms,
voxel size= 1 × 1 × 1 mm3, field-of-view= 256 × 256 mm,

matrix size= 256 × 256, slice thickness= 1 mm, 0 mm slice
gap, TI= 900 ms, flip angle= 9°).

Recording of electrodermal activity

Skin conductance reactivity was determined during the
fMRI sessions using BrainAmp Ag/AgCl sintered MR
electrodes (Brain Products). The electrodes were disposed
on the distal phalanges of the index and middle fingers of
the left hand. Skin conductance reactivity was determined in
response to the first image of each chunk of images of a
given category. Following previous methodologies [13], we
determined the maximum amplitude in a time window of
1–5 s following the image onset and removed from this
value the baseline activity in a 2 s window before the image
onset. Responses smaller than 0.2 microsiemens (μS) were
recoded as 0 (see Supplementary Methods). Responses
were square-root transformed to correct for the skewness of
the distribution [15]. This standard analytical procedure
allowed for our results to be readily put in correspondence

Fig. 1 Experimental design and decoding procedure. a We recorded
functional brain activity and electrodermal activity during the pre-
sentation of images depicting 30 animal categories and 10 man-made
objects. The skin conductance reactivity was established during
the fMRI session using standard analytical procedures (see Methods).
The subjective fear ratings were established before the fMRI procedure
without presenting any fearful stimuli. This approach was similar to
the typical clinical procedures used for the assessment of fear. b The
images were presented in chunks of 2, 3, 4, or 6 images of the same
category. The fMRI analyses modeled the first images of each chunk,
because they could be attributed both a subjective fear rating and a
level of skin conductance reactivity (see Methods). The estimated
brain responses were binned (i.e., averaged) as a function of their

categorical fear ratings (left) or skin conductance reactivity (right). The
binned beta images of the discovery cohort were used to train the
decoders. The unthresholded weight maps of the whole-brain decoders
are displayed. c The performances of the decoders were tested in the
discovery cohort (both on binned and single-trial data) as well as in
independent validation cohorts not included in the training of the
decoder. This procedure allowed us to estimate the generalization of
the decoders to new datasets. The first independent cohort included
new participants (N= 12) performing the same task as the one per-
formed by the discovery cohort. The second independent cohort (N=
17) performed a different experimental task where pictures of feared
animals were also presented (see Supplementary Methods and Results)
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with previous findings. However, this approach presents the
disadvantage of allowing for the peak of skin conductance
reactivity of one trial to occur within the time window of
the following trial. We quantified that this scenario hap-
pened in 2.62% of all trials. This did not prevent us from
developing a sensitive and accurate decoder of the skin
conductance reactivity (see Figs. 3, 4, and Supplementary
Figs. S1 and S2). However, this represents a source of noise
that could be avoided in future experiments by using longer
presentation chunks.

Comparing subjective fear ratings and skin
conductance reactivity

To determine the correlation between subjective fear reports
and skin conductance reactivity, we first established, for
each participant, an average level of skin conductance
reactivity for each animal category. Since the first trial of
each run (i.e., trials were organized in 6 runs of 600 trials)
was typically associated with greater skin conductance
reactivity, we removed these six trials as they did not
represent a typical reactivity to the image category per se.
This removed 6 out of the 720 trials. The remaining trials
were winsorized (5th and 95th percentile), averaged within
category and standardized. We then established group-level
mean value for each category by averaging across partici-
pants. This was achieved both for the subjective fear ratings
and for the skin conductance reactivity. The mean catego-
rical values were then standardized at the group level. These
standardized values were correlated to determine the asso-
ciation between subjective fear ratings and skin
conductance reactivity at the group level. The results are
presented in Fig. 2.

Preprocessing of fMRI data

The fMRI images captured during the experiment were
realigned to the first fMRI image, coregistered, and motion-
corrected (using six motion parameters) in SPM 12
(Statistical Parametric Mapping; www.fil.ion.ucl.ac.uk/
spm) [16]. Functions of pyMVPA (www.pymvpa.org)
[17, 18] implemented in the Neurodebian environment [19]
were used to remove the linear trend and to deconvolve the
signals using the least-square separate approach [20, 21].
This method allowed to iteratively fit a general linear model
to estimate the brain response to the first presentation of
each chunk of images. Each general linear model includes
one parameter modeling the current trial and two parameters
modeling all other trials in the design. Via this method, we
were able to obtain one parameter estimate (i.e., a beta
image) for each individual trial of our rapid-event-related
design (720 beta images for each participant). Data were
also normalized to the Montreal Neurological Institute

(MNI) space and smoothed (full-width at half maximum=
[8,8,8]) using SPM 12.

