Systems and Computers in Japan, Vol. 35, No. 6, 2004

Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J85-D-II, No. 3, March 2002, pp. 483 —492

Transformation from Population Codes to Firing Rate Codes by
Learning: Neural Representation of Smooth Pursuit Eye
Movements

Shinya Taguchi,l’2 Hiromitsu Tabata,l’3 Tomohiro Shibata,4 and Mitsuo Kawato'

!Nara Institute of Science and Technology, Ikoma, 630-0101 Japan

2Department 3, Human Information Science Laboratories, ATR, Kyoto, 619-0288 Japan

3National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568 Japan

4Creating the Brain, CREST, Japan Science and Technology Corporation, Kyoto, 619-0288 Japan

SUMMARY

It has been reported that not only the information
related to retinal slip but also the non-visual information
were population-coded in the middle temporal (MT) area
and the medial superior temporal (MST) area during
smooth pursuit eye movements. On the other hand, it has
been also reported that the information related to motor
signals to generate eye movements were firing rate-coded
in the Purkinje cells in the cerebellum. Here, we propose a
computational model of smooth pursuit that includes vari -
ous temporal patterns of neural firing in the MT/MST areas
and synaptic plasticity in the cerebellar cortex. We show
that the signals to generate smooth pursuit eye movements
could be extracted from the signals population-coded in the
cerebral cortex by means of the synaptic plasticity in the
cerebellar cortex. Our results indicate that the transforma-
tion from population codes to firing rate-codes occurs in the
cerebellum during smooth pursuit eye movements © 2004
Wiley Periodicals, Inc. Syst Comp Jpn, 35(6): 79—-88,2004;
Published online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/s¢j.10322
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1. Introduction

First, we define population coding and firing rate
coding (scalar coding) in terms of terminology.

[Population coding]

When cells have a preferred stimulus, the firing rate
of the cells decreases monotonously as the input is away
from the preferred stimulus. We define population coded
information as the information represented in cell groups
having various preferred stimuli.

[Firing rate coding] (scalar coding)

We define firing rate coded information as the infor-
mation that is in a monotonously increasing or decreasing
relationship to the firing rate of cells varying temporally.

In the study of population coding, there are problems
regarding transformation of an external stimulus into the
activity distribution of a cell group, transformation from the
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activity distribution of a cell group to recognition and motor
information, and how these transformations are optimal.
There are many theoretical, physiological, behavioral, and
psychological studies related to population coding, i.e.,
theoretical analyses [l], firing dynamics of neurons in MT
area [2], adaptation to visual stimuli given in a multiple
number of directions in MT and MST area [3], winner-take-
all methods [4], vector averaging methods in M1 [5], and
classifications of these methods by their application accord -
ing to circumstances [6]. To understand how the brain
processes population coded information, it is inevitable to
construct a computational model that can reproduce these
physiological, behavioral, and psychological data in detail.
However, so far, most of the theoretical studies were top-
down and were not able to reproduce the experimental data
in detail. The bottom-up approaches that narrow down
computational theory or population coding algorithms by
modeling study connecting to the physiological, behav-
ioral, and psychological experiments are necessary.

It appears that smooth pursuit eye movements are
appropriate for population code studies for the following
advantages: (1) The relationship between inputs and out-
puts is clear and it can be treated as a system of one degree
of freedom. (2) The signal processing pathway related to
the smooth pursuit is clarified by previous physiological
experiments. (3) A computational theory that adaptation of
the eye movements can be explained by the plasticity in the
cerebellar cortex has been proposed, and the theory has
been supported by physiological experiments [8]. There-
fore, we model the transformation from visual information
to motor information on the basis of this theory. Here, we
investigate how the motor information is extracted from
population coded visual information from a viewpoint of
smooth pursuit eye movements.

We outline previous studies on the computational
theory and physiological experiments of the eye move-
ments in Section 2. We propose a simple model and a more
physiologically plausible model in Section 3. We show
simulation results in Section 4. We examine the reasonable -
ness and the problems of the models in Section 5.

