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Unconscious reinforcement learning of hidden
brain states supported by confidence
Aurelio Cortese 1✉, Hakwan Lau 2,3,4,5 & Mitsuo Kawato 1,6✉

Can humans be trained to make strategic use of latent representations in their own brains?

We investigate how human subjects can derive reward-maximizing choices from intrinsic

high-dimensional information represented stochastically in neural activity. Reward con-

tingencies are defined in real-time by fMRI multivoxel patterns; optimal action policies

thereby depend on multidimensional brain activity taking place below the threshold of con-

sciousness, by design. We find that subjects can solve the task within two hundred trials and

errors, as their reinforcement learning processes interact with metacognitive functions

(quantified as the meaningfulness of their decision confidence). Computational modelling and

multivariate analyses identify a frontostriatal neural mechanism by which the brain may

untangle the ‘curse of dimensionality’: synchronization of confidence representations in

prefrontal cortex with reward prediction errors in basal ganglia support exploration of latent

task representations. These results may provide an alternative starting point for future

investigations into unconscious learning and functions of metacognition.
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We consciously perceive our reality, yet much of ongoing
brain activity is unconscious1,2. While such activity
may contribute to behaviour, presumably it does so

automatically and is not utilized with explicit verbal strategy. Can
humans be trained to make rational use of this rich, intrinsic
brain activity? From the outset, this problem is challenging
because the relevant activity is often high dimensional. Given so
many latent dimensions, how can subjects know what to learn?
This question is more general than it may appear: having to probe
through vast search spaces, among many possible states for effi-
cient learning, is widely recognized as one of the core challenges
in reinforcement learning (RL), or the ‘curse of dimensionality'3,4.
Particularly so in the brain, where sensorimotor learning is a
classic example5, but likewise most social and economic decisions
are difficult in the sense that there is no external and explicit state
which is relevant to RL.

Previous studies have shown that RL can operate on external
masked stimuli6–8. In those studies, the relevant subliminal
information was driven by a simple visual stimulus, which carried
only a single bit of information. Other studies have shown that
human participants can decide advantageously before consciously
knowing the strategy9. Here we address a more challenging
question with a technique based on internal multivariate repre-
sentations. Specifically, subjects have to learn a hidden state (the
internal multivariate representation) with many dimensions
generated stochastically within the brain.

We draw inspiration from brain–computer interface (BCI)
studies in monkeys10,11. Using a decoder (a machine learning
classifier), subjects’ neural activity patterns (in either the pre-
frontal cortex—PFC, or visual cortex—VC) measured with
functional magnetic resonance imaging (fMRI) determine in real-
time the ‘state’ of an RL task (Fig. 1, Methods). The decoder is
based on representations of right and left motion direction, so as
to have a clearly separable boundary also at the neural level. To
construct the decoder, we used fMRI data collected a week before
the main RL task (Supplementary Fig. 1, Methods). VC is chosen
because it is the first stage of cortical processing for visual
information, and its features are known to be mainly linked to
simple, objective aspects of stimuli12,13. PFC representations on
the other hand are thought to be mainly related to subjective
aspects of the perceived stimuli14,15. Based on these functional
differences we predict different learning results depending on
where the decoder was built.

Each trial starts with a blank interval, followed by random dot
motion (RDM) with 0% coherence displayed for 8 s. After sti-
mulus presentation subjects report what they perceive as right-
ward or leftward motion (discrimination), rate their confidence in
their choice and lastly, gamble on two options (A or B) that can
potentially lead to reward (30¥/0.25$). Unbeknownst to the sub-
jects, whether it is option A or B that is more likely to be rewarded
(i.e. the optimal action) is determined by a multidimensional
pattern of their own brain activity measured at pre-stimulus time.
That is, these patterns are input to the decoder, which categorizes
them into latent RL states. Importantly, the purpose of the
decoders here is not to find motion direction information in brain
activation patterns. Rather, the purpose of the decoders is to divide
brain activity into two classes, so as to define the latent RL state
unconsciously. Because the time of decoding is pre-stimulus and
the ensuing stimulus itself carries no direction information, the
decoder alone defines the latent state from stochastic brain
activity, along a predetermined classification boundary. Such
multidimensional patterns are known to represent information
that is generally below consciousness1,16–19.

Although not fully unconstrained, spontaneous activity of
neural populations is less structured than activity generated by
specific sensory inputs20,21. The setting adopted here implies that

the search for optimal policies in RL should explore a hidden,
relevant state among a relatively high number of possible states
defined by patterns of neural activity. Even the best artificial
intelligence algorithms struggle to handle such problems in
everyday, real-world problems when the training sample is
small22.

Given the unconscious nature and the high dimensionality of
the neural activity used as task contingencies, it may thus seem
improbable that subjects can learn to perform advantageously.
Besides, previously we have proposed that solving such problems
may correlate with the mechanism of metacognition, manifested
as confidence judgements, and illustrating the ability of an agent
to introspect and track its own performance or beliefs23–25.
Recurrent loops linking frontal and striatal brain regions could
support this interaction between RL and metacognition24,26,27.
Although seemingly counterintuitive, metacognition can exist in
the absence of awareness, as unconscious metacognitive insight:
human subjects can track their own task performance while
claiming to be unaware of the stimuli or the underlying rule9,28–30.

The main objective of this study is to test if humans can learn a
task in which the information that determines the RL states is (a)
high dimensional and (b) unconscious. As a corollary, we ask
whether metacognition is involved in such a learning scenario.

To anticipate, we find that subjects can learn the gambling task.
Moreover, rather than a simple learning effect in selecting the
optimal action, we uncover that subjects’ metacognition (quan-
tified as their confidence in their choices) correlates with RL
processes, both at the behavioural and neural level. Surprisingly,
there are no differences between the two groups of subjects—
decoder in VC vs. PFC—in terms of learning performance,
indicating that the mechanism may be general enough to support
learning in any brain region where neural activity is, or becomes,
relevant to earn rewards.

Results
Behavioural accounts of learning. We first evaluated whether
human subjects displayed any evidence of learning the reward-
maximizing action-selection task over the course of about two
hundred trials. To do so, empirical optimal action-selection rates
were compared to a chance level of 0.5, the rate attained if actions
were randomly selected at every trial. For all tests against chance,
we utilized full linear models, with the intercept as difference
from chance and subjects as random effects. In session 1 the rate
was not different from the random model (Fig. 2a, α= 0.024,
t17= 1.54, P(FDR)= 0.14). Subjects selected their actions sig-
nificantly better than chance in session 2 (Fig. 2a, α= 0.039, t17=
3.62, P(FDR)= 0.003). The increase from the first to the second
session was a trend and not significant (Fig. 2a, one-tailed sign
test, sign= 6, P(unc.)= 0.12), but averaging the rates over the first
two sessions confirmed overall above-chance performance (Sup-
plementary Fig. 2a, α= 0.032, t17= 3.17, P(unc.)= 0.006). This
happened despite the fact that decoded state information was not
physically presented to the subjects, and that their discrimination
performance was lower and indistinguishable from chance
(Supplementary Fig. 2b). We confirmed that discrimination
performance was indeed different from optimal action-selection
performance in the first two sessions (linear mixed effects [LME]
model, fixed effects ‘task’ and ‘session’; significant effect ‘task’ β=
−0.026, t69=−2.24, P= 0.028, Supplementary Table 1). A
regression analysis of p(opt action) vs. p(corr discrimination) in
sessions 1–2 resulted in a trend that better discrimination was
associated with better gambling choices. But more importantly,
the intercept was significantly larger than 0: optimal action-
selection rate had a higher baseline than correct discrimination
(Supplementary Fig. 2d, linear regression, α= 0.026, P= 0.0077,
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(reward: 30¥/0.25$, or no reward: 0¥/$) was shown on the screen. Accounting for the haemodynamic delay meant that decoding was performed on data
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slope= 0.35, P= 0.089), consolidating the LME results reported
above. This dissociation between discrimination and action
selection was likely due to the absence of a direct reward for
discrimination choices.

