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Although the relationship between schizophrenia spec-
trum disorder (SSD) and autism spectrum disorder 
(ASD) has long been debated, it has not yet been fully 
elucidated. The authors quantified and visualized the re-
lationship between ASD and SSD using dual classifiers 
that discriminate patients from healthy controls (HCs) 
based on resting-state functional connectivity magnetic 
resonance imaging. To develop a reliable SSD classifier, 
sophisticated machine-learning algorithms that auto-
matically selected SSD-specific functional connections 
were applied to Japanese datasets from Kyoto University 
Hospital (N = 170) including patients with chronic-stage 
SSD. The generalizability of the SSD classifier was 
tested by 2 independent validation cohorts, and 1 cohort 
including first-episode schizophrenia. The specificity of 
the SSD classifier was tested by 2 Japanese cohorts of 
ASD and major depressive disorder. The weighted linear 
summation of the classifier’s functional connections 

constituted the biological dimensions representing neural 
classification certainty for the disorders. Our previously 
developed ASD classifier was used as ASD dimension. 
Distributions of individuals with SSD, ASD, and HCs 
s were examined on the SSD and ASD biological di-
mensions. We found that the SSD and ASD populations 
exhibited overlapping but asymmetrical patterns in the 
2 biological dimensions. That is, the SSD population 
showed increased classification certainty for the ASD di-
mension but not vice versa. Furthermore, the 2 dimen-
sions were correlated within the ASD population but not 
the SSD population. In conclusion, using the 2 biological 
dimensions based on resting-state functional connectivity 
enabled us to discover the quantified relationships be-
tween SSD and ASD.

Key words: schizophrenia/autism/resting state/machine 
learning/classifier/fMRI
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Introduction 

The relationship between schizophrenia and autism is 
a matter of historical and long-lasting debate. No clear 
distinction between schizophrenia and autism had been 
described by the presentation of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM)-II in 
1968. From the mid-1960s to the 1970s, epidemiological 
studies concluded that these 2 conditions were distinct 
and unrelated. The neurodevelopmental histories and 
age at onset are quite different between schizophrenia 
and autism. However, recent biological studies showed 
overlapping relationships and commonalities between the 
2 disorders.1,2 Genetic studies demonstrated common loci 
and pathways, suggesting that the neurodevelopmental 
pathway of autism spectrum disorder (ASD) is similar 
to that of schizophrenia spectrum disorder (SSD).3,4 
Brain structural magnetic resonance imaging (MRI) and 
functional MRI studies also reported common abnor-
malities in gray matter volumes5 and brain activations.6,7 
Nevertheless, the relationship between SSD and ASD re-
mains controversial.1

The fundamental problems behind this issue are that 
we lack a reliable biological identification for these dis-
orders and that the diagnosis is based mostly on a 
symptomatological and categorical approach as repre-
sented by DSM. DSM criteria are mainly based on the 
patient’s behavioral signs and symptoms,8 although the 
symptoms in patients with SSD and ASD, respectively, 
are heterogeneous and vary erratically over time.9,10 
Hence, there is an explanatory gap between phenome-
nological entities and neurobiological underpinnings. To 
bridge this gap,11 researchers have begun to use a dimen-
sional approach.12 It was necessary to develop the bio-
logical dimensions in order to unravel the relationship 
between SSD and ASD.

Then, we developed the 2 independent ASD and SSD 
classifiers on strictly defined clinical and categorical 
diagnoses that excluded the other disorder for biolog-
ical dimensions using sophisticated machine-learning 
algorithms from brain functional connectivity (FC) 
measured by resting-state functional connectivity mag-
netic resonance imaging (rs-fMRI) on the basis of  the 
reports that ASD13–17 and SSD18–25 exhibited FC abnor-
malities in rs-fMRI. The classifiers for biological dimen-
sions must be robust enough to have generalizability to 
independent cohorts with different ethnicities or MRI 
machine vendors. We have already developed an ASD 
classifier that has generalizability to independent vali-
dation cohorts,26 and here we developed a generalizable 
SSD classifier using the same machine-learning methods 
and 6 independent cohorts. Furthermore, we determined 
each biological dimension from the weighted linear sum-
mation (WLS) of  functional connections of  SSD and 
ASD classifiers, and we plotted individuals with ASD, 
SSD, and healthy controls (HCs) on the SSD-ASD 

dimensions. Finally, visualizing and quantifying each 
individual in a relative manner, we could verify the re-
lationship between SSD and ASD populations. We 
hypothesized that SSD and ASD on the 2 biological di-
mensions that provide each classification certainty are 
not distinct, but rather overlapping.