Whole-brain decoders

To train whole-brain decoders in the discovery cohort, we
created two datasets by binning (i.e., averaging) together
within-subject beta images either as a function of indivi-
dual fear ratings (0= “No Fear” to 5= “Very High Fear”)
or as a function of skin conductance reactivity (according
to individual quintiles of the reactivity) (see Fig. 1). This
procedure allowed both to remove the effect of outliers and
to capture the within-subject variability of each measure.
To train the subjective fear decoders, the binned beta
images were created by binning together, within-partici-
pant, the trials corresponding to the same level of fear
(0= “No fear” to 5= “Very high fear”). A similar proce-
dure was used to create the binned beta images to train the
skin conductance reactivity decoder. We aimed at creating
six binned images per participant to reflect the different
skin conductance reactivity levels. However, because of the
skewness of the distribution, splitting the data according to
even quintiles would result in an over-representation of the
trials with very small reactivity (i.e., most of the trials are
below 0.2 μS). As such, trials below 0.2 μS were con-
sidered to be part of the binned beta image of level 0. The
remaining trials were grouped into quintiles (computed
individually) and the binned beta images 1–5 were
obtained by averaging the corresponding images together.
The number of trials in each bin was used to set the number
of trials randomly selected to constitute the binned image
of level 0. Binned beta images were mean centered within
subject.

Fig. 2 Skin conductance reactivity is correlated with subjective fear
ratings. Within each category, subjective fear ratings and mean skin
conductance reactivity were averaged at the group level and standar-
dized (see Methods). As expected, skin conductance reactivity was
correlated with subjective fear ratings (r(28)= 0.43; P= 0.02; 95%
CI: 0.08–0.69; R2= 0.19; two-sided)
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In a cross-validation procedure, we trained a support
vector regression decoder on the data of N-1 participants
and tested the accuracy of the decoder to predict the
left-out participant (i.e., leave-one-subject-out cross-
validation approach) (implemented in Matlab
[https://www.mathworks.com/products/matlab.html]
using the CanlabCore toolbox [https://github.com/canlab/
CanlabCore] and the Spider machine-learning library
[http://people.kyb.tuebingen.mpg.de/spider/main.html]).
This procedure was achieved iteratively to obtain pre-
dicted values for all participants. We established both the
sensitivity (e.g., can we predict accurately the subjective
ratings of fear?) and the specificity (e.g., can we predict
the subjective ratings with the skin conductance reactivity
decoder?) of each whole-brain decoders. The sensitivity
was established using the area under the receiver operat-
ing characteristic curve (AUC) of the predicted values. To
determine the statistical significance of the AUC, we
conducted a permutation test by randomly permuting
(1000 times) the labels of the beta images in the datasets.
Applying the decoders to this permuted data allowed to
obtain a distribution of AUCs under the null hypothesis.
This was achieved to obtain a critical value for sig-
nificance at p= 0.05 (dashed lines in Figs. 3a, 4b). The
specificity was also determined by testing each decoder
using the dataset of the other outcome (e.g., testing the
subjective fear rating decoder using the skin conductance
dataset). This process, which we call “cross-decoding,”
can reveal similarities between brain representations if the
results reveal above-chance performances. We also
determined the performance of the decoders trained with
binned beta images in the prediction of single-trial (i.e.,
unaveraged) beta images. This was achieved also using a
leave-one-subject-out cross-validation procedure (i.e.,
training with binned beta images and testing with single-
trial data of the left-out participant) (see Supplementary
Methods and Supplementary Fig. S1).

As participants presented various levels of fear and skin
conductance response to each category, the prediction of
categorical beta images (e.g., averaged beta images of
snakes) by each decoder should also follow the subjective
ratings and skin conductance reactivity. To test this
hypothesis, we computed mean beta images for each animal
category and submitted these beta images to the decoders.
We generated binned categorical images by removing the
first trial of each block from the binned beta images (see
above Comparing subjective ratings and skin conductance
reactivity). This resulted in removing 6 trials out of the 720
beta images. We submitted the average categorical images
to the whole-brain decoders. The predicted values were
winsorized (5th and 95th percentile) and standardized
within participant. At the group level, these values were
averaged, standardized, and then correlated with the mean

subjective fear ratings and skin conductance reactivity (see
Fig. 3c).