A third session in which visual stimuli explicitly carried motion
direction information inferred from brain activity by the decoder
was also included as a control. In this session, the motion
coherence slowly increased from 0% to higher values over trials
within the first half of the session, remaining high henceforth
(Fig. 1, Methods). The correct state was easily discriminated
(Supplementary Fig. 2b), and most subjects consciously discovered
and reported the action-selection rule; e.g., stateleft→ action B,
stateright→ action A (16 out of 18, binomial test against 0.5, P=
0.001), resulting in consistently high selection rates for the optimal
action (Fig. 2a, α= 0.212, t17= 10.32, P(FDR)= 2.9 × 10−8).

Nonetheless, other behavioural strategies could account for the
action-selection performances in sessions 1 and 2 (besides those
described hereafter, additional points are addressed in Supple-
mentary Note 1). We first tested one simple, alternative model:
the win-stay lose-switch heuristic. This strategy determines the
action at trial t as depending on the outcome at t−1: repeat the
same action if reward was obtained, switch to the alternative
action otherwise. Win-stay lose-switch performance was com-
puted with subjects’ session data (actions, rewards, and states);
the starting point was the first action taken by the subject.
Figure 2b indicates that in session 1 subjects’ behaviour could be
explained by this model (two-sided sign test, sign= 7, P(FDR)=
0.48), but that in session 2 the performance attained was
significantly lower than the real performance (two-sided sign test,
sign= 3, P(FDR)= 0.019). Session 3 confirmed the result antici-
pated in session 2 (two-sided sign test, sign= 1, P(FDR)= 0.0004).

One further possibility could be asymmetric learning of a single
latent state, which could then be repeatedly generated by the
brain (e.g., that state ‘Right’ was paired with action ‘A’). This can
be easily tested: in the presence of asymmetric learning, one
should not only see the emergence of a latent state bias, but also a
steady increase in state bias over time. Because the bias can be
directed towards either one of two states, we define here state bias
as the unsigned difference between the number of occurrences of
each state, normalized by the number of trials. Figure 3a
illustrates two state occurrences time-courses in each session
(example subjects S2 and S10), while Fig. 3b, c display the state-
bias traces and sessions’ means for all subjects. Surprisingly, state
bias was non-zero from the beginning, but also constant in time,
invalidating the hypothesis that the brain simply learned an
asymmetric association and induced one state over and over.
Rather, the state bias was an inherent feature of the latent state
estimation through decoding.

Computational accounts of learning. The implication of these
results is that any early above-chance action-selection perfor-
mance likely depended on RL operating unconsciously. Never-
theless, RL itself could have resulted from two non-exclusive
processes: (1) a noisy state-dependent RL process (RLsd) where
the update rule depends on both estimated latent states (defined
as the decoder output) and actions; (2) a state-free RL process
(RLsf) where the agent simply selects the action associated with
the highest expected value (regardless of the latent state). The
RLsd model assumes that the agent performs some noisy infer-
ence/estimation of the latent brain activity. The RLsf model,
conversely, is a naive process, in which the agent merely considers
its actions’ outcome. We therefore utilized computational mod-
elling based on the noisy RLsd and RLsf variants of the standard
Q-RL algorithm4 (Methods, Eqs. 2–3). The two learning models
were fitted to subjects’ behavioural data, and free parameters were

estimated by minimizing the negative log-likelihood. To note, the
noisy RLsd was designed such that, on a subset of trials deter-
mined by the amount of noise, the update was not based on the
real RL latent state, but on the alternative state. The noise level
was estimated and averaged over 100 resampling runs (see
‘Methods').

Before formally comparing the two learning models, we can
test a small, but important, prediction that arises from the main
difference between the models, i.e., whether the latent state is
considered or not in the model. In the presence of state bias (as
established earlier, Fig. 3b, c), an agent using RLsd would be
unaffected—because actions are contingent to the states them-
selves; conversely, an agent following a pure RLsf strategy would
learn to choose the action associated with the biased state most of
the time. Therefore, we expect the strength of the latent RL state
bias to predict action-selection performance, if the RLsf is the
main mechanism behind the learning behaviour. Averaging data
from both session 1 and 2 argue against such interpretation
(Fig. 3d). Yet, for most subjects (17/18) the bias was constant in
sign in the first two sessions (Supplementary Fig. 3a), raising the
possibility that partial learning of latent state bias from session 1
could have transferred to session 2. Replotting Fig. 3d session-by-
session resulted in a non-significant reversal of the sign of the
correlation (Supplementary Fig. 3b, two-sided z-test statistics on
Fisher-transformed r, z=−1.3, P= 0.19). So far, these results are
unfavourable to a state-free learning strategy.

The modelling approach allowed us to directly compare the two
RL strategies. A simple visual inspection (Fig. 3e, example subjects
S2–S10) suggests that action selection time-courses from the RLsf
model (black lines, top) appear qualitatively different from the
subjects’ own time-courses (blue lines), while those from the noisy
RLsd look more similar (grey lines, bottom). Akaike Information
Criterion (AIC)31 was computed for each model, subject and
session. In all sessions, the noisy RLsd had lower total AIC (Fig. 3f
left, ΔAIC < 0: ∑AIC noisy RLsd < ∑AIC RLsf; session 1 ΔAIC=
−23.6, session 2: ΔAIC=−35.6, session 3: −563.5). We also
considered AIC at the subject level to obtain a more nuanced
picture (Fig. 3f, right). AIC for noisy RLsd was similar to AIC for
RLsf in session 1, significantly lower in session 2, but also
significantly lower when taking the average of sessions 1–2 (full
linear models: session 1, 9/18 AICsd < AICsf, α=−1.31, t17 =
−1.66, P(FDR)= 0.12; session 2, 14/18 AICsd < AICsf, α=−1.98,
t17 = −3.16, P(FDR)= 0.009; mean session 1–2, 15/18 ACIsd <
AICsf, α=−1.65, t17 = −3.93, P(unc.)= 0.001, session 3, 17/18
AICsd < AICsf, α=−31.30, t17 = −4.30, P(FDR)= 0.001). The
same results were obtained when AIC was computed using the
normalized log-likelihood (Supplementary Fig. 4a). Finally, in
accordance with our intuition, the estimated noise level in RLsd
was lower in session 3 compared with sessions 1–2 (Supplemen-
tary Fig. 4b). These results indicate that exploration of latent RL
states within high-dimensional brain dynamics did occur (to some
extent) even during the first two sessions of the gambling task.