Methods and Materials

Participants and MRI Data Acquisition

Kyoto. A total of 68 adult patients with SSD, including 
64 patients with schizophrenia and 4 patients with 
schizoaffective disorder, and 102 HCs were recruited at the 
Department of Psychiatry, Kyoto University. Patients met 
the DSM-IV criteria for schizophrenia and schizoaffective 
disorder, based on the consensus of 2 trained psychiat-
rists. In addition, we confirmed the diagnosis by the pa-
tient edition of the Structured Clinical Interview for 
DSM-IV Axis I Disorders (SCID). No patients had any 
comorbid psychiatric disorders including ASD, based 
on diagnosis according to the DSM-IV-TR diagnostic 
criteria for the pervasive developmental disorder. The 
Positive and Negative Syndrome Scale (PANSS) was 
used to assess clinical symptoms. We recruited 2 groups: 
Kyoto A and Kyoto B (supplemental Methods and table 
S1). All patients were receiving antipsychotic medications. 
T1-structural and rs-fMRI images at Kyoto A and B were 
scanned on 3T Siemens TimTrio and 3T Siemens Trio, re-
spectively (supplemental table S2).

Preprocessing of MR Images

MRI datasets (68 SSD and 102 HC) for training of the 
SSD/HC classifier in Kyoto were preprocessed, and cal-
culation of a correlation matrix was performed using 
Statistical Parametric Mapping 8 (SPM8; Wellcome Trust 
Centre for Neuroimaging, University College London) 
software running on MATLAB (R2014a, Mathworks) in 
the same manner as in our previous study26 (supplemental 
Methods and tables S3 and S4).

Selecting FCs as SSD Classifier

To develop an SSD classifier from the correlation ma-
trices, we adopted a cascade of  L1-norm regularized 
sparse canonical correlation analysis27 and sparse lo-
gistic regression (SLR)28 to select SSD-specific FCs 
while minimizing the effects of  over-fitting and nuisance 
variables. The selection of  SSD-specific FCs and classifi-
cation performance evaluation were carried out through 
a sequential process of  9  × 9 nested feature-selection 
and leave-one-out cross-validation (LOOCV) (supple-
mental Methods and figure S1). The machine-learning 
algorithms automatically selected 10–20 FCs as the 
SSD classifier from about 10  000 FCs of  whole-brain 
rs-fMRI. The WLS of  the selected FCs, transformed by 
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sigmoid function, predicted the categorical diagnostic 
label for each individual. The untransformed contin-
uous values of  WLS provide a degree of  classification 
certainty, which can be interpreted as neural classifi-
cation certainty for ASD and SSD. Then, we utilized 
neural classification certainty as a biological dimension 
(see supplemental Methods).

The performance of the classifier was expressed in 
terms of area under the curve (AUC), accuracy, sensi-
tivity, and specificity. The statistical significance of classi-
fication was assessed by the permutation test.29

In addition, we confirmed that the selected FCs of 
the classifier did not reflect variation in duration of ill-
ness (DUI), amount of antipsychotic medication, DUI × 
amount of antipsychotic medication, and age of partici-
pants. Therefore, we paradoxically predicted them from 
the selected FCs using the same methods (cross-validated 
linear regression) and evaluated them by Pearson corre-
lation coefficient.