Testing the generalization of whole-brain decoders

Although leave-one-subject-out cross-validation is a com-
mon practice in machine learning, this approach may not
reflect the true generalization capability of the decoders
[22]. As such, we estimated the generalization of the
decoders using two independent validation datasets as well
as patients diagnosed with specific phobia.

The first dataset included a group of participants (N=
12) that went through the same fMRI procedure (i.e.,
same task) but were not included in the training of the
decoder [23].

The second independent validation dataset was composed
of a subsample of participants from the discovery cohort
(N= 17) that took part in a new fMRI procedure (i.e., dif-
ferent task) (see Supplementary Methods). In this experi-
ment, participants were asked to assess online their subjective
fear of images of feared and non-feared animals. Their skin
conductance reactivity was recorded during this fMRI pro-
cedure. We processed single-trial beta images from this
experiment and submitted these images to the whole-brain
decoders (Supplementary Fig. S2 and Methods).

Another important question pertains to the generalization
of the brain decoders to a clinical population. To provide
some information regarding this generalization, we included
in the study three patients (N= 3) diagnosed with specific
phobia of one of the 30 animals (see Supplementary
Methods and Supplementary Fig. S3).

Within-region decoders

We also aimed to determine the brain regions differentially
involved in the prediction of subjective fear ratings and skin
conductance reactivity. Thus, we used the same leave-one-
subject-out cross-validation but within predefined brain
regions. For this purpose, we used a parcellation of the
cortex based on functional connectivity [24]. We selected
the 210 cortical regions of this brain atlas, as well as the
amygdala and hippocampus, for a total of 214 regions. We
iteratively trained decoders within each of the selected
regions to predict either outcome. This procedure provided
us with a correlation coefficient between the predicted and
real values for each decoder, within each region. This
allowed for a direct comparison of the correlation coeffi-
cients between decoders using Fisher’s method [25]. As
such, this procedure was used to determine where in the
brain one decoder presented a better performance than the
other (e.g., a better prediction of the subjective ratings than
the skin conductance reactivity). These statistical compar-
isons were corrected to account for multiple comparisons.
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The false discovery rate of this series of dependent tests was
controlled using the method described by Yekutieli and
Benjamini [26], and was implemented using the Matlab
toolbox fdr_bh (http://kutaslab.ucsd.edu/matlabmk_fn_
docs/matlabmk/fdr_bh.html). To facilitate the interpreta-
tion, we plot in Fig. 4a the difference in the AUCs of both
decoders within each region.

We also determined the brain regions that could reliably
represent both outcomes. Using the within-region decoding
procedure, we conducted an exploratory conjunction ana-
lysis to determine the brain regions that were involved in
the correct prediction of both subjective fear ratings and
skin conductance reactivity (see Supplementary Methods,
Results, and Supplementary Table S1).

Results

As expected based on previous literature, subjective fear
ratings and skin conductance reactivity were correlated

(r(28)= 0.43; P= 0.02; 95% confidence interval (CI):
0.08–0.69; R2= 0.19; two-sided) (see Fig. 2 and Methods).
The data met the assumptions of the test. No outlier was
observed, the data were normally distributed, and the data
presented no heteroscedasticity. Both outcomes also presented
some level of variability. At the group level, 59% of trials
were associated with a certain level of fear (4.6% very high
fear, 11.0% high fear, 12.8% moderate fear, 15.9% low fear,
and 14.7% very low fear), whereas 41% were associated with
no fear. Regarding skin conductance reactivity, 28.21% of
trials were considered to present a certain level of reactivity
(>.2 μS), whereas 71.79% did not (see Supplementary
Methods).