Perceptual confidence correlates with RL. Since subjects do not
have access to the decoder boundary, this is a computationally
complex problem. The brain essentially has to find a latent low-
dimensional manifold among high-dimensional subconscious
brain dynamics only by trial and error. How can this curse of
dimensionality be resolved?

The conceptual model introduced earlier24 speculates that
metacognition may be involved in this process. Although the
design utilized here cannot afford to disambiguate the direction of
the arrow of causality between metacognition and RL processes,
we can, at a minimum, investigate whether the two become
correlated during learning. It may sound odd that while
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discrimination is around chance level, decision confidence is
hypothesized to correlate with learning reward associations.
Although task accuracy and confidence judgements are usually
highly correlated, it is possible, however, to uncover dissociations
under several circumstances16,32,33. Importantly, previous work
has shown that humans can track their task performance even
when they claim to be unaware of the stimuli28,29. Besides,
confidence has been associated with RL in the context of
perceptual decisions, as a putative feedback channel34,35. We thus
hypothesized a correlation between confidence and RL measures,
reflecting the strength of learning, even while the relevant RL
state information remained below consciousness.

We first quantified metacognitive ability, meta-d′36, using
independent data from the initial decoder construction stage
(session 0, see ‘Methods'). Roughly, meta-d′ estimates the trial-by-
trial correspondence between confidence judgements and dis-
crimination accuracy. In accordance with the hypothesis that
metacognition could predict RL performance, we established that
meta-d′ predicted the baseline p(opt action) attained within the
first two unconscious sessions (N= 18, Pearson r= 0.56, P=
0.017; robust regression: β= 0.057, t16= 2.84, P= 0.012, Fig. 4a).
More metacognitive individuals had a higher starting baseline in
the gambling task. Taking the two groups in isolation, this effect
held for the PFC group (N= 9, Pearson r= 0.72, P= 0.029), but
not VC group (N= 9, Pearson r= 0.51, P= 0.16), albeit the
difference was not significant (one-sided z-test, z= 0.60, P=
0.28). Next, we found that the probabilities of optimal action-

selection increased with higher confidence from session 2 (Fig. 4b,
LME model, data from all sessions, interaction between fixed
effects ‘session’ and ‘confidence’ β= 0.041, t194 = 3.18, P=
0.0017; data restricted to session 1, β= 0.018, t62 = 0.87, P= 0.39;
session 2: β= 0.047, t62 = 2.98, P= 0.0041; session 3: β= 0.10,
t68 = 5.57, P < 10−5, Supplementary Table 3). This result was
further supported by confidence-related differences in discrimi-
nation rates (Fig. 4c, Supplementary Fig. 5a, b, Supplementary
Table 4) and to the extent that subject level strength of confidence
being predictive of optimal action rate correlated with the same
effect in perceptual discrimination (Supplementary Fig. 5c).

One concern is that this pattern of findings may have arisen
randomly or may have been triggered by an increase in
confidence over time because of reward bias. However, in
sessions 1 and 2 confidence was not different in trials that
followed a reward compared with trials that followed the absence
of reward (Supplementary Fig. 5d). A yoked control experiment
in which new naive subjects received trial sequences from the
main experiment did not reproduce these associations between
confidence and action selection, nor a difference in confidence
between sessions (Supplementary Fig. 6).

We next assessed the effect of confidence on RLsd with further
computational analyses. Toward this end, we estimated the trial-
by-trial magnitude of reward-prediction error (unsigned RPE, or |
RPE|), which reflects the degree of uncertainty in learning37. Of
note, the main assumption for this analysis is that the RL process
(at least before session 3) happens below consciousness. But if the
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Fig. 4 Metacognition correlates with learning to use latent brain activity. a Across-subject correlation between the baseline (minimal) gambling
performance attained in sessions 1 and 2, and individual metacognitive ability (how well one’s confidence tracks discrimination accuracy). Metacognitive
ability was computed with independent behavioural data from the decoder construction session (session 0, see ‘Methods'). Pearson correlation (n= 18),
two-sided p value. b Proportion of optimal actions plotted by confidence level. The performance was measured as the proportion of trials in which the
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dots represent individual subjects, grey bars the mean, error bars the SEM. The experiment was conducted once (n= 18 biologically independent samples).
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brain has to learn some form of mapping between states (patterns
of activity) and actions, then it should also store an approxima-
tion of the expected value of RL state-actions pairs (defined by the
decoder output [state] and selected A or B [action]). Therefore,
for this and all following analyses we utilized the RLsd model
without noise to get an unbiased estimate of learning uncertainty.
|RPE| traces were analysed with LME models (Supplementary
Table 5). In order to provide a visual rendering, |RPE| was binned
by confidence level (Fig. 5a): this revealed the existence of a
coupling between |RPE| and confidence, with high confidence
associated with low |RPE| and vice versa, low confidence with
higher |RPE| (LME model, data from all sessions, significant fixed
effect ‘session’: β= 0.019, t6649 = 2.43, P= 0.015; interaction
between fixed effects ‘group’ and ‘confidence’: β=−0.028, t6649 =
2.89, P= 0.004; and interaction between fixed effects ‘session’,
‘group’ and ‘confidence’: β= 0.0095, t6649 = 2.32, P= 0.02; data
restricted to session 1, fixed effect ‘confidence’: β= 0.001, t2059 =
0.41, P= 0.68; session 2: β=−0.007, t2348 = −2.51, P= 0.012;
session 3: β=−0.019, t2241 = −7.11, P < 10−3; full results in
Supplementary Table 5). To further examine group differences,
we split trials into low and high confidence bins (within-session
median confidence split: trials with ratings below the median
were labelled as ‘low’, those with ratings equal or above the
median as ‘high’). The coarser confidence partition further
supported the larger effect size of confidence in the group with
PFC decoder compared with the VC group (Fig. 5b). This finding
raises intriguing questions on the function of metacognition and
supports the view that its neural substrates are linked to
prefrontal subregions14,16,32.