2. Previous Studies on Computational
Theory and Physiological Experiments on
Eye Movement System

The neural circuits related to OFR (ocular following
responses) [9] and smooth pursuit eye movements [7, 9]
have been physiologically studied. There are neurons hav-
ing various speed and direction selectivities in the MT and
MST areas, and the information related to visual motion is
population-coded [2, 10, 11]. During smooth pursuit, the
cells in the MTf area (the foveal region of the MT area) and
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apart of the MSTI area (a lateral-anterior region of the MST
area) have signals related to visual inputs (retinal error) and
the cells in the MST area also have signals related to signals
independent of visual inputs (extraretinal signals).

Lisberger and Movshon [2] have shown that the
velocity and the acceleration of a visual stimulus are popu-
lation-coded in the MT area by their recording study in
anesthetized monkeys. They found that a temporal wave-
form approximately proportional to the target velocity or
acceleration was calculated by a linear sum of the temporal
waveform of the firing rate in each cell.

On the other hand, a simple spike of Purkinje cells in
the cerebellum has a simple proportional ratio with the
linear sum of the acceleration, velocity, and position of the
eye movement, and has two-directional selectivity, i.e.,
downward and ipsilateral. In other words, the information
to generate the eye movement is possibly firing rate-coded
in the Purkinje cells [13, 14]. It has been suggested that
visual information population-coded in the MT and the
MST areas is transformed into the motor information firing
rate-coded in the Purkinje cells [15].

Yamamoto et al. [16] proposed computational model
of the OFR based on the framework of the feedback error
learning theory [22]. In their model, transformation from
sensory information into motor information is obtained by
the synaptic plasticity between Purkinje cells and parallel
fibers. This result indicates that the cerebellum obtains an
inverse dynamics model to control eye movement. This
model has been supported by physiological experiments
[13, 14, 17].

However, the model proposed by Yamamoto et al.
includes only three kinds of temporal waveforms of the
firing rate in the MST area. Accordingly, their model is
insufficient to describe physiological properties in the MST
area. In addition, in their simulation, the firing rate pattern
of the Purkinje cells is obtained only by simple ensemble
of the firing rate waveforms in the MST area. Therefore, it
is still obscure how the signals to generate eye movements
are extracted from visual related information population-
coded in the MST area. Furthermore, they assumed a linear
filter as the neural circuit from the cerebellum to the eye
(referred to as a plant below). It is necessary to test other
kind of plants in order to address the question how the
information appropriate to each plant extracts from the
visual related information population-coded in the MST
area through learning in the cerebellum.

In Lisberger and Movshon [2], the eye movements of
the monkeys were not induced due to anesthesia. The
temporal waveforms of the firing rate of the MT area should
vary in many ways if the eye movements occur, and how
the activity distribution of a cell group changes or how a
human or a monkey learns weighting has not been ad-
dressed.



In the next section, we designed the model of
smoother pursuit eye movement based on the computa-
tional theory and physiological experiments described
above. We assume that the neurons in the MT and the MST
areas included various temporal patterns of firing rate under
the condition that eye movements could be induced. Then,
we conduct the computer simulation to investigate whether
the appropriate signals to generate eye movements could be
extracted from the cell population in the MT and the MST
areas.

3. Models

3.1. Nomenclature

The following symbols are used.

t: time (ms)

N: total number of the cells in MT and MST, respec-
tively

i: index of MT, MST area cells (1 < i <N)

S(#): simple spike of Purkinje cells

E(?): eye speed or velocity (deg/s)

T(r): visual target velocity (deg/s)

x(1): firing rate of i-th MT, MST area cell

w;: synapse weight between parallel fiber and Purk-
inje cell having x,() as input

w: weight vector having w; as components

¥(#): climbing fiber input

€: learning coefficient in feedback error learning

A;: delay time of the cells in the MT, MST area before
firing (ms)

A,: delay time from the firing of a simple spike until
the start of eye movement (ms)

8,: delay in time when the parallel fiber input and the
climbing fiber input are multiplied in learning (ms)

d,: latent time of climbing fiber input (ms)

L: Laplace transform operand

K:=(as+ 1)/((bs+ 1)(cs + 1)), where a =83 ms, b =
16 ms, ¢ = 179 ms [18]