Generalizability of the Kyoto Classifier

We tested the generalizability of  the Kyoto classifier to 
3 independent cohorts, COBRE of  the Mind Research 
Network (Center for Biomedical Research Excellence, 
University of  New Mexico, USA), UMCU-TOPFIT 
(The Outcome of  Psychosis and Fitness Therapy, 
University Medical Centre Utrecht, the Netherlands), 
and a first episode schizophrenia cohort JHU-FES 
(Johns Hopkins University, USA) (supplemental table 
S5, figure S2, and supplemental Methods). The patients 
with SSD of  Kyoto, COBRE, and UMCU-TOPFIT 
were mainly in a chronic stage of  the disease, while JHU-
FES was in an early stage. The MR images were scanned 
on 3T Siemens TimTrio (COBRE) and Philips Achieva 
(UMCU-TOPFIT and JHU-FES) (supplemental table 
S6). The external datasets (COBRE, UMCU-TOPFIT, 
and JHU-FES) were preprocessed in the same manner 
as the Kyoto dataset (supplemental tables S3 and S4, 
and supplemental Methods).
COBRE. COBRE is the dataset publicly available at 
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html. 
A  total of 46 patients with SSD, including 41 patients 
with schizophrenia and 5 patients with schizoaffective 
disorder, and 61 HCs were recruited.
UMCU-TOPFIT. A total of 47 patients with SSD, in-
cluding 35 patients with schizophrenia and 12 patients 
with schizoaffective disorder, and 43 HCs were recruited. 
About four-fifths of the participants were born in the 
Netherlands.
JHU-FES. A total of 30 patients with FES, including 
21 patients with schizophrenia, 7 with schizoaffective dis-
order, 1 with schizophreniform, and 1 with psychotic dis-
order not otherwise specified, and 71 HCs were recruited 
at Johns Hopkins University Hospital and incorporated 
into the present analysis.

Specificity of the Kyoto Classifier

We tested the specificity of the Kyoto classifier, applying 
the classifier to 2 additional Japanese cohorts of ASD 
and major depressive disorder (MDD), respectively (sup-
plemental figure S2). The datasets of ASD and MDD 
were scanned on a 3T or 1.5T MRI system. Details of 
their demographic information and MRI parameters are 
shown in the referred study26 (see supplemental Methods). 
The other disorders’ datasets (ASD and MDD) were pre-
processed in the same manner as the Kyoto dataset. The 
WLS distributions between each disorder population 
(ASD and MDD) and the corresponding HCs were com-
pared via AUC and Kolmogorov-Smirnov test (see sup-
plemental Methods).
ASD. A total of 74 adults with ASD and 107 age-, sex-, 
handedness-, and IQ-matched typically developed indi-
viduals as HCs were examined. All ASD individuals were 
diagnosed with pervasive developmental disorder based 
on the DSM-IV-TR criteria. The Japanese version of 
mini-international neuropsychiatric interview (M.I.N.I.) 
was used to evaluate psychiatric comorbidity. No individ-
uals satisfied the diagnostic criteria for SSD.
MDD. A total of 104 patients with MDD and 143 age-
matched HC were examined.

Relationships Between SSD and ASD on the Two 
Biological Dimensions

We plotted the SSD and HC participants in the Kyoto 
dataset and the ASD and HC participants on the SSD-
ASD dimensional plane. The SSD and ASD dimensional 
scores are the WLS using the SSD and ASD classifiers, 
respectively. The ASD classifier was taken from our pre-
vious study.26 The WLS distributions between each dis-
order population (ASD and SSD) and the corresponding 
HCs were compared via AUC and Kolmogorov-Smirnov 
test. Categorical ellipses of  SSD, ASD, and HC were 
calculated using multivariate Gaussian distribution (see 
supplemental Methods). To understand the impact of 
individual FCs on the ASD-SSD relationship, we ana-
lyzed the contribution to WLS of the other disorder’s 
population (eg, SSD) for each FC selected by the classi-
fier of  1 disorder (eg, ASD). Furthermore, separately for 
each population, we analyzed the correlation coefficients 
between the most relevant FCs (top 5 each; 25 correl-
ations) selected by the ASD and SSD classifiers and the 
cumulative sum across correlation coefficients in order 
to find the general trend of  correlation (see supplemental 
Methods).

Results

Accurate SSD classifier for Kyoto Discovery Cohort

The 16 FCs incorporated in our final classifier were 
selected by the SLR using the whole Kyoto datasets. 
The identified FCs showed robustness and stability 
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across the cross-validation procedure (supplemental 
figure S3). The classifier differentiated SSD from HC 
populations with an accuracy of  76% and an AUC of 
0.83 (permutation test, P = .006; see table 1 and supple-
mental figure S4). We calculated the WLS of  each par-
ticipant from the 16 FCs. The 2 WLS distributions of 
the SSD and HC populations were clearly separated by 
a threshold of  WLS = 0 (figure 1A). We found that high 
classification accuracy was not only achieved for the 
entire datasets, but also for the 2 sites separately (the 
accuracies of  Kyoto A  and B were 74% and 77%, re-
spectively) (table 1 and supplemental figure S5). When 
tested on the COBRE dataset, the Kyoto classifier 
achieved high performance, with an accuracy of  70% 
(AUC = 0.75) (table 1 and figure 1B). The probability of 