Neural substrates of learning and confidence–RL interaction.
In terms of RL, the most difficult element in this task is not for an

agent to predict the value for a given [state, action] pair per se
(which would be trivial once the state is known), but rather to
develop a closer estimate of the latent RL state itself (defined by a
pattern of neural activity). At the onset of learning, several
cortico-basal loops are predicted to be activated in a parallel
search for the relevant (latent) states24,38, alongside activity in the
basal ganglia39, with specialized encoding of multiple task and
behavioural variables by dopamine neurons40. As RL progresses,
the brain should use RPE to automatically select a few, relevant
loops related to the latent RL states. Recent evidence indicates
that RPE correlates change dynamically over time38,41. Here,
using raw, signed RPE as a parametric regressor in a general
linear model (GLM) analysis of fMRI signals, we found evidence
that the brain initially undergoes a global search, spanning the
anterior insula, anterior cingulate cortex, PFC subregions
including DLPFC and ventromedial PFC, as well as the thalamus
and basal ganglia (sessions 1–2, Supplementary Fig. 7). In session
3, RPE correlates were mainly restricted to basal ganglia, in line
with classic theories of RL in neuroscience39,42 (Supplementary
Fig. 7). The differences in neural correlates between sessions 1–2
and 3 may be ascribed to differences in task properties. Alter-
natively, and more intriguingly, these could also reflect a con-
vergence in the global search for task-states driven through RPEs.
Correlates in the anterior cingulate cortex in sessions 1–2 can be
linked to the intensive action-selection search, model updating
and confidence evaluation that underpins learning under uncer-
tainty43–45. The same analysis was repeated with z-scored RPEs
(across subjects and sessions)46, yielding comparatively similar
results (Supplementary Fig. 8).

Resting-state functional connectivity is believed to be modified
by recent co-activation of two brain areas and acquisition of
knowledge or skills47–49. Given the nature of the task employed
here and the important role of RPE in driving learning, perhaps
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connections between specific brain regions and the RPE-encoding
basal ganglia may be strengthened. Resting-state scans were
collected prior to the learning task in each session (see ‘Methods');
the seed region for the analysis was defined as the voxels in the
basal ganglia found to significantly correlate with RPE in session
3 (data independent of all resting-state scans, right inset in
Supplementary Fig. 9). We focused on changes related to session
2 (after–before), because this was the single time point where
subjects showed strong evidence of learning, but where the RL
states were still latent, unconscious. Strikingly, basal ganglia had
increased connectivity with the right medial frontal gyrus (MFG,
part of the DLPFC) and inferior parietal lobule (IPL) (Supple-
mentary Fig. 9), both regions linked to confidence judgements
and reliability of sensory evidence16,32,50,51.

Behavioural and computational analyses have shown that
metacognition correlates with RL along multiple axes. In light of
increased resting-state connectivity between RPE-encoding basal
ganglia and MFG/IPL as well as previous research16,34,39, DLPFC
and basal ganglia emerge as the logical neural substrate for this
interaction. The metacognitive process could interact with |RPE|
so as for the brain to evaluate how close an estimation is to the
real RL state24. From this perspective, as learning progresses, we
should see two effects: (1) confidence becoming predictive of the
internal neural evidence for the latent RL state; (2) neural
representations of confidence and |RPE| should perhaps become
more synchronized, as they work together to facilitate learning.
But an alternative possibility is that neural representations of
confidence and |RPE| inform a putative downstream (region)
state estimator to drive learning52. If that is the case, confidence
could still correlate with the neural occurrence of the latent state,
but the neural representations of confidence and |RPE| may not
because their computations would unfold into independent
processes.

We first found evidence for effect (1): confidence ratings
correlated with the trial-by-trial fMRI multivoxel distance from
the decoder classification boundary defining the task’s latent RL
states (Fig. 6a). That is, the greater the evidence in favour of one
RL state, the higher the confidence. Importantly, this correlation
measure increased during stimulus presentation, before percep-
tual decisions, confirming that confidence is retrieved explicitly
only at report time, while it is likely computed earlier on. This
suggests that perhaps metacognition could provide a means of
accessing the artificial, low-dimensional manifold where classifi-
cation boundaries are defined.

Second, we tested for effect (2) in the following manner. At
the outset, we constructed a decoder for low vs. high confidence
in the DLPFC, and a decoder for low vs. high |RPE| in the basal
ganglia. By tabulating the outputs of the two decoders, χ2

statistics can be computed to quantify the degree of association
(synchronization) between confidence and |RPE|. One thousand
bootstrapped runs were calculated for each RL session: the
distribution showed a marked shift towards higher χ2 values
already from session 1 to session 2, then further increasing in
session 3 (Fig. 6b). This implies that with learning, the
independence of the two decoders’ outputs decreased. That is
to say, since these decoders based their predictions on patterns
of voxels activity, that confidence and |RPE| representations
became more coupled at the multivoxel level. The effect was
specific for the pairs of interests (low confidence–high |RPE|
and high confidence–low |RPE|, Fig. 6c). Consequently, the
increase in resting-state functional connectivity between the
DLPFC and the basal ganglia was coupled with increased
synchronization of the information represented in the RL task,
confidence and |RPE|. These results indicate that RL processes
and cognitive modules actively interact during reward-based
learning.

Discussion
Two main questions were addressed in this study: Can human
subjects learn to make use of latent, high-dimensional brain
activity? What is the putative vehicle and neural substrate of this
ability? The closed-loop design adopted here granted a unique
opportunity to investigate the ability of the human brain to learn
to use unconscious, high-dimensional internal representations.
We show that hallmarks of learning emerge within a limited
number of trials and errors, without explicit presentation of the
relevant knowledge, and that initial metacognitive ability predicts
subsequent task performance. We report here on a possible
mechanism implemented by the brain. We speculate that meta-
cognition could be useful to explore latent states and form low-
dimensional representations, particularly so when necessary to
drive efficient RL. The ability to learn hidden features in high-
dimensional spaces is supported by an initially activated, dis-
tributed, and parallel neural circuitry that largely involves the
basal ganglia and PFC. Such circuitry provides the neuroanato-
mical basis for the interaction between metacognitive and RL
modules. Previous studies have highlighted the functional rele-
vance of parallel cortico-basal loops in terms of RL and
cognition53,54, as well as the role played by metacognition in
RL34,55. Our results further suggest that metacognition may go
beyond an internal feedback mechanism to the basal ganglia34,
and help RL processes efficiently extract ‘task state’ information56.
Work in rodents has shown that dopamine release in the basal
ganglia and PFC has dissociable dynamics—a broadcast signal for
learning and local control for motivation57. It would be inter-
esting to answer how confidence (metacognition by extension)
may influence this balancing act in order to promote faster
learning or allow better control.

Is metacognition really relevant to reward learning? Since this
study is limited because correlational in nature, a simpler and
perhaps more parsimonious alternative model is that confidence
is related to RL, but merely so because it reflects or reads out a
successful latent state search. For example, we found that learning
uncertainty (|RPE|) seemed to (mildly) influence future con-
fidence ratings (i.e., next trial’s judgements, Supplementary
Fig. 10), although quite noisily. While this interpretation RL→
metacognition cannot be entirely ruled out, our results strongly
suggest that confidence could be instrumental for efficient RL
(i.e., Figs. 4a–c, 5 and 6a). First, besides general correlations
between metacognition and RL at several levels, metacognitive
ability evaluated independently 1 week prior predicted later RL
performance. Second, confidence during learning was unaffected
by the outcome in the previous trial (Supplementary Fig. 5d). In
the present task confidence judgments happened earlier in time
than action selection, forcing its explicit computation early on—
this could have then been used to inform RL state search. A
compelling addition to this argument is that subjects whose
decoder was based in PFC, a strong candidate as metacognitive
substrate16,32,58, also displayed larger effect sizes in
confidence–RL correlation measures (Figs. 4a and 5a, b). These
results cast doubt on the view that confidence is merely reflecting
the previous trial’s reward, thereby lacking any function. The
picture is probably more nuanced, as decision confidence and
learning uncertainty likely evolve in parallel but also with reci-
procal modulations. As is the case with attention59 and mem-
ory60, confidence and RL processes probably interact repeatedly
in time, with specific directionalities and constraints that depend
on the time (before or after action/outcome)56, the type of out-
come (win or loss)61, and whether the association is forming
below or above consciousness. Future studies could further dissect
these aspects of learning.