Whole-brain decoders

Figure 3a shows the discrimination accuracy of the whole-
brain decoders of subjective fear ratings (Fig. 3a, left panel)
and skin conductance reactivity (Fig. 3a, right panel). Both
decoders present a high level of sensitivity in the prediction

Fig. 3 Whole-brain decoders of subjective fear and skin conductance
reactivity. a Both whole-brain decoders presented a good sensitivity
when tested on the dataset they were trained to predict (e.g., subjective
fear decoder predicting the fear dataset). The cross-decoding procedure
(e.g., predicting skin conductance reactivity using the subjective fear
decoder) also revealed that both decoders can generalize to some
extent to the other dataset. Dashed lines represent the critical value
(p= 0.05) determined using a permutation test. b Both whole-brain
decoders also generalized to new data as evidenced by their good
capacity to predict the independent validation cohort. The cross-

decoding procedure indicated that the skin conductance decoder could
also predict accurately the subjective fear rating dataset (right panel).
This was not observed for the subjective fear decoder (left panel).
c The whole-brain decoders were also tested on the categorical beta
images of each participant (the prediction of the subjective fear
decoder and subjective fear ratings: r(28)= 0.82; P < 0.0001; 95% CI:
0.65–0.91; R2= 0.67; two-sided; the predictions of the skin con-
ductance decoder and the skin conductance reactivity of the categories:
r(28)= 0.36; P= 0.05; 95% CI: −0.006–0.63; R2= 0.13; two-sided)
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of binned images (AUCs ~ 0.85) as well as a good sensi-
tivity (AUCs ~.62) in the prediction of single-trial images of
the discovery cohort (see Fig. S1 and Supplementary
Methods and Results). Both decoders also showed some
cross-decoding capacity as indicated by the above-chance
classification of the binned images (dashed lines in Fig. 3
correspond to p= 0.05 determined with a permutation test).

The results also indicated that whole-brain decoders
presented significant predictions of the categorical beta
images. More precisely, at the group level, the predictions
of the subjective fear decoder were correlated with the
subjective fear ratings (r(28)= 0.82; P < 0.0001; 95% CI:
0.65–0.91; R2= 0.67; two-sided) (see Fig. 3c, top panel)
and the predictions of the skin conductance decoder
were correlated with the average skin conductance reactiv-
ity of the categories (r(28)= 0.36; P= 0.05; 95%

CI: −0.006–0.63; R2= 0.13; two-sided) (see Fig. 3c, bot-
tom panel). The data met the assumptions of the tests. No
outlier was observed, the data were normally distributed,
and the data presented no heteroscedasticity.

Testing the generalization of whole-brain decoders

Figure 3b shows the discrimination accuracy of the sub-
jective fear (Fig. 3a, left panel) and skin conductance
reactivity decoders (Fig. 3a, right panel) in the prediction of
the first independent validation cohort (N= 12) (e.g., new
participants performing the same fMRI task). Both decoders
presented sensitivity (AUCs ~ 0.70) in the prediction of the
outcome they were trained to predict. There was also an
above-chance classification of the subjective fear dataset
using the skin conductance decoder (dashed lines in Fig. 3

Fig. 4 Brain regions presenting a
significant difference in the
prediction of the subjective
ratings and skin conductance
reactivity. a A positive
difference in the area under the
curve indicates a better
prediction of the subjective
ratings (red–orange regions)
whereas a negative difference
indicates a better prediction of
skin conductance reactivity
(blue regions). The significant
regions (p < 0.05; FDR-
corrected) are surrounded by
black borders and are listed in
Table 1. Brain images were
generated using pySurfer
(https://pysurfer.github.io/).
b Significant regions of the
middle frontal gyrus, amygdala,
insula, and ventral medial
prefrontal cortex (vmPFC).
Dashed lines represent the
critical value (p= 0.05)
determined using a
permutation test
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correspond to p= 0.05). Regarding the second independent
validation dataset (N= 17) (i.e., participants performing a
different task), both decoders presented weak but statisti-
cally significant predictions (see Fig. S2 and Supplementary
Methods and Results). Furthermore, the decoders presented
a similar level of accuracy as the rest of the discovery cohort
when tested using the data of patients diagnosed with spe-
cific phobia (see Fig. S3 and Supplementary Methods and
Results).

Taken together, these results indicate that it is possible to
develop sensitive whole-brain decoders of subjective fear
and skin conductance reactivity. Importantly, our results
suggest that both decoders can generalize, to some extent, to
two independent validation cohorts as well as to patients
diagnosed with specific phobia. Furthermore, the predic-
tions of the decoders appear to correspond to the individual
variability in the dataset as assessed by the prediction of the
categorical beta images of each animal category. Although
these decoders present some similarities, they also appear to
be independent of one another as indicated by the results of
the cross-decoding procedure.