M: number of kinds of sample target velocities when
an optimal weight is computed

m: index of sample target velocity when an optimal
weight is computed (1 < m < M)

P, q: kind of plant; p, g € {1, l/s, K}

P: linear filter showing a plant

b,: ideal motor command when plant is p

J: evaluation function determining w for outputting
an ideal motor command

I: unit square matrix

k: coefficient of normalization term of J

w?: weight of i-th synapse that minimizes J when
plantis p
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W,: weight vector having W/ as components

E(?): ideal eye velocity

E(t): time derivative of ideal eye velocity

S(#): simple spike for inputting ideal eye velocity; this
is referred to as ideal motor command in this paper

x/(¢): firing rate of i-th MT, MST area cell with
respect to m-th sample input

uq,p(j): qu(]) - Wp”/”Wp”

3.2. Outline of model

Smooth pursuit eye movements of tracking a single
target are simulated.

Figure 1 presents the overview of our model of
smooth pursuit eye movements.

Since the direction selectivity of cells in the MST area
has been discussed by the OFR model of Yamamoto et al.
[16], this paper focuses its discussion on the velocity and
acceleration selectivities and responses of the cells in the
MT and MST areas. Considering a target moving left to
right, the target velocity moving rightward is taken to be
positive. MT, MST area cells responding to positive or
negative target speeds are used.

First, assume that transformation from the firing rate
x;(t) of an MT, MST area cell to a simple spike S(¢) is linear.
Specifically, assume

S(t) =) wizi(t) (1)

Here, consider each Purkinje cell having the preferred
direction in the rightward azimuth, and assume the sponta -
neous firing rates of S(r) and x,(¢) to be 0.

x; (1) MT/MST
: Parallel fiber
iClimbing Sber}
S@)= 2 wx,(f) Purkinje cell
P(S(1) plant
E()
—

Fig. 1. A model of smooth pursuit eye movements.



Considering w; to be the synapse weight between the
parallel fiber and Purkinje cell, compute it according to
feedback error learning

WO _ et~ 51yt @)
y(t) = T(t — 6) - E(t - 6) 3

The weights before the beginning of learning are assumed
to be 0. By learning, a simple spike is expected to become
the motor command issued by the inverse dynamics model
of a plant.

The eye velocity is computed by inputting a simple
spike into the plant. Note that the plant takes the velocity
as output in this paper. With s representing the variable in
Laplace transformation, a plant is represented by a transfer
function. The generality of the learning ability is shown by
simulating three kinds of plants and the learning results are
compared. The three plants are 1, 1/s, and K. The Purkinje
cell must learn their inverse, 1, s, and 1/K. In other words,
plant 1 and 1/s are used for extracting only the velocity
information, acceleration information from the MT and
MST activities.

In Section 3.3, a model for testing whether the target
velocity and acceleration are extracted by feedback error
learning or whether an inverse dynamics model of the
control target can be learned is proposed. For this, its
configuration is simplified such that the firing rate wave-
forms of the MT and MST area cells are linear sums of the
target velocity and acceleration. In Section 3.4, a model
incorporating more physiologically plausible conditions by
reproducing various temporal waveform distributions of
the firing rates of the MT and MST area cells is proposed.

3.3. Simple model

The model is simplified as follows. (1) Construct the
firing rate waveforms of the MT and MST area cells from
the linear sum or combinations of the target velocity and
acceleration. (2) Assume that A; =0 ms, A, = 0 ms. In other
words, both the latent time until the firing of the MT and
MST and the latent time until the eye movement are as-
sumed to be 0 ms. (3) Assume 6, = 0 ms and 8, = 0 ms. In
other words, time differences in learning are not considered.

The target velocity reaching a normal velocity after
acceleration for a certain time is taken as the input to the
MT and MST areas [acceleration times (50, 100, 150, 200
ms) and normal velocities (+10, +20, +30 deg/s) are com-
bined randomly]. Next, construct the MT and MST area cell
firing rate waveforms from linear sums of the target velocity
and acceleration. Taking the maximum value (30 deg/s) of
the velocity and the maximum value (600 deg/s?) among
the stimuli given to be 1, respectively, normalize the veloc-
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ity and the acceleration of the input. The normalized veloc-
ity and acceleration with weights applied from O to 1 in 0.2
increments (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) appropriately are
taken as normalized firing rates of the MT/MST area cells.
(Number of kinds of weights)2 — 1 =35 kinds of cells are
used. Figure 2 shows examples of temporal waveforms of
the firing rates. The inputs are target velocities that become
the normal velocity of 20 deg/s after 100 ms acceleration.
The horizontal axis of the lower right rectangle is the
normalized firing rate and the vertical axis is the time (unit
being milliseconds).