If confidence (and metacognition by extension) is involved in
learning from rewards, what is the underlying computational
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mechanism? Previous work in humans and rodents suggests that
sensory confidence relates to uncertainty about the expected value
of choices51 and is combined with reward history56; this could in
turn orchestrate a more fine-grained learning strategy and
behavioural responses. An additional, thought-provoking possi-
bility is that metacognition may also support efficient RL pro-
cesses by enabling low-dimensional meta-representations in the
PFC—similar to the ‘chunking’ phenomenon in working mem-
ory62. This way, RL processes could operate in a reduced state
space, therefore weakening the major obstacle in terms of
learning posed by the curse of dimensionality, the incommen-
surate computations needed for high-dimensional state spaces.

There are several limitations to the current study. First of all,
the task does not have any experimental manipulation of the
variables of interest (performance or confidence). Because of this,
we have to rely on indirect evidence to rule on the directionality
of the correlation between performance and confidence exposed
here. Yet, by acknowledging this limitation, our design engenders
one essential aspect: as experimenters we do not have to impose
all conditions on the task, representations in the brain itself can
be used to define the task spaces. As such, this design allows
genuinely high-dimensional and unconscious information to be
used in a specific manner, rather than by means of masked and/or
very weak/noisy stimuli.

Subconsciousness in this study can be referred to the following
three aspects, which are interrelated but not identical. (1) Una-
wareness of RL strategy, which was ascertained in post-experiment
questionnaires, at least until session 2. (2) Unawareness about

activation patterns utilized by the decoder—subjects did not know
about the closed-loop aspect of the task until post-experiment
briefing at the end of session 3. Past experiments using a similar
approach, where activity patterns are detected online with a
decoder, found that in >97% of the cases subjects were unaware of
the content and purpose of the manipulation17. (3) Chance-level
discrimination accuracy about latent state (motion direction). To
note, we found a trend that better discrimination accuracy was
associated with better gambling performance, but this alone does
not invalidate the claim that learning happened below con-
sciousness, since a correct discrimination is important for the
subsequent gambling action as both are based on the same latent
state. That is to say, rewards in the gambling task could have
evoked partial learning in the discrimination choices7.

Although the task was based on stochastic representations
captured by our decoders, one could always argue that, in prin-
ciple, it was simple. We highlight here that, without knowing how
the RL states were defined, this remained a complex, multi-
dimensional problem for the brain—given the number of neurons
(and voxels). Subjects did not know the location (PFC or VC) or
sparsity of the voxels selected by the machine learning decoders,
or the task time points used for real-time decoding. The imperfect
classification accuracy (around 70%) also contributed to the
inherent uncertainty in the brain’s estimation of RL states (see
Supplementary Note 2 for a more in-depth discussion on these
points). Although visual direction information utilized here is
simpler than cognitive/abstract thoughts, the problem in this task
remains high dimensional. The information detected through
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decoding in our task is probably closer to activity that arises
during spontaneous thoughts/behaviours which shows richer
activity patterns63 (e.g., Supplementary Fig. 11). For the brain,
solving this kind of problem is not trivial. It essentially has to pair
implicit patterns of neural activity (which vary from trial-to-trial
and are high-dimensional) to actions and rewards obtained after a
delay. In order to learn quickly the brain has to operate at a more
abstract level than sensory features; that is to say, reduce the
dimensionality of the problem. We suggest metacognition is part
of this mechanism. In fact, synchronization of neurons through
electrical coupling or synchronization between brain areas via
cognitive functions have been proposed as neural mechanisms
controlling degrees-of-freedom in learning24,64,65. Metacognition
and consciousness could thus have a clear computational role in
adaptive behaviour and learning25,66.

How do these findings integrate within the bigger picture of
artificially intelligence (AI) and neuroscience? It is beyond the
current scope to provide an explicit implementation of how
metacognition and RL may interact at the neural level. Nevertheless,
this is the first step in a direction we envision to be of some
importance. In particular, work towards endowing artificial agents
with self-monitoring capacities or the ability to operate at different
representational levels (feature level, concept level, etc.) may bridge
the gap between human and AI performances in real-world sce-
narios, beyond pattern-recognition problems25. Neuroscience-based
principles such as the ones presented here can provide seeds to
develop cognitively inspired AI algorithms67 and is becoming a core
aspect of work at the boundary between neuroscience and machine
learning. Finally, the approach and the results discussed here may
provide new ideas to investigate the functions of metacognition and
the depth of unconscious learning in humans and animals.

Methods
Subjects. Twenty-two subjects (mean 23.6 y.o., SD 4.0; 5 females) with normal or
corrected-to-normal vision participated in stage 1 (motion decoder construction).
One subject was removed because of corrupted data; one subject withdrew from the
experiment after stage 1. We initially selected 20 subjects, of which one was
removed after the first session of RL training due to a technical issue (scanner
misalignment between stage 1 and new sessions), while a second subject was
removed due to a bias issue with online decoding (all outputs were strictly of the
same class). Thus, 18 subjects (mean 23.4 y.o., SD 3.3, 5 females) attended all RL
training sessions. All results presented are from the 18 subjects who completed the
whole experimental timeline, with a total of 72 scanning sessions.

All experiments and data analyses were conducted at the Advanced
Telecommunications Research Institute International (ATR). The study was
approved by the Institutional Review Board of ATR. All subjects gave written
informed consent.

Stage 1 (session 0) behavioural task. The initial decoder construction took place
within a single session. Subjects engaged in a simple perceptual decision making
task16: upon presentation of an RDM stimulus they were asked to make a choice on
the direction of motion and then rate their confidence about their decision (Sup-
plementary Fig. 1). The choice could be either right or left, and confidence was
rated on a 4-point scale (from 1 to 4), with 1 being the lowest level—pure guess,
and 4 the highest level—full certainty.

The coherence level of the RDM stimuli was defined as the percentage of dots
moving in a specified direction (left or right). Half of the trials had high motion
coherence (coh= 50%). The latter half had threshold coherence (between 5 and
10%). On those threshold trials, coherence was individually adjusted at the end of a
block if the task accuracy at perceptual threshold, ~75% correct, was not
maintained.