Within-region decoders

Figure 4 and Table 1 indicate in which brain regions the
predictions of the decoders were statistically different.
Interestingly, the significant regions of the middle frontal
gyrus (inferior frontal junction, A8vl, A6vl, and A10l) all
involved a better prediction of the subjective fear ratings
than the skin conductance reactivity (see Fig. 4b, left
panel). Other regions presenting such a preference for the
prediction of the subjective ratings include the medial
superior frontal gyrus, the lateral orbitofrontal gyrus, the
inferior temporal gyrus, the fusiform gyrus, the para-
hippocampal gyrus, the superior parietal lobule, the inferior
parietal lobule, the precuneus, and the occipital lobe (see
Table 1). Furthermore, other regions such as the amygdala,
the insula, and the ventral medial prefrontal cortex appear
to be primarily associated with the skin conductance
response, while being marginally involved in the prediction
of the subjective fear ratings (see Fig. 4b, right panel).
Other regions presenting such a preference are the lateral
inferior frontal gyrus, the superior parietal lobule, the
paracentral lobule, and the postcentral gyrus. As expected
from this series of correlational analyses, some tests did not
fulfill all the Pearson’s correlation assumptions. However,
when robust correlations are conducted (skipped correla-
tions [27–30]), the interpretation remains qualitatively the
same. These results suggest that the subjective experience
of fear might involve brain processes partly distinct from
those involved in the production of the skin conductance
response.

Furthermore, an exploratory conjunction analysis indi-
cated that some brain regions could present a significant
prediction of both outcomes. These regions notably include
part of the inferior frontal gyrus, insula, precuneus, hippo-
campus, and fusiform gyrus (see Supplementary Results
and Supplementary Table S1).

Discussion

Our results are in line with multiple previous findings,
indicating a positive relationship between the subjective
fear ratings and autonomic responses [31–34]. However,
here we also showed that the brain regions involved in the
accurate prediction of these two measures are possibly
distinct. For instance, brain regions such as the amygdala,
insula, and ventromedial prefrontal cortex appeared mostly
involved in the prediction of physiological reactivity
(Fig. 4b, right panel), whereas regions of the middle frontal
gyrus, dorsomedial prefrontal cortex, and lateral orbital
cortex were more closely related to the subjective reports of
fear (Fig. 4b, left panel). This suggests that some caution
may be warranted in the use of physiological reactivity as
the sole source of information to infer the subjective suf-
fering associated with fear and anxiety disorders.

Our results raise the question of the relation between
physiological reactivity and subjective fear in the brain. To
what extent are their representations independent? Is the
subjective fear rating a late-stage readout of the physiolo-
gical reactivity? Similar questions have been previously
discussed in the consciousness literature [35, 36]. For
instance, Maniscalco and Lau [36] tested multiple models
formalizing the potential relations between the sensory
signal and subjective judgment. Their results suggest that a
hierarchical model in which subjective experience depends
on late-stage readout best accounted for the data. This is
notably in line with higher-order [3, 35, 37] and con-
structivist theories [38, 39] of emotions, suggesting that
first-order representations (possibly reflected by the phy-
siological reactivity) may need to be attended or meta-
represented downstream for subjective experiences to occur.
This is also in accord with a recent review of the literature
[40], indicating that a meta-representation of the lower-level
affective processes might be implemented by the middle
frontal gyrus and other areas in the lateral prefrontal cortex.

Further evidence for a hierarchical model comes from
results, indicating that low-level affective processes do not
seem necessary to generate a conscious experience of fear.
For instance, patients presenting bilateral lesions of the
amygdala have been reported to be capable of experiencing
fear in some specific situations [41, 42]. Although there is
still some debate regarding the possible mechanisms leading
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Table 1 Regions presenting a significant difference in the prediction of subjective ratings and skin conductance responses

Z P Gyrus Region Laterality MNI
coordinates
[X,Y,Z]