obtaining this high performance by chance is as small 
as P = .001 (permutation test, see supplemental figure 
S4). For UMCU-TOPFIT (figure 1C), the classifier also 
achieved accuracy of  61% (AUC = 0.66) (P = .031, per-
mutation test), although this classification performance 
for UMCU-TOPFIT was lower than for COBRE. 
For JHU-FES (figure 1D), AUC (0.42) was below the 
chance level (table 1), and thus generalization was not 
observed.

Characteristics of 16 identified FCs in the SSD 
Classifier

The 16 FCs as SSD classifier were distributed as inter-
hemispheric (44%), left intra-hemispheric (25%), and 

Table 1. Performance of the SSD Classifier for the Kyoto, COBRE, UMCU-TOPFIT, and JHU-FES Datasets 

Dataset AUC
Accuracy   

(%)
Sensitivity   

(%)
Specificity   

(%)
Accuracy   
Kyoto A

Accuracy   
Kyoto B

Kyoto (N = 170) 0.83 76 72 79 74 77
COBRE (N = 107) 0.75 70 65 74   
UMCU-TOPFIT (N = 90) 0.66 61 64 58   
JHU-FES (N = 101) 0.42 45 40 47   

Note: AUC, area under the curve.

Fig. 1. Distribution of weighted linear summation (WLS) of the SSD classifier. (A) The number of HC and SSD individuals in the 
Kyoto datasets included in a specific WLS interval of width 5 is shown as a histogram (B, C, D). WLS for the COBRE, UMCU-
TOPFIT, and JHU-FES datasets is shown in the same formats as in (A). For this classifier, WLS (or linear discriminant function) of the 
correlation values of the identified FC predicted the diagnostic label of each individual. A participant with positive or negative WLS was 
classified as SSD or HC, respectively. 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data


Page 5 of 9

5.5

5.10

5.15

5.20

5.25

5.30

5.35

5.40

5.45

5.50

5.55
5.56

5.60

5.65

5.70

5.75

5.80

5.85

5.90

5.95

5.100

5.105

5.110

5.112

Relationship Between SSD and ASD and Brain Networks

right intra-hemispheric connections (31%) (figure  2A 
and 2B, and supplemental table S7). The 16 FCs as SSD 
classifier were different from the 16 FCs as ASD classi-
fier that we previously developed26 (figure 2C and supple-
mental figure S6).

In the paradoxical prediction from the 16 FCs, no sig-
nificant correlations were found between the clinically 
measured scores of  DUI, amount of  antipsychotic med-
ication, DUI × amount of  antipsychotic medication, 
and age and their predicted scores. Pearson correlation 
coefficients were 0.04, −0.07, 0.003, and 0.015, respec-
tively. This result means that the 16 FCs of  the SSD 
classifier did not reflect DUI, antipsychotic medication, 
or age.

Specificity of the Classifier to SSD Regarding Other 
Psychiatric Disorders

Separation of WLS distribution was the largest between 
SSD and HC (figure 3A) as already shown (figure 1A). 
In ASD and MDD, the distribution was not distin-
guishable from HC (AUC = 0.50, Kolmogorov-Smirnov 
test, P = .57 for ASD; AUC = 0.55, P = .15 for MDD) 
(figure  3B and 3C). These results suggest that, on the 

biological dimension defined by the SSD classifier, ASD 
and MDD were not close to SSD.

Individuals With SSD, ASD, and HC on the SSD-ASD 
Dimension Plane

There were 2 main asymmetry findings of  relationships 
between SSD and ASD (figure  4 and supplemental 
Results). First, the center of  the SSD population on the 
ASD dimension was elevated to close to 0.5 with respect 
to the center of  its HC population, while the center of 
the ASD population on the SSD dimension remained 
at zero, the same as the center of  its HC population. 
Second, the SSD and ASD dimensional scores were sig-
nificantly correlated in the ASD population (r  =  0.28, 
P =  .040, permutation test corrected for multiple com-
parisons), while there was no correlation in the SSD 
population. The first asymmetry finding was interpreted 
by the differences of  contribution results (supplemental 
Results and figure S7). Most of  the ASD classifier’s FCs 
consistently contributed to the SSD-HC classification, 
but the FCs selected by the SSD classifier made incon-
sistent contributions to the ASD-HC classification, re-
sulting in a cumulative WLS close to zero. The second 