The entire stage 1 session consisted of 10 blocks. A 1-min rest period was
provided between each block upon the subject’s request. Each block consisted of 20
task trials, with a 6 s fixation period before the first trial and a 6 s delay at the end of
the block (1 run= 292 s). Throughout the task, subjects were asked to fixate on a
white cross (size 0.5 deg) presented at the centre of the display. Each trial started
with an RDM stimulus presented for 2 s, followed by a delay period of 4 s. Three
seconds were then allotted for behavioural responses (direction discrimination 1.5
s, confidence rating 1.5 s). Lastly, a trial ended with an intertrial interval (ITI) of
variable length (between 3 and 6 s).

Because subjects were in the MR scanner while performing the behavioural task,
they were instructed to use their dominant hand to press buttons on a diamond-
shaped response pad. Concordance between responses and buttons was indicated on

the display and, importantly, randomly changed across trials to avoid motor
preparation confounds (i.e., associating a given response with a specific button press).

fMRI scans acquisition and protocol. The purpose of the fMRI scans in stage 1
was to obtain fMRI signals corresponding to viewed or perceived direction of
motion (e.g., rightward and leftward motion) to compute the parameters for the
decoders used in stage 2, the online RL training. All scanning sessions took place in
a 3 T MRI scanner (Siemens, Prisma) with a 64-channel head coil in the ATR Brain
Activation Imaging Centre. Gradient T2*-weighted EPI (echoplanar) functional
images with blood-oxygen-level-dependent (BOLD)-sensitive contrast and multi-
band acceleration factor 6 were acquired. Imaging parameters: 72 contiguous slices
(TR= 1 s, TE= 30 ms, flip angle= 60 deg, voxel size= 2 × 2 × 2 mm3, 0 mm slice
gap) oriented parallel to the AC–PC plane were acquired, covering the entire brain.
T1-weighted images (MP-RAGE; 256 slices, TR= 2 s, TE= 26 ms, flip angle= 80
deg, voxel size= 1 × 1 × 1mm3, 0 mm slice gap) were also acquired at the end of
stage 1. The scanner was realigned to subjects’ head orientations with the same
parameters on all sessions.

fMRI scans preprocessing for decoding. The fMRI data for the initial 6 s of each
run were discarded due to possible unsaturated T1 effects. The fMRI signals in
native space were preprocessed in MATLAB Version 7.13 (R2011b) (MathWorks)
with the mrVista software package for MATLAB [http://vistalab.stanford.edu/
software/]. The mrVista package uses functions from the SPM suite [SPM12, http://
www.fil.ion.ucl.ac.uk/spm/]. All functional images underwent three-dimensional
(3D) motion correction. No spatial or temporal smoothing was applied. Rigid-body
transformations were performed to align the functional images to the structural
image for each subject. A grey-matter mask was used to extract fMRI data only
from grey-matter voxels for further analyses. Regions of interest (ROIs) were
anatomically defined through cortical reconstruction and volumetric segmentation
using the Freesurfer software, which is documented and freely available for
download online [http://surfer.nmr.mgh.harvard.edu/]. Furthermore, VC sub-
regions V1, V2, and V3 were also automatically defined based on a probabilistic
map atlas68. Once ROIs were individually identified, time-courses of BOLD signal
intensities were extracted from each voxel in each ROI and shifted by 6 s to account
for the haemodynamic delay using the MATLAB software. A linear trend was
removed from the time-courses, and further z-score normalized for each voxel in
each block to minimize baseline differences across blocks. The data samples for
computing the motion (and confidence) decoders were created by averaging the
BOLD signal intensities of each voxel for six volumes, corresponding to the 6 s
from stimulus onset to response onset (Supplementary Fig. 1).

Decoding multivoxel pattern analysis (MVPA). All MVP analyses followed the
same procedure. We used sparse logistic regression (SLR)69, which automatically
selects the most relevant voxels for the classification problem, to construct binary
decoders (motion: leftward vs. rightward motion; confidence: high vs. low; |RPE|:
high vs. low).

K-fold cross-validation was used for each MVPA by repeatedly subdividing the
dataset into a ‘training set' and a ‘test set' in order to evaluate the predictive power
of the trained (fitted) model. The number of folds was automatically adjusted between
k= 9 and k= 11 in order to be a (close) divisor of the number of samples in each
dataset. Furthermore, SLR classification was optimized by using an iterative approach:
in each fold of the cross-validation, the feature-selection process was repeated 10
times70. On each iteration, the selected features (voxels) were removed from the
pattern vectors, and only features with unassigned weights were used for the next
iteration. At the end of the k-fold cross-validation, the test accuracies were averaged
for each iteration across folds, in order to evaluate the accuracy at each iteration. The
number of iterations yielding the highest classification accuracy was then used for the
final computation, using the entire dataset to train the decoder that would be used in
the closed-loop RL stage. Thus, each decoder resulted in a set of weights assigned to
the selected voxels; these weights can be used to classify any new data sample.

Data from stage 1 (session 0) was used to train motion decoders. Pilot analyses
indicated that the highest classification accuracies in PFC were attained by using
high motion coherence trials alone (100 trials, 50 samples per class). Motion
decoders were constructed with fMRI data from two brain regions: PFC and VC.
These data were time-course extracted from the 6 s from stimulus onset to response
onset. Because decoding motion direction always works better in VC—subjects
were assigned to one group or the other (PFC or VC) so as to minimize the
difference in overall classification accuracy between the groups to avoid further
confounds arising simply because of different decodability. Overall, this meant that
subjects with high classification accuracy in PFC were assigned to the PFC group,
while those with low accuracy in the PFC were assigned to the VC group. See
Supplementary Table 8 for subject-specific subregions. The mean (±SEM) number
of voxels available for decoding was 3222 ± 309 for VC and 4443 ± 782 for PFC.
The decoders selected on average 80 ± 15 voxels in VC and 63 ± 18 in PFC. The
cross-validated test decoding accuracy (mean ± SEM) for classifying leftward vs.
rightward motion was 70.44 ± 2.63% for VC and 65.51 ± 1.35% for PFC (two-
sample t-test, t16= 1.67, P= 0.11).

For confidence decoders, trials from stage 1 (session 0) with threshold
coherence were used (100 trials) in order to avoid potential confounds due to large
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differences in stimulus intensity. Because confidence judgments were given on a
scale from 1 to 4, trials were first binarized into high and low confidence ratings, as
described previously16. Confidence decoders were constructed with fMRI data from
dorsolateral PFC (DLPFC, which included the inferior frontal sulcus, middle
frontal gyrus, and middle frontal sulcus), and time-course extracted from the 6 s
from stimulus onset to response onset. The mean (±SEM) number of voxels
available for decoding was 6641 ± 183, and the decoders selected on average 40 ± 8
voxels. The cross-validated test decoding accuracy (mean ± SEM) for classifying
high vs. low confidence was 68.77 ± 1.53%.