Taking the simulation of 1000 ms from inputting of
the target velocity until outputting of the eye velocity as one
trial, learning of a total of 5000 trials was performed.

The learning coefficients when the plants are 1, 1/s,
and K are assumed to be 3.0 X 10_4, 5.0x 1077, and 1.0 X
1073, respectively.

3.4. Physiologically plausible model

The following four points are incorporated into the
model.

(1) Create MT and MST area cells having target
velocity selectivities and different responses even with
respect to accelerations (Fig. 3). Lisberger and Movshon’s
methods [2] were referenced. In Fig. 3, fix)=
a; exp[—{logx/v))/(b; + ¢; log(x/vj))}z]. In addition, with
d=1, a; =10, b; = 400 spikes/s, ¢c; = 1, d; =0.03, v; = {3
deg/s each from 3 deg/s to 60 deg/s}, and a, = 100, b, =
{0.05, 0.5, 1, 5, 10}, ¢ = 1, d, = 0.1, v, = v; + 10, cells
having 100 kinds of dynamics were used. The preferred
stimulus velocity increases as v; and b, increase; the pre-
ferred stimulus velocity is scattered between 1 deg/s and 60

n n n n
n n n n
/ / % ( f

Fig. 2. An example of neuronal responses in area
MT/MST constructed from linear combination
of target velocity and acceleration.



deg/s. Here, in order to eliminate the effect of cell firing on
the acceleration, the cell preferred stimulus velocity is
defined as follows, following Lisberger and Movshon [2]:
“It is assumed that the target velocity is step input. Among
these, the target velocity that maximizes the averaged cell
firing rates between 256 ms and 512 ms is taken as the
preferred stimulus velocity.”

(2) In order to reproduce the firing rate waveforms of
the MT area cells in the state in which the eyes are actually
moving, the retinal slip is input into the M T area. Lisberger
and Movshon [2] presented an equation for creating the
firing rate waveforms of the MT area cells in the state in
which the eyes are not moving, taking the target velocity as
input. Thus, replacing the input in Lisberger and Movshon’s
equation with the retinal slip is considered to be useful in
reproducing the firing rate waveforms of the MT area cells
of the state in which the eyes are actually moving. On the
other hand, assuming that information that the MST area
has other than visual stimuli as the target velocity, the target
velocity is directly input into the MST area. By this, the
firing rate waveforms of the MST area cells that keep firing
by inputs other than visual stimuli observed by the physi-
ological experiments of Newsome and colleagues [12] are
modeled. Figure 4 shows an example of the firing rate
waveforms of the MT and MST area cells. The plants in this
case are K, and the waveforms are temporal waveforms of
the firing rate of the case (Fig. 9A) of following a target that
obtains a normal velocity of 20 deg/s after acceleration for
100 ms after learning. The parameters of A to D of Fig. 4
are the same and there are a total of 400 cells for which the
input is of four kinds: a positive target velocity (Fig. 4A),
positive retinal slip (Fig. 4B), negative target velocity (Fig.
4C), negative retinal slip (Fig. 4D). Because of the input of
a positive target velocity, the cells of Fig. 4C do not fire.
The horizontal axis of the lower left rectangle of Fig. 4D is
the firing rate (spikes/s), and the vertical axis is the time

target vel.
or output
retinal slip 1 Si(®) firing rate
1 —
as+1
input
output
_ss 1 £,(%)
€ ™ @st1 [ RN

input

Fig. 3. Block diagram used to simulate responses of
MT and MST neurons in the physiologically
plausible model.
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(ms). The cells surrounded by the rectangle of Fig. 4A has
the preferred stimulus velocity of 20 deg/s.