Fig. 2. The 16 functional connectivities (FCs) of the SSD classifier. (A) The 16 FCs viewed from anterior-left. The properties of the 
16 FCs were noted in supplemental table S7. (B) The 16 FCs (solid lines) and their terminal regions (names in boxes) are presented. 
The left and right halves of the figure correspond to the left and right brain hemispheres, respectively. The FCs were classified into 3 
hemispherical categories: left intra-hemispheric, right intra-hemispheric, and inter-hemispheric. The terminal regions were defined by 
anatomical automatic labeling. (C) The 16 FCs as SSD classifier were entirely different from the 16 FCs as ASD classifier.
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asymmetry finding was explained by these correlation 
coefficient analyses (supplemental figure S8). The sum 
of the correlation coefficients within the SSD popula-
tion was close to zero, due to contradicting correlation 
coefficients. On the other hand, the cumulative sum of 
the correlation coefficients within the ASD population 
indicated a general positive trend, which was the same 
direction as the largest correlation.

Frequency of Selection Within LOOCV

The number of features selected across the ASD LOOCV 
was 34, while that of SSD was 73.

In addition, the FC with the largest absolute weight in 
the ASD classifier (FC1ASD) was always selected, while 
that in the SSD classifier (FC1SSD) was selected in only 
15% of the total LOOCV folds.

Discussion

To our knowledge, this is the first study to quantify 
overlapping, but asymmetrical relationships between 
SSD and ASD on the 2 independent dimensions pro-
viding classification certainty for each categorical diag-
nosis. The sophisticated machine-learning algorithms 
using categorical diagnostic labels and whole-brain 

rs-fMRI produced a classifier that could discriminate pa-
tients from HCs. At the same time, the classifier gener-
ated a probabilistic degree of classification certainties for 
SSD and ASD based on whole-brain FC from WLS dis-
tributions. The neural classification certainty was so con-
tinuous that we could regard it as a biological dimension. 
Moreover, the biological dimension needs to be robust 
enough to have generalizability to independent cohorts, 
as the biological dimension should be compatible with 
diagnoses that are common in different cohorts. Here, 
we developed the SSD classifier by a similar method to 
that described for our previous ASD classifier.26 The 
SSD classifier had generalizability to 2 independent co-
horts in different countries and MRI machine vendors, 
not to other psychiatric disorders, and had specificity to 
chronic patients. Using these 2 classifiers, we could visu-
alize individuals with ASD and SSD with their relative 
classification certainty and determine the overlapping, 
but asymmetrical relationships between SSD and ASD 
populations on the 2 biological dimensions. The relation-
ships were more complicated than previously discussed in 
conceptual frameworks.1

The ASD classifier was developed in our previous 
study,26 and here we focused on generating the SSD clas-
sifier. Various machine-learning algorithms have been 
applied previously to develop SSD classifiers that could 
discriminate patients with SSD from HCs.30–35 However, 
none of the previous studies using only rs-fMRI tested 
whether the classifiers could present generalizability 
across different countries and MRI machine vendors. It 
was reported that there was a significant effect of MRI 
machine vendors36 and ethnicities on MRI signals.37 A ro-
bust universal classifier should have generalizability to 
cohorts in a range of different countries under varying 
scanning protocols and imaging apparatus. Our classi-
fier achieved high AUC (generalizability) to COBRE and 
UMCU-TOPFIT over the differences of various coun-
tries and MRI machine vendors. In contrast to COBRE 
and UMCU-TOPFIT, the SSD classifier achieved lower 
AUC (0.42) for a JHU-FES dataset. This can be attributed 
to differences in patients’ disease stage. Indeed, previous 
studies reported consistent differences in FC patterns 
between chronic SSD and FES.38,39 Consequently, the 
finding that the SSD classifier did not generalize to FES 
might indicate that the classifier was specific to patients at 
a chronic stage of the disease. In addition, we confirmed 
the specificity of the SSD classifier by demonstrating that 
it did not discriminate other psychiatric disorders from 
their respective control populations.