Fear > SCR

4.063 0.000048 Superior frontal Medial area A10m L −8, 56, 15

3.960 0.000075 Middle frontal Inferior frontal junction (IFJ) L −42, 13, 36

3.832 0.000127 A8vl, ventrolateral area 8 R 42, 27, 39

3.457 0.000546 A6vl, ventrolateral area 6 L −32, 4, 55

3.836 0.000125 A10l, lateral area 10 L −26, 60, −6

4.505 0.000007 Orbital A12/47o, orbital area 12/47 R 40, 39, −14

3.314 0.000921 Inferior temporal A37elv, extreme latero-
ventral area 37

L −51, −57, −15

3.718 0.000201 A20cl, caudolateral of area 20 L −59, −42, −16

3.942 0.000081 Fusiform A20rv, rostroventral area 20 L −33, −16, −32

3.427 0.000610 A37mv, medioventral area 37 L −31, −64, −14

3.558 0.000373 Parahippocampal A35/36c, caudal area 35/36 R 26, −23, −27

3.582 0.000341 Superior
parietal lobule

A5l, lateral area 5 R 35, −42, 54

3.688 0.000226 Inferior
parietal lobule

A39c, caudal area 39(PGp) L −34, −80, 29

3.845 0.000120 A39c, caudal area 39(PGp) R 45, −71, 20

3.991 0.000065 Precuneus A7m, medial area 7(PEp) L −5, −63, 51

4.701 0.000002 Occipital lobe mOccG, middle
occipital gyrus

L −31, −89, 11

4.48 0.000007 mOccG, middle
occipital gyrus

R 34, −86, 11

3.940 0.000081 OPC, occipital polar cortex R 22, −97, 4

4.795 0.000002 msOccG, medial superior
occipital gyrus

L −11, −88, 31

3.488 0.000487 msOccG, medial superior
occipital gyrus

R 16, −85, 34

3.615 0.000301 lsOccG, lateral superior
occipital gyrus

L −22, −77, 36

3.36 0.000755 lsOccG, lateral superior
occipital gyrus

R 29, −75, 36

SCR > Fear

−3.355 0.000794 Amygdala Medial and lateral amygdala R −23, −3, −20

−3.844 0.000121 Inferior frontal A44v, ventral area 44 R 54, 14, 11

−4.068 0.000047 Orbital A11m, medial area 11 L −6, 52, −19

−3.864 0.000112 Paracentral lobule A4ll, area 4, (lower limb
region)

L −4, −23, 61

−3.860 0.000113 Superior
parietal lobule

A7r, rostral area 7 R 19, −57, 65

−3.551 0.000384 A7c, caudal area 7 R 19, −69, 54

−3.446 0.000569 Postcentral A1/2/3ulhf, area 1/2/3(upper
limb, head and face region)

R 50, −14, 44

−3.441 0.000579 Insular G, hypergranular insula L −36, −20, 10

−4.318 0.000016 R 37, −18, 8

−4.598 0.000004 dIg, dorsal granular insula R 39, −7, 8

Following Fisher’s method [25], the Z-value can be used to compare directly the correlations between the predicted values of each decoder and the
real values
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to these subjective experiences, the overall evidence at least
does not seem incompatible with higher-order models.

A higher-order perspective is in line with previous
results [12, 41–45] and ours, but models of emotions are
still being debated [46]. For instance, one may argue
against this hierarchical or higher-order view based on
experimental demonstrations that the electrical stimula-
tion of the amygdala itself can trigger a subjective
experience of fear and anxiety [47]. Although this
demonstration was compelling, it is important to mention
that in that study this phenomenon occurred only in one
out of nine patients. This inconsistency may be partly
attributed to inter-individual differences in the spread of
electrical activity to other brain regions. However, it is
worth noting that the stimulation had a clear dose-
dependent effect on the objective physiological response,
which was observed across the entire group of patients.
Taken together, these results suggest that the amygdala
might play a central role in generating physiological
responses but possibly a marginal role in generating the
conscious experience of fear.

One reason for the skepticism about higher-order models
might be that anxiety disorders have been reliably asso-
ciated with a dysregulation of physiological reactivity [48].
As such, higher-order structures are typically con-
ceptualized as playing more of a complementary role in
these pathologies. However, it is worth noting that the
therapeutic success of psychotherapies for anxiety and
depression appears to be mediated by brain regions such as
the dorsomedial prefrontal cortex, posterior cingulate gyrus,
precuneus, and some regions of the temporal lobes [49].
Also, recent findings indicated that the inhibition of the
amygdala by the dorsolateral prefrontal cortex was posi-
tively associated with the outcome of exposure therapy [50].
As such, some higher-order processes may also have an
important influence on therapeutic success.