For RPE magnitude (unsigned RPE) decoders, fMRI data from stage 2 was used
(see sections ‘Stage 2 (session 1, 2, 3) online RL training' and ‘RL modelling' for a
description on the task, timing and computation of trial-by-trial RPE). All trials
from session 3 were used and, similar to confidence decoders, trials were labelled
according to a median split of the | RPE|. For example, if |RPE| was larger than the
median, the associated trial was labelled as high |RPE|. |RPE| decoders were
constructed with fMRI data from basal ganglia (which included bilateral caudate,
putamen and pallidum), and time-course extracted from the 2 s from monetary
outcome presentation. The mean (±SEM) number of voxels available for decoding
was 3583 ± 81, and the decoders selected on average 69 ± 14 voxels. The cross-
validated test decoding accuracy (mean ± SEM) for classifying high vs. low |RPE|
was 57.34 ± 0.64 %.

Stage 2 (session 1, 2, 3) online RL training. Once a targeted motion decoder was
constructed, subjects participated in three consecutive sessions of RL online
training (Fig. 1). In the RL task, state information was directly computed from
fMRI voxel activity patterns in real time. The setup allowed us to create a closed
loop between (spontaneous) brain activity in specific areas and task conditions
(behaviour). The loop was unknown to subjects; the only instruction they received
was that they should learn to select one action among two options, in order to
maximize their future reward.

On each session, subjects completed up to 12 fMRI blocks; on average (mean ±
SEM) 9.9 ± 0.4, 11.2 ± 0.2 and 10.5 ± 0.2 blocks in session 1, 2 and 3, respectively.
For some subjects (n= 6) one or more blocks (max 3 out of 12, in one case) had to
be removed from subsequent fMRI analyses due to issues during real-time
scanning. Nevertheless, whenever possible, these data points were used for
behavioural analyses. Each fMRI block consisted of 12 trials (1 trial= 22 s)
preceded by a 30-s fixation period and ending with an additional blank 6 s (1 block
= 300 s). Furthermore, on each session, before the reinforcement task, subjects
underwent an additional resting-state scan of the same duration (300 s).

The construction of an online trial observed the following rule. After a 6 s blank
ITI (black screen), the RDM was presented for a total of 8 s. The first 6 s were
always random (0% coherence), while in session 3 the last 2 s of RDM had coherent
(coh) dot motion, computed as

coh ¼ c � arctanðL� 0:5Þ; ð1Þ

where L is the likelihood, the output of the motion decoder; c a constant, which
increased over the first half of the experimental session following a sigmoid
function over the interval (0 1). Negative values indicated leftward motion, while
positive values rightward motion. This allowed us to have high coherence in the
latter half of session 3. Additionally, the strength of the RDM stimulus was
modulated by the contrast of the dots on a black background. Contrast was set at a
fixed value of 20% in session 1 and session 2 while in session 3 it sigmoidally
increased up to 100% over the first half of the experimental session, staying fixed
thereafter. Importantly, because the operation of stimulus presentation and online
decoding were performed by two parallel scripts on the same machine, the stimulus
was presented in brief intervals of dot motion lasting 850 ms, followed by a short
blank period of 150 ms. The presence of the blank period allowed the two processes
to communicate in order to compute the new coherence level from the decoder
output likelihood. Although this was effectively carried out only in session 3, the
same design was used on each session for consistency between sessions. Following
RDM presentation and a 1 s blank ITI, subjects had 1.5 s to make a discrimination
choice (choose leftward or rightward motion), and 1.5 s to give a confidence
judgement on their decision (on a scale from 1 to 4). Lastly, subjects had to select
one of two actions, A or B, in order to maximize their future reward. The reward
rule for options A and B was probabilistic and determined by the decoded brain
activity. Each option was thus optimal only in one state (e.g., A when left motion
was decoded from multivoxel patterns, B with right motion). The probability of
receiving a reward was ~80% if the choice was congruent with the rule, ~20%
otherwise. A rewarded trial corresponded to a single bonus of 30 JPY. On each
session, up to 3000 JPY could be paid in bonus to a subject. Crucially, the reward
association rule and the presence of online decoding were withheld from subjects:
they were simply instructed to explore and try to learn the rule that would
maximize their reward.

Because brain activity patterns alone were defining whether a trial was to be
labelled as rightward or leftward—the experimenter had no control over the
occurrence of either state (leftward or rightward motion representation).
Behavioural responses could not be associated with a specific button press: pairings
between buttons and responses were randomly determined on each trial and cued
on the screen during response times.

Real-time fMRI preprocessing. In each block, the initial 10 s of fMRI data were
discarded to avoid unsaturated T1 effects. First, measured whole-brain functional
images underwent 3D motion correction using Turbo BrainVoyager (Brain
Innovation). Second, time-courses of BOLD signal intensities were extracted from
each of the voxels identified in the decoder analysis for the target ROI (either VC or
PFC). Third, the time-course was detrended (removal of linear trend), and z-score
normalized for each voxel using BOLD signal intensities measured up to the last
point. Fourth, the data sample to calculate the RL state and its likelihood was
created by taking the BOLD signal intensities of each voxel over 3 s (3TRs) from
RDM onset. Finally, the likelihood of each motion direction being represented in
the multivoxel activity pattern was calculated from the data sample using the
weights of the previously constructed motion decoder. The final prediction was
given by the average of the three likelihoods computed from the three data points.

RL modelling. We used a standard RL model4,71 to derive individual estimates of
how subjects’ action selection was dependent on past reward history tied to actions
and states (state-dependent RL: RLsd) or actions alone (state-free RL: RLsf). RLsd
and RLsf are formally described as:

Qðs; aÞ  Qðs; aÞ þ α � ðr � Qðs; aÞÞ; ð2Þ

QðaÞ  QðaÞ þ α � ðr � QðaÞÞ; ð3Þ
where Q(s,a) in (2), Q(a) in (3), is the value of selecting A or B. The value of the
action selected on the current trial is updated based on the difference between the
expected value and the actual outcome (reward or no reward). This difference is
called the RPE. The degree to which this update affects the expected value depends
on the learning parameter α. The larger α, the more recent outcomes will have a
strong impact. On the contrary, a small α means recent outcomes will have little
effect. Only the value of the selected action (which is state-contingent in (2)) is
updated. The values of the two actions are combined to compute the probability P
of predicting each outcome using a softmax (logistic) choice rule:

Psi ;A ¼
1

1þ e�βðQðsi ;AÞ�Qðsi ;BÞÞ
; ð4Þ

PA ¼
1

1þ e�βðQ Að Þ�QðBÞÞ ; ð5Þ
The inverse temperature β controls how much the difference between the two

predictions values for A and B influences choices.
We used a noisy version of the RLsd (2) because this is a much more plausible

scenario: this model assumes that access to the state information is partial, and
stochastic. Noise was implemented by allowing the Q-value to be updated on the
alternative state rather than the real state (as defined by the decoder output) on a
subset of trials. Because of the stochastic nature of the process, we evaluated the
model over 100 resampling runs, each with 100 noise levels—from 0 to 50%. The
optimal level of noise—that is, leading to the highest log-likelihood—was
determined by averaging the log-likelihood for each noise level over all resampling
runs and then taking the maximum.