(3) A; =65 ms and A, = 10 ms are assumed. Specifi-
cally, the time delay of 75 ms until the eyes start to move is
considered.

(4) 8, =250 ms and &, = 65 ms are assumed. Specifi-
cally, time differences in learning are considered. In order
to explain the effects of time differences in learning, the
ideal eye velocity E(#)is defined as follows (Fig. 5A):

E(t) = T(t — 75) )

Here, 75 ms is the time until the eyes start to move. Learning
progresses in proportion to the amount of the climbing fiber
input multiplied with the parallel fiber input delayed by 250
ms [Eq. (2)]. This is based on the consideration of the
physiological experiments that have found that the learning
effect is highest when the parallel fiber input and the
climbing fiber input delayed by 250 ms interfere at a certain
point in time [19]. When learning progresses and the ideal
eye velocity is output, the climbing fiber input 7(¢ — 65) —
E(t - 65) and the parallel fiber input delayed 250 ms do not
overlap in time and a change greater than this does not occur
(Fig. 5B). If there are no time differences in learning, the
correlation between the climbing fiber input and the parallel
fiber input x(¢) usually becomes positive and the weight
continues to increase. On the one hand, since the retinal slip
becomes equal to the target velocity at the beginning of
learning and the parallel fiber input and the climbing fiber
input overlap in time even when there are differences in
learning, learning progresses (Fig. 5C).

After acceleration of a certain time, the target velocity
reaching the normal velocity [the acceleration time (less

(]
U W U W W W W W U N = P
U Y N N N N Ny N N N NS N N e A
A O o e N A = Lt e Ve Sy R
P ot = L o e et e e
U ol b il il e el e S
[T TR T T Y Y T Y T D W S S D
[T TR T T Y T B T
B DT T O Y T Y Y D S
[TV T O O Y Y T T I S
[TV T O T Y Y T Y S S
C - _ - —_ - —_ -~
WO e e d e e T
U e e b e kT
D I de e A e e T
oM b d T T T T
o W e b o

Fig. 4. An example of neuronal responses in area
MT/MST based on Lisberger and Movshon’s model [2].
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Fig. 5. Schematic diagram showing an effect of time
difference between parallel fiber inputs and climbing
fiber inputs during feedback error learning.

than 200 ms) and the normal velocity (+30 deg/s) combined
randomly] is followed and learning is performed by trials
of 10,000 times. The learning coefficient €is 1.0 x 1078,5.0
x 1071% and 1.0 x 10~ when plants are 1, 1/s, and K,
respectively.

In order to quantitatively discuss the learned weight
or load, the optimal weight vector for outputting the ideal
eye velocity when plants are p (1, 1/s, or K)

Wp = (@f @f ... @%)T (5)

is computed and compared. Here, N (= 400) is the number
of synapses. Specifically, W, that minimizes

J = [|Aw — bp||* + k[ |w]|? ©)

is computed. As explained later, vector by, is the ideal motor
command when the plant is p [the simple spike for output-
ting the ideal eye velocity (Fig. 5A) is called this]. In
addition, Aw represents the simple spike when the weight
is w. Thus, the first term of J requires that w that issues the
ideal motor command be determined. In addition, the sec-
ond term is the normalization term that requires that the
norm of the weight be large. This is the term added since
the norm of the weight is predicted to be large since the
feedback error learning of this paper is the gradient method
and the weight only changes slowly and the initial value of
the weight is 0.

W, is computed as follows. M is assumed to be the
number of kinds of sample target velocities. Here, M = 24
by combining 4 kinds of acceleration time (50, 100, 150,
200 ms) and 6 kinds of normal velocity (£10, 20, £30
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deg/s). gg(t) is the ideal motor command when the plants
are p and the target velocity is m. Specifically, S7'(¢) = E,(t
+ Ay) when plants are 1, 87, (t) = E,(t + A,) when plants
are 1/s, and S"(r) = L7 (K" (L(E,(t + A,)))) when plants
are K. Defining vector b, and matrix A as

b, = (5,(0) 5,(1)

S5(1000) S2(0) ... S2(1000))T ™)