One challenge in the implementation of a higher-order
approach to anxiety disorders is the reliance on self-
reported measures. This can potentially be a problem,
because the means of fear assessment can greatly influ-
ence the outcome. We opted for offline categorical rat-
ings, as this is the typical approach for clinical diagnosis,
but one may worry that this may not directly reflect the
online subjective experience of fear. Our results suggest
that both assessment methods may at least partly reflect
similar processes, as our decoders trained to predict off-
line ratings could predict weakly but significantly online
ratings in an independent validation fMRI task (Supple-
mentary Methods and Supplementary Fig. S2). However,
further work may be needed to determine precisely which
aspects of fear are more salient with different means of
assessment and how to cover accurately the multiple
dimensions relevant to the self-report of fear.

Furthermore, defensive responses are multifaceted and
can vary as a function of multiple factors such as the threat
imminence. For instance, it was shown that a “reactive
network”—primarily including the amygdala, periaque-
ductal gray, and midcingulate cortex—might be involved in
the initial reactivity to threat and rapid escape decisions,
whereas a more “cognitive network”—which primarily
includes the ventromedial prefrontal cortex, hippocampus,
and posterior cingulate cortex—might mainly be involved in
generating more complex behavioral responses [51, 52]. Our
approach involved relatively simple defensive reactions to
visual stimuli and required little interaction with the threat
outside of a simple motor response. As such, the cognitive
network involved in more complex defensive responses may
not have been accurately captured by our analyses.

Another concern is that emotional states have been
proposed to involve (and sometimes interfere with) cogni-
tive functions [53]. As such, we can expect part of our
results to represent this interaction rather than a strict
representation of fear per se. For instance, the middle frontal
gyrus has also been involved in the cognitive regulation of
emotion [54, 55] and in the regulation of the physiological
reactivity network [50]. Furthermore, activity in this region
has also been associated with working memory and the
retrieval of semantic information [56]. The same logic
applies to attentional processes with reported influences in
the occipital, frontal, parietal, and ventral temporal regions
[57, 58]. As our experiment involved cognitive functions
such as working memory and attention, our results may be
partly associated with the interference of fear with these
cognitive functions [59]. This observation does not under-
mine our claim, as complex interactions between cognitive
and affective processes might also represent an important
mechanism of change in psychotherapy [60] that requires
further empirical investigation.

Given that multivoxel decoding involves many para-
meter choices, one may wonder if our results robustly
generalize or if they are due to idiosyncratic details. Overall,
our impression is the main results do hold up under different
analyses (see Fig. 3b, Supplementary Figs. S1 and S2, as
well as Supplementary Results). One specific concern is
with respect to the choice of a between- or within-subject
decoding strategy. Here, both approaches presented some
similarities, at least regarding subjective ratings of fear (see
Supplementary Methods, Results, and Supplementary
Fig. S4). However, the generally weaker performance of
within-subject decoders rendered a direct comparison
impractical, especially for skin conductance reactivity,
which contains too few trials within each participant.
Therefore, throughout we primarily focused on the
between-subject decoding approach.

Another concern pertains to the use of either binned data
or single-trial data. Binned (or averaged) data can be useful
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to train the decoders as the process of averaging can remove
some of the within-subject noise and can make the data
manageable for the training procedure. However, it also
appears important to test the accuracy of the decoder in the
prediction of raw single-trial data. This is why we chose to
combine both approaches and to also test our decoders on
raw single-trial data (Supplementary Fig. S1).

Another important concern pertains to the general-
izability of decoders to other datasets. Our decoders pre-
sented good generalization to an independent validation
dataset (see Fig. 3b) but also weaker performances on a
dataset coming from a different fMRI task (Supplemen-
tary Fig. S2). Training the decoders using data from
multiple tasks would potentially allow to build decoders
that could generalize better across different tasks and
datasets.

In sum, we have exploited an opportunity to directly
compare how machine-learning decoders can predict the
subjective fear rating and its correlated physiological
activity. Our results suggest that the study of fear and
anxiety disorders may benefit from a greater inclusion of
subjective measures, as they might index higher-order
processes not readily accessible when studying physiolo-
gical reactivity alone. This may prove to be an important
means to optimize treatments and further tailor interventions
to specifically alleviate the subjective suffering associated
with fear and anxiety disorders.

Data availability

The data supporting the main findings of this manuscript
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decnefpro/) and from the corresponding authors upon
reasonable request. Statistical analyses were conducted
with Matlab R2017b. fMRI analyses were conducted
using SPM 12, pyMVPA 2.4, and the CanLabCore tool-
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able upon request.
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