Furthermore, the two hyperparameters α and β were estimated by minimizing
the negative log-likelihood of choices given the estimated probability P of each
choice. We conducted a grid search over the parameter spaces α 2 ð0; 1Þ and
β 2 ð0; 20Þ with 50 steps each. The fitting procedure was repeated for each subject
and each session (see Supplementary Table 9, group mean ± SE). For model
comparison, RLsd had k= 3 parameters, while RLsf had k = 2. Trial-by-trial RPE
measures were computed for each RL model, subject and session by fitting the data
with the estimated parameters. RPEs were then used as inputs for offline analyses
as described below.

RPE-based analyses parametric GLM. Image analysis was performed with
SPM12 [http://www.fil.ion.ucl.ac.uk/spm/]. Raw functional images underwent
realignment to the first image of each session. Structural images were re-registered
to mean EPI images and segmented into grey and white matter. The segmentation
parameters were then used to normalize and bias-correct the functional images.
Normalized images were smoothed using a Gaussian kernel of 7 mm full-width at
half-maximum.

Onset regressors at the beginning of outcome presentation were modulated by a
parametric regressor, trial-by-trial RPE from RLsd. Other regressors of no interest
included regressors for each trial event (RDM, choice, confidence, action selection),
motion regressors (6) and block regressors. The GLM analysis was repeated twice,
once with raw RPE and once with z-scored RPE (across sessions and subjects)46.

Second-level group contrasts from the GLM were calculated as one-sample t-
tests against zero for each first-level linear contrast. Activities were reported at a
threshold level of P(FPR) < 0.001 (z > 3.1, false-positive control meaning of cluster
forming threshold). Statistical maps were projected onto a canonical MNI template
with MRIcroGL [www.nitrc.org/projects/mricrogl].

Connectivity analyses. At the beginning of each session resting-state data were
acquired during a window of 6 min. For connectivity analyses of resting-state data,
we used the CONN toolbox v.17 [www.nitrc.org/projects/conn, RRID:
SCR_009550]. Briefly, resting-state data underwent realignment and unwarping,
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centred to (0,0,0) coordinates, slice-timing correction, outlier detection, smoothing
and finally denoising. At the first level, we performed a seed-based correlation
analysis, testing for significant correlations between voxels in a seed region and the
rest of the brain. The seed was defined as the cluster of voxels within the basal
ganglia that best tracked the RPE fluctuations on the last session of the RL task
(session 3, independent data). The analysis was repeated for each session of resting-
state scanning (session 1, 2, 3). Second-level results were calculated as one-sample
t-tests against zero for each first-level contrast. We focused the second-level ana-
lysis on the two resting-state scans before and after RL session 2. We tested for the
presence of the main effect, including all subjects at once, reporting between ses-
sions contrasts (after > before) at a height threshold of p < 0.001 (t > 3.65, uncor-
rected), and P(FDR) < 0.05 for cluster size. Statistical maps were projected onto a
canonical MNI template with MRIcroGL.

Statistical analyses with LME models. All statistical analyses were performed
with MATLAB Version 9.1 (R2018b) (MathWorks), both with built-in functions as
well as with functions commonly available on the MathWorks online repository or
custom-written code. Effects of learning on behavioural data over several sessions
and additional effects were statistically assessed using LME models with the
MATLAB function ‘fitglme’. Post hoc tests included LME over single sessions,
restricted to certain variables as well as t-tests.

To evaluate the effect of confidence (levels from 1 to 4), session (1–3) and group
(PFC, VC) on the dependent variable y (I: probability of selecting optimal action,
II: perceptual discrimination, III: |RPE| from RLsd), we used the general model (in
Wilkinson notation): y ~ 1+ group × session × confidence+ (1|subjects), which
included random effects (intercept) for each subject, and 8 fixed effects (intercept,
group, session, confidence, group: session, group: confidence, session: confidence,
group: session:confidence). Whereby a simpler model (i.e., without three-way
interaction), y ~ group × session+ group × confidence+ session × confidence+ (1|
subjects) fit the data equally well (likelihood ratio [LR] test indicating no difference,
at P > 0.05), results from the simpler model are reported (alongside with LR
statistics). Where a significant effect of ‘session’ or interaction between fixed effects
‘session’ and ‘confidence’ and/or ‘group’ was found, post hoc tests were carried out
on data restricted to single sessions. For single-session data the general model y ~
group × confidence+ (1|subjects) was used; whereby a simpler model (i.e., without
interaction) fit the data equally well, results from the simpler model are reported.

The same approach was used to evaluate the effect of |RPE| on confidence
(|RPE| from trial-1): the same equations and procedure, defining y as confidence,
while |RPE| was treated as a fixed effect.

Offline multivoxel pattern analyses (Fig. 6b, c). For each session of the RL task,
we used the set of voxels selected by confidence (DLPFC) and |RPE| (basal ganglia)
decoders (described in the ‘Decoding multivoxel pattern analysis' section) to
compute the degree of association between confidence and |RPE| at the multivoxel
pattern level. For |RPE|, the dataset was composed of the predicted labels (high, low
|RPE|) of all trials within a session. To issue these predicted labels, we inputted the
preprocessed voxel activities during the 2 TRs corresponding to action-selection
outcome to the |RPE| decoder. For confidence, the prediction was extended to
several time points. Specifically, the search was extended to TRs 7–16 (TRs cor-
responding to stimulus presentation, as well as those showing high correlation
between confidence and RL state in sessions 2 and 3). Within the range 7–16 TRs
we took the averaged raw voxel activities over 3TRs for a better S/N ratio before
inputting data to the confidence decoders. As such, we obtained nine predictions
for each trial, and selected the single one leading to the highest association strength
between confidence and |RPE| predictions over all trials, at the subject level.
Finally, we obtained two vectors of the same length (number of trials within a
session) of predicted |RPE| (high, low) and confidence (high, low). These vectors
from each subject were concatenated and the final degree of association was thus
computed through χ2 statistics. The process was repeated over 1000 resampling
runs by changing the subset of trials used to compute the confidence predictions at
the subject level. This allowed us to create a distribution of 1000 χ2 values reflecting
the overall degree of association between multivoxel patterns predicting confidence
in the DLPFC and |RPE| in the basal ganglia.

At the single-trial level, predicted data points were categorized according to the
following labels: target if the prediction were high confidence–low |RPE| or low
confidence–high |RPE|, and opposite if the predictions were high confidence–high |
RPE| or low confidence–low |RPE|. For each resampling run we summed all
occurrences of target and opposite, creating a distribution of 1000 values.
Overlapping distributions means that there is no association.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used to generate the figures and results of this paper are freely available within
a stand-alone computing capsule at Code Ocean [https://codeocean.com], with https://
doi.org/10.24433/CO.8602350.v2. Additionally, the Source Data underlying Figs. 2-6 can

be found within the capsule in the /data/ panel, under the following file names:
summarydata.mat, behavdata_preproc.mat, metacog-ability.mat, Qlearn_models.mat,
FIG_6A_data.mat, CHI_pconf_prpe.mat. A reporting summary for this Article is
available as a Supplementary Information file.

Code availability
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