[ o) () zh(0)
zi(1) z3(1) zn(1)

e m{(l.OOO) w%(I'OOO) x}v(iOOO)
3 (0) 3(0) 2% (0)

M (i000) x (i000) =M (i000)

(8)

W, that minimizes J based on an appropriate k
wp = (ATA+kI)"'ATb, )

can be computed. Assume k =200 when plants are 1 and K
and k = 300 when plants are 1/s. In order to show that the
weight approaches W, as learning progresses, changes are
followed by the number of times of trials of

uq,p(J) = IwWq(5) — Wy |l/[|W5l| (10

with the vector of the weight after j trials by feedback error
learning when plants are g (1, 1/s, or K) as w,(j).

4. Simulation Results

4.1. Simple model

Figure 6 shows the simulation results. The simple
spikes are shown in units appropriate for the plants. Here,
the simple spike when the eye velocity becomes equal to
the target velocity is called the theoretically determined
motor command. The simple spike (Fig. 6B) when the
plants are 1 (Figs. 6A, B, C) becomes the target velocity
(Fig. 6A). The simple spike (Fig. 6E) when the plants are
1/s becomes the target acceleration (Figs. 6D, E, F). In all
cases, the simple spike becomes the theoretically deter-
mined motor command that the inverse dynamics model of
the plants computes. The simple spike (solid line in Fig. 6H)
is a good approximation of the theoretically determined
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Fig. 6. Simulation results of the simple model.

motor command (broken line in Fig. 6H) for K plants. Thus,
the eye velocity (Fig. 6I) becomes an approximation of the
target velocity (Fig. 6G). The efficacy of feedback error
learning has been shown by this model.

4.2. Physiologically plausible model

Figure 7 shows the results for one plant. The simple
spike is shown in a unit appropriate for the plant (similarly
for other plants below). The simple spike (solid line in Fig.
7B) obtained by learning becomes an approximation of the
ideal motor command (broken line in Fig. 7B). Specifically,
the eye velocity (solid line in Fig. 7A) can track the target
velocity (broken line in Fig. 7A). Figures 7C and D show
changes by the number of trials of u,,(j). The data are
plotted for every 100 trials. The solid line, broken line, and
one dot chain line of Figs. 7C and D are u; 5, u 15, and u g,
respectively. Since u;; approaches 0 with learning, the
weight approaches the optimal value W;.

Figure 8 shows the results for 1/s plant. The simple
spike (solid line in Fig. 8B) obtained by learning is not the
ideal motor command (broken line in Fig. 8B). This is due
to the fact that first-order filters are used in the velocity
input in creating the MT and MST area cell firing rate
waveforms (Fig. 3) and there are no rapidly rising firing rate
waveforms. However, learning is done such that the surface
area is the same, and the eye velocity (solid line in Fig. 8A)
ends up tracking the target velocity (broken line in Fig. 8A).
Specifically, it can be said that the acceleration information
necessary for the eye movement is extracted from the
distribution of firing rate waveforms. Figure 8C shows
changes for 100 trials each of uy (7). The solid line, broken
line, and one dot chain line are wuys, U/ 15 and uy g
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Fig. 7. Simulation results of the physiologically
plausible model: plant 1.

respectively. Here, the solid line and the one dot chain line
overlap since uy;,; and u;;x are almost 1. Since uy/ q
approaches 0 as learning progresses, the weight approaches
the optimal value W, ,,. However, the fact that u,/ does
not decrease for other plants is due to the fact that there is
a redundancy in constructing waveforms such as the solid
line of Fig. 8B from the weighted linear sum since com-
paratively many cells react to acceleration and show tran -
siently rising firing rate waveforms (Fig. 4).

Figure 9 shows the results for K plants. The simple
spike (solid line in Fig. 9B) obtained by learning becomes

% 8 8
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Fig. 8. Simulation results of the physiologically
plausible model: plant 1/s.
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Fig. 9. Simulation results of the physiologically
plausible model: plant K.

an approximation of the ideal motor command (broken line
in Fig. 9B). Thus, the eye velocity (solid line in Fig. 9A)
can track the target velocity (broken line in Fig. 9A).
However, the point that the eye movement and oscillation
in the simple spike is discussed in Section 5. Figures 9C
and D show changes for 100 trials each of ug ,(j). The solid
line, broken line, and one dot chain line of Figs. 9C and D
are ug 1, Ug1/s and ug g, respectively. It can be understood
that the weight approaches the optimal value W from the
fact that ug g approaches 0 as learning progresses.