By using mathematical and machine-learning methods, 
we succeeded in developing the ASD and SSD classifiers 
from categorical labels and rs-fMRI connectivity. At the 
same time, the classifiers produced the ASD and SSD di-
mensions, which were composed of continuous probabi-
listic neural classification certainties. Plotting individuals 

Fig. 3. Application of the SSD classifier to other psychiatric 
disorders (ASD and MDD). The density distribution of the 
weighted linear summation (WLS) was obtained by applying 
the SSD classifier to (A) SSD, (B) ASD, (C) MDD datasets. In 
each panel, patient distribution and HC distribution are plotted 
separately. For reference, the WLS distribution of the SSD 
patients in A is duplicated across the panels (B, C). For each 
patient and control pair in (A–C), statistical significance was 
tested by Benjamini-Hochberg-corrected Kolmogorov-Smirnov.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
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with ASD, SSD, and HC on the dimensions along with 
DSM could show their heterogeneity based on functional 
neural circuits.

Several alternate models about the relationship be-
tween ASD and SSD have been proposed.1 While 
these models were within conceptual frameworks, 
some studies that applied biological methods actually 
showed commonalities3,6 or diametric conditions40,41 
between the 2 disorders. We took advantage of  the 2 
biological dimensions of  ASD and SSD and revealed 
an overlapping, but asymmetrical relationships, which 
cannot be attained by a single dimension. The asym-
metries here have dual meanings. First, the SSD popu-
lation showed increased classification certainty for the 
ASD dimension, while the ASD population did not for 
the SSD dimension. Second, the 2 dimensions were cor-
related within the ASD population but not in the SSD 
population. Considering the asymmetries, we suggested 
a schema of  the relationship between ASD and SSD 
(supplemental figure S9).

Taken together, the results from the frequency of selec-
tion within LOOCV underlying these asymmetries sug-
gested that the network SSD is characterized by a larger 
diversity and that it partially shares information with the 
smaller network of ASD. This is in agreement with recent 
genetic evidence that ASD shares a significant degree of 
polygenic risk with SSD,3 and that common genetic vari-
ations explain nearly 50% of total liability to ASD42 and 
25%–33% of total liability to SSD,43 suggesting that envi-
ronmental factors play a significant role in the heteroge-
neous etiopathogenesis of schizophrenia.44

Limitations

First, we developed the classifiers from the categorical 
diagnoses, not from symptoms across SSD and ASD. 
Thus, we did not assess relationships on a psychopath-
ological dimensional level between the 2 nosological 
entities. Second, we did not directly classify the pa-
tients with SSD and ASD, because the SSD and ASD 

Fig. 4. Relationships between SSD and ASD on the 2 biological dimensions. Individuals with SSD, ASD, and HC on the SSD-ASD 
dimension plane. On the abscissa, the SSD dimension is the weighted linear summation (WLS) computed using the SSD classifier. On the 
ordinate, the ASD dimension is the WLS computed using the ASD classifier. WLS of each dataset was normalized so that controls have 
zero mean and unit variance (statistical analysis was not affected by this normalization).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa021#supplementary-data
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rs-fMRI datasets were scanned from different MRI 
machines and sequence parameters. Third, the AUC 
of  UMCU-TOPFIT (0.66) was lower than the AUC 
of  COBRE (0.75). There was a difference between 
3-dimensional (3D) scan in UMCU-TOPFIT and 
2-dimensional (2D) scan in the other cohorts (Kyoto, 
COBRE, JHU-FES, ASD, and MDD).45 The classifier 
was developed from Kyoto datasets in the 2D scan, and 
this might be related to the AUC difference. Fourth, 
almost all patients were on antipsychotic medication. 
Previous studies reported that antipsychotics altered 
the FC in frontal and striatal circuits.46,47 Although we 
found no significant correlation between the SSD clas-
sifier and antipsychotic medication, the potential ef-
fects of  antipsychotics on the SSD classifier cannot be 
entirely ruled out. Fifth, we did not recruit comorbid 
patients (ASD with psychosis) and we did not discuss 
comorbidity.

Conclusion

We succeeded in visualizing individuals with ASD, SSD, 
and HCs quantitatively on the SSD-ASD dimensions 
and in verifying the relationship between SSD and ASD 
populations. Consequently, using the two dimensions led 
us to discovering the overlapping but asymmetrical re-
lationships and the complicated associations of neural 
classification certainties for SSD and ASD. 

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin.
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