5. Discussion

5.1. Code transformation by learning

The model of this paper resolves insufficient aspects
of Yamamoto’s model [16] and Lisberger and Movshon’s
discussion [2]. The waveforms of the MT and MST activi-
ties having various temporal distributions of the state in
which the eyes are in motion are reproduced. Specifically,
the MST area having information on the target velocity and
the MT area having information on the retinal slip are
modeled, and cell groups having target velocity selectivities
and differing responses to acceleration are used. In addition,
since the model considers the delay time until the occur-
rence of the eye velocity, the inputs to the MT area are
complicated and realistic. Thus, the simulation conditions
for which appropriate motor commands cannot be obtained
by simple linear sums of firing rate waveforms arise. Sec-
ond, the weight is determined by feedback error learning
by assuming that simple spikes can be reproduced from the
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weighted linear sums of the MT and MST area cell firing
rates and assuming the weight to be the weight of the
synapses between the parallel fiber input and Purkinje cells.
Specifically, Yamamoto’s model could be expanded to
smooth pursuit eye movements, and transformation from
population codes into firing codes could be done due to the
synaptic plasticity of the cerebral cortex. Third, information
on the velocity and acceleration necessary for eye move-
ments could be selectively extracted from the MT and MST
area cell firing rate waveforms by varying plants. For any
plants, the weight approaches the optimal value by learning.
This shows the generality of the learning capability.

Here, the results for K plants are further considered.
The eye velocity and the simple spike fluctuate in the case
of K plants. This is due to the fact that the weight is learned
from O and the magnitudes of the synaptic weight that uses
the MT area cell firing as input and the synaptic weight that
uses the MST area cell firing as input are almost the same.
Since the effect of the MT area, which is the feedback path
having a delay, is excessive, unstable control results, lead -
ing to fluctuations in the eye velocity and simple spike. In
addition, ug g does not decrease as much as u;; (one dot
chain line, Fig. 9D). As measures for resolving this, varying
the learning coefficients of the synaptic weight using the
MT area cell firing as input and the synaptic weight using
the MST area cell firing as input or varying the time and the
intensity of the input into Purkinje cells such that the
parallel fiber input from the MT area is dominant in the
initial phase (the stage immediately after the target starts to
move and the eyes accelerate quickly and track the target
velocity) and the parallel fiber input from the MST is
dominant in the maintenance phase (the stage after the
initial phase when the eye velocity drops close to the target
velocity), etc., are considered.

5.2. MST area model

The MST area is modeled by inputting the target
velocity directly into the MST area in this paper. However,
the input from the visual sensory system is only the retinal
slip in the task of following one target by eyes with the head
fixed. The following two hypotheses hold regarding the
authors” MST area model. (1) Neuronal activities inde-
pendent of the visual stimuli in the MST area are repro-
duced from only retinal slips. (2) The neuronal activities of
the MST area predict the target velocity. Regarding this,
Tabata and colleagues [20] reproduced neuronal activities
independent of visual stimuli by simulating the neuronal
field dynamics. In addition, Shibata and colleagues [21]
constructed the MST area by a circulating connection type
neuronal circuit and simulated smooth pursuit eye move-
ments having the mechanism of predicting the target veloc-
ity. In addition, the authors implemented the model in a



humanoid eye system and showed the computer theoretical
efficacy of the velocity prediction mechanism. The two
hypotheses are shown to be theoretically feasible from these
findings. Information other than visual stimuli in the MST
area and the effects of this information on the population
coding of visual stimuli remain to be experimentally clari -
fied in the near future.

6. Conclusions

This paper discussed sensory movement transforma-
tion by modeling smooth pursuit eye movements. We plan
to investigate optimal sensory movement transformation of
the case considering noise in cell firing and its connection
with learning of the cerebellum, and to develop theories that
can be compared with the physiological and behavioral
experiments of eye movements